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Abstract. A* and bidirectional A* have been classical pathfinding algorithms for long with 

many derivatives specially designed for their exclusive situations. To solve the problem of the 

bidirectional A* algorithm being inefficient in some situations, this paper gives a kind of 

optimized algorithm with a new dynamic parameter in the heuristic function and a 25% increase 

in efficiency. By modifying the weights, the proportion between distance and efficiency can be 

well balanced. This paper uses some typical problems for simulation and paints the scatter 

diagram of different weights to figure out the relationship between the weight and the balance. 

In the end, the author gives suggestions on optimizing the coefficient due to the rule, which 

stands for gradually promoting the weight of the dynamic parameter until the path doesn’t keep 

optimal, for various situations and how to further modify the heuristic function for better 

performance. 

Keywords: Heuristic Algorithm, Path Planning; Bidirectional A* Algorithm, Efficiency 

Improvement 

1.  Introduction 

The A* algorithm is a famous search algorithm used to find the best path from the initial state to the 

target state in various fields, such as robotics, digital games, DNA alignment, etc. The bidirectional A* 

algorithm is a heuristic search algorithm improved based on the A* algorithm. Unlike A*, which can 

only search from the starting point to the end point, it searches from both the initial state and the target 

state until the boundaries of the two searches meet, thus finding the optimal path. After adopting this 

strategy, compared with the A* algorithm, the bidirectional A* algorithm can significantly reduce the 

search space and improve search efficiency [1]. However, because in the conventional bidirectional A* 

algorithm, the search expansion direction always points towards the fixed end/starting point direction, 

and the heuristic function does not include obstacles along the way, it cannot avoid dead ends. In 

situations where this problem exists, the bidirectional A* algorithm usually needs to consume more 

search space nodes than A* to complete the task [2][3]. Therefore, the first target is improving the 

heuristic function for better obstacle avoidance capabilities. In view of the fact that in some situations 

we do not know all the poses of obstacles in advance, there can’t be obstacle parameters added to the 

heuristic function. Instead, the option of adding the dynamic distance, which represents the distance 

between the two latest expansion points is taken, so as to make the exploration expansion direction offset 

towards the other exploration direction. The experiments in this article mainly use Python for algorithm 
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programming and simulation and Matlab for data processing. This research aims to enhance the 

efficiency of path searching and planning, especially for wheel robots and small autonomous vehicles, 

in closed two-dimensional rooms like smart factories and hospitals. 

2.  Literature review 

Heuristic algorithm has been famous for long and is a classic algorithm. Within a few years of its 

invention, many derivative algorithms have been developed, including restricting the search area, 

decomposing the search problem and limiting the search links [4]. In recent years of research in this 

field, researchers have mostly made deeper modifications to the original algorithm to better adapt to 

specific scenarios or some indicators, including adding a large number of parameters to make the 

algorithm better simulate the real environment [5]; Erke S, Bin D and other researchers carry out more 

detailed optimization including global planning and key points around obstacles and add new 

technologies to improve specific indicators [6]; Dexin Yu, Luchen Wang and some other researchers 

optimize the algorithm to Weighted A* algorithm and the Bidirectional Weighted A* algorithm so that 

it can still maintain efficiency in a large-scale debt environment [7]. This study focuses on solving the 

problem of the efficiency of the bidirectional A* algorithm being significantly reduced in certain 

environments, such as converse and embedded environments. Similar to some of the algorithms studied 

in other papers, this paper also adds weights to the parameter coefficients of the heuristic function for 

more subtle adjustments. However, the algorithm in this paper also differs from most algorithms in that 

it has dynamic parameter and the adaptability, which can adjust the path more flexibly according to the 

environment. In addition, the algorithm in this paper is also an instant algorithm, which can run smoothly 

without global information. 

3.  Background 

The A* algorithm first appeared in the 1968 paper "A Formal Basis for the Heuristic Determination of 

Minimum Cost Paths" by P. E. Hart, N. J. Nilsson, and B. Raphael [8]. The paper elaborates on the basic 

operation logic of A*: the algorithm uses an open list and a closed list to manage state expansion. The 

open list stores the search boundary, i.e., candidate states. The closed list stores states that have already 

been expanded. The A* algorithm selects the state with the smallest f value from the open list for 

expansion each time, generates its successor states, and adds them to the open list or updates their g 

values. At the same time, the expanded state is added to the closed list. The algorithm terminates when 

the open list is empty or the target state is expanded. 

By using heuristic information, the A* algorithm significantly reduces the search space without 

sacrificing the optimality of the solution. The A* algorithm is complete and optimal if the heuristic 

function is admissible or consistent. The A* algorithm is also the most efficient if the heuristic function 

is the best, i.e., closest to the actual cost [9]. 

Due to the potentially exponential number of expanded states, many extensions and variants have 

been proposed to improve its performance. Some extensions attempt to adapt the A* algorithm for 

parallel execution, utilizing multi-core machines and computing clusters. Some extensions transform 

the A* algorithm into a bidirectional heuristic search, i.e., searching from both the initial state and the 

target state until the boundaries of the two searches meet, finding the optimal path [10]. 

The basic principle of the bidirectional A* algorithm is to use two evaluation functions, f1 and f2, 

which combine the actual cost g1 and g2 from the initial state to the current state and the estimated cost 

h1 and h2 from the current state to the target state, to select the most promising state for expansion. If 

h1 and h2 satisfy the consistency condition, the bidirectional A* algorithm can guarantee to find the 

optimal solution. 

Unlike the unidirectional A* algorithm, the bidirectional A* algorithