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Abstract. Over the past few years, machine learning potentials (MLPs) have been fully 

developed and can now be applied to a variety of large-scale atomic simulations. MLPs 

encompass a number of different machine learning algorithms, of which neural network 

potentials are the most dominant and representative, and have achieved great success. This 

review focuses on the second generation of neural network potentials, high-dimensional neural 

network potentials (HDNNPs). While HDNNP has accomplished noteworthy results in the 

implementation of ion diffusion, nuclear magnetic resonance parameters, defect formation, and 

thermal conductivity, it still encounters hurdles in the compilation of training datasets, 

transferability, accuracy constraints, and the management of multiple chemical species. In spite 
of this, HDNNP remains a highly promising methodology. Looking forward, we anticipate the 

development of more specialized software for HDNNP to augment research efficiency and lower 

the barrier to usage. 
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1.  Introduction 

Empirical potentials and first principles currently dominate the field of computational materials 

science. Empirical potentials employ functional analytical equations with explicit coefficients to depict 
the interactions among atoms and their neighbors. While this method is straightforward and 
computationally efficient, its accuracy in adhering to physical laws is relatively low. Conversely, first 
principles, grounded entirely in fundamental physics laws, yield high accuracy but demand substantial 
computational resources and extended computation times. Both methods are applicable in diverse 
simulations, each presenting its own advantages and limitations. 

Machine learning potentials have gained significant attention in recent years for their ability to 

overcome the inherent limitations of classical methods like empirical potentials and first-principle 
computed potentials, including the challenges in potential development and the enormous 
computational cost. Neural network potentials, developed through the integration of neural network 
algorithms, are particularly prominent among the various MLPs. Unlike empirical potentials, NNPs' 
adaptable functional form, extensive fitting target, high accuracy, and portability have established 
them as one of the mainstream MLPs today. 

NNPs can be classified into four generations[1]. This article primarily focuses on the second 

generation—High Dimensional Neural Network Potentials (HDNNPs), the most renowned and 
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successful among them. As implied by its name, the second-generation NNPs overcome the 
limitations of their predecessors, which were confined to low-dimensional systems, thus enabling 
NNPs to solve practical problems more efficiently. 

The subsequent sections will first introduce the commonly used computational methods in material 

science and their respective developmental histories, followed by an emphasis on the practical 
application areas of high-dimensional neural network potentials. 

2.  Related theory 

This section will offer a succinct overview of the prevalent computational methods currently employed 
in materials science. Each of these methods possesses its own unique merits and demerits, yet they 

have all developed over time and are broadly recognized and implemented. These methods are an 
integral part of this field. 

2.1.  Empirical Potentials 
Empirical potentials offer explicit functional forms, complete with coefficients, that are designed to fit 
experimental data or results derived from first-principle calculations. Based on the interatomic 

interactions depicted by the potential function, these can be broadly classified into two-body, 
three-body, and multi-body potentials. The two-body potential is exemplified by the well-known LJ 
(Lennard-Jones) potential[2]. 

Despite its simplicity, the functional form of the LJ potential effectively captures the basic physical 
properties of numerous atomic systems. Its computational efficiency further contributes to its 
popularity, making it the most commonly utilized two-body potential. 

In real material systems, interactions occur not merely between pairs of atoms but also among 

multiple atoms coupled together. The three-body potential accounts for both the interactions between 
atom pairs and the angles between trios of atoms. Examples of typical three-body potentials include 
the Stillinger-Weber (SW) potential and the Tersoff potential [3, 4].The multi-body potential, which 
takes into account inter-atomic interactions involving more than three atoms, provides a more 
comprehensive description of the nature of matter compared to two-body and three-body potentials. 
The commonly used potentials include the Embedded Atom Method (EAM) potentialand the Modified 
Embedded Atom Method (MEAM) potential, which is developed based on the EAM potential [5, 6]. 
The EAM and MEAM potentials, widely used in metal and alloy systems, refer to DFT that uses local 

electron density to describe the atomic environment. 

2.2.  Density Functional Theory  
Density Functional Theory is a prevalent method in computational materials science, prized for its 
high accuracy and efficiency. The fundamental concept of DFT is to formulate a generalized function 
that links total energy with electron density, enabling the replacement of the complex multi-body wave 

function used in traditional quantum mechanics with the electron density function. This substitution 
effectively simplifies the multi-body problem in solid systems to a single-body problem. 

The initial development of DFT dates back to the 1930s. In 1927, the Thomas-Fermi-Dirac mode 
was the first to express the kinetic energy of an electron in the form of electron density. In 1928, the 
Hartree model attempted to use an approximate wavefunction to obtain observables. In 1964, the 
Hohenberg-Kohn theorem established that individual physical quantities in a stable system could be 
determined using the density of ground states, a concept that later became known as DFT [7, 8]. In 

1965, the inclusion of an exchange-correlation term in the Kohn-Sham equation enabled DFT to 
address practical problems[8]. However, this required approximate solutions using techniques such as 
the local-density approximation (LDA) or the generalized-gradient approximation (GGA). In 1980, 
research by Zunger and Cohen made it possible to calculate the total energy[9]. 
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2.3.  Machine Learning Potentials 
Machine learning potentials are a set of interatomic interaction potentials derived from machine 
learning techniques. Contrary to traditional methods, MLPs employ mathematical principles to design 
a highly flexible functional form and leverage the vast data processing capabilities and robust fitting 

ability of machine learning techniques to derive a potential function that fulfills the given criteria. The 
resulting potential function exhibits flexibility, high accuracy, and excellent portability. However, the 
primary drawback of MLPs is their lack of a physical functional form and the substantial 
computational resources required for their construction. 

The earliest MLPs were Neural Network Potentials proposed by Blank and his colleagues in 
1995[10]. For a system with N atoms, NNPs map a 3N-dimensional coordinate space onto a Potential 
Energy Surface (PES). This mapping relationship is realized through a neural network containing 
numerous tunable parameters. By optimizing these regression parameters, a smooth potential energy 

surface can be obtained with minimal error in comparison to the reference energy. Additionally, the 
energy gradient, or the atomic force obtained by DFT calculations, can be used as a regression target. 
The vast dataset and high-dimensional parameter space make the parameter optimization process 
highly complex. However, the robust numerical fitting capability of machine learning methods makes 
this intricate parameter optimization process feasible. 

However, as this method utilizes only a single neural network to depict the PES, the number of 
input nodes in the neural network increases significantly with the rise in the number of system atoms. 

Consequently, this method is only suitable for low-dimensional systems. 
Over several decades, neural network potentials have evolved to their fourth generation. This 

discussion will primarily focus on the second-generation NNPs. In 2007, Behler and his team 
proposed High-Dimensional Neural Network Potentials that define the total energy of a system as the 
cumulative energy of each atom[11]. By leveraging a distinct neural network for each atom to 
calculate its energy, HDNNPs effectively addressed the limitation of NNPs being applicable only to 
low-dimensional systems. A pivotal step in the development of HDNNPs was the introduction of a 

novel descriptor, the atom-centered symmetric function. This function can accommodate translation, 
rotation, and atomic substitution invariance. HDNNPs can be bifurcated into two categories according 
to the type of descriptors: one utilizing descriptors with predefined functional forms, and the other 
employing descriptors based on auto-learning. The advent of HDNNPs significantly broadens the 
potential applications of NNPs in real-world material systems. 

Besides, MLPs also incorporate kernel-based approaches, including Gaussian Approximation 
Potentials (GAP), Gradient Domain Machine Learning (GDML), and Spectral Neighbor Analysis 
Potential (SNAP), among others [12, 13, 14]. 

3.  Application 

Currently, HDNNPs have been used in many different material simulation studies, and some 
representative or pioneering examples will be shown below. 

3.1.  Ion diffusion 

The application of NNPs in simulation studies on amorphous materials presents a promising frontier. 
The simulation of amorphous materials necessitates large-scale systems. Traditional DFT methods are 
computationally demanding, a challenge that NNPs can effectively surmount. NNPs have been 
successfully utilized in conjunction with nudged elastic band, kinetic Monte Carlo, and molecular 
dynamics methods to characterize Lithium vacancy diffusion behavior in the amorphous Li3PO4 

model [15].  
NNPs exhibited remarkable efficiency in this context, operating at a speed that is 3 to 4 orders of 

magnitude faster than DFT. Additionally, the method determined an activation energy of 0.55 eV, a 
result that aligns excellently with findings from other experimental measurements, thereby verifying 
its reliability in calculating ion diffusion coefficients. 
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Figure 1. The diffusivity of Li in amorphous Li3PO4 obtained from the large-scale MD using NN 

potentials. The experimental results were measured with different methods as shown in figure 1[15]. 

3.2.  Nuclear magnetic resonance parameters 
A number of solid-state substances can have their local atomic order investigated using the extremely 
successful experimental method known as nuclear magnetic resonance (NMR) spectroscopy. However, 
interpreting the corresponding spectra in terms of structural information is rather difficult due to their 
complexity, especially for amorphous materials. Molecular dynamics simulations, which produce 
realistic structural models, can be combined with an ab initio evaluation of the quadrupolar coupling 
tensors and accompanying chemical shift to overcome these issues. However, this method is only 

applicable to relatively small system sizes due to computational limitations. 
Cuny introduces a method for predicting NMR parameters of solid materials utilizing HDNNPs[16]. 

After training on a collection of representative structures, this method can predict the NMR parameters 
of an extensive system with remarkable efficiency and accuracy, closely mirroring that of the DFT 
method. Moreover, it can also be applied to a substantial number of small to mid-sized unit cells, a feat 
unachievable with DFT-based approaches due to their significant computational power requirements. 

3.3.  Defect formation 

Defects in materials are unavoidable, and they modify the diverse properties of these materials. In the 
realm of semiconductors, researchers often opt to dope materials to regulate their conductivity. 
Consequently, it is imperative to investigate the defects in semiconductor materials. 

In semiconductors, DFT calculations that employ hybrid functionals are recognized to enhance 
accuracy. However, this method significantly escalates the computational expense. Conducting 

dynamical calculations, such as phonons and molecular dynamics on defective systems, typically 
necessitates substantial configurational space and extended computational durations. These challenges 
underscore the limitations of DFT calculations in addressing defect properties, even at the level of 
local density approximation, or GGA. 

Koji Shimizu and his colleagues devised a scheme of the NNP to investigate the behavior of point 
defects in various charge states as we can see in figure 2[17]. They exhibited the performance of the 
proposed NNP using wurzite GaN, which includes a nitrogen vacancy with 0, 1+, 2+, and 3+ charge 
states, as a prototype material. Several GaN structures, along with the related total energies and atomic 

forces obtained from the DFT computations, were used to develop the suggested NNP. The resultant 
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NNP accurately replicated the thermodynamic properties and phonon band structures of defective 
systems. It is anticipated that the training data preparation process with hybrid functional computations 
will improve the prediction performance even more. It is expected that the proposed plan will set the 
foundation for future advancements in ML applications and the growth of materials science research. 

 

Figure 2. Defect formation energies were calculated as functions of EF (a). The band-gap energies of 
the experiment (around 3.50 eV), Heyd-Scuseria-Ernzerhof (2.85 eV), and GGA (1.71 eV) are shown by 
the background colors. (b) Defect formation energies were calculated using the charge adjustments. (c) 
The temperature dependency of Vq N on transition levels was computed. The DFT (NNP) results are 

shown as a solid (dotted) line.[17]. 

3.4.  Thermal conductivity 
One major hurdle in modern nanoscale electronics is the problem of heat generation in semiconducting 
materials. The power density and device temperature increase with decreasing device size, which is a 
major factor in the decline of device performance and dependability. The development of effective 
techniques for the theoretical simulation of thermal conductivity is crucial for the engineering of 

semiconductor materials with enhanced thermal management. 
One of the most well-established methods for accurate force prediction is DFT calculation, which 

takes into account the effects of atomic displacement on changes in the electronic state. However, the 
use of DFT calculations in thermal conductivity models is limited by their high computational cost. 
The lattice thermal conductivities of semiconductor crystals have been successfully predicted by 
combining DFT calculations with equilibrium molecular dynamics (EMD) or anharmonic lattice 
dynamics (ALD) methods. However, because of the exponential increase in computational cost with 

system size, this technique cannot be applied to systems with more complex structures, such as 
defective or disordered ones. 

Emi Minamitani and Satoshi Watanabe employed HDNNPs in their research on the thermal 
conductivity of semiconductor materials according to figure 3[18]. For bulk crystals of Si and GaN, 
the discrepancy from the thermal conductivity computed using DFT is within a 1% range at 200 to 500 
K for Si and within a 5.4% range at 200 to 1000 K for GaN. Concurrently, HDNNPs are 800 times 
more efficient than DFT in calculating thermal conductivity, yet the drawback is the substantial time 
requirement for preparing the training dataset and tuning the hyperparameters. If the procedure of 

constructing HDNNPs can be managed within a reasonable timeframe, this could pave the way for a 
novel and effective approach to studying the thermal performance of complex systems with high 
precision. 
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Figure 3. Comparison of thermal conductivities (a) in Si, (b) along the in-plane (100) direction in GaN, 
and (c) along the out-of-plane (001) direction in GaN obtained by HDNNP and DFT calculations. For 
the ordinary unit cell in Si and the primitive unit cell in GaN, the supercell sizes used in the computation 
of the third-order force constant were 2 × 2 × 2. In every instance, an 11 × 11 x 11 mesh was used to 

sample the Brillouin zone for calculating the linearized Boltzmann equation using the RTA.[18] 

4.  Challenges and Outlook 

Despite the successful application of HDNNPs in various systems, they still present numerous 
challenges and disadvantages[1]. 

To guarantee that NNPs can learn all pertinent features of PES, a substantial training data set must 

be prepared. Considerable time is typically devoted to reference computations to obtain an appropriate 
training set. In certain systems, this may result in the total computation time using NNPs surpassing 
that of the DFT approach, rendering NNPs seemingly inefficient. 

Owing to their unbiased non-physical functional form, NNPs exhibit limited transferability to 
configurations that diverge significantly from the training data. Therefore, at present, NNPs are highly 
accurate only when predicting the energies of atomic configurations that closely resemble the 
structures in the training set. 

The training data for NNPs are derived from DFT reference calculations; thereby, their accuracy is 
inherently limited by the precision of the DFT method. Even with a highly reliable training method, 
NNPs cannot assure the correct derivation of desired energies and forces in all instances. Therefore, 
NNP results should be stringently validated by electronic structure calculations, which also 
significantly contributes to the time cost. 

Another challenge ubiquitous to all contemporary HDNNPs is their incapacity to manage 
environments with an excessive number of chemical species. This is primarily because as the number 
of elemental species escalates, the system becomes exceedingly complex, making it challenging to 

depict the local chemical environment. Notably, this issue is non-existent for low-dimensional 
molecular PESs. 

Undeniably, NNPs present a highly promising approach. However, their progress is currently 
impeded by the absence of dedicated software designed specifically for NNPs. As NNPs are required 
to simulate increasingly larger systems, the demand for specialized software escalates[19]. Moving 
forward, efforts can be directed towards this area to reduce the barriers to using NNPs and enhance the 
efficiency of researchers' manual tasks. 

5.  Conclusion 

This article scrutinizes the evolution and utilization of high-dimensional neural network potentials. 
HDNNPs are machine learning potentials that surmount the restrictions of conventional methods like 
empirical potentials and ab initio calculation potentials, encompassing the challenges of potential 
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evolution and substantial computational costs. HDNNPs have been successfully applied to various 
large-scale atomic simulations.  

Nevertheless, HDNNPs also exhibit certain challenges and deficiencies. Firstly, to ensure that 
HDNNPs can learn all pertinent potential surface features, an extensive number of training datasets 

must be prepared, which necessitates a considerable amount of time for reference calculations. 
Secondly, due to the unbiased non-physical form of the HDNNP function, its transferability is limited 
when handling configurations significantly different from the training data. Additionally, since the 
training data for HDNNP is procured from DFT reference calculations, its accuracy is limited by the 
precision of the DFT method. Lastly, current HDNNPs cannot accommodate environments with an 
excessive number of chemical species.  

Regardless, HDNNP presents a highly promising methodology. Future endeavors can aim towards 
the creation of software explicitly designed for HDNNPs to mitigate the complexity of utilizing 

HDNNPs and enhance the efficiency of researchers. 
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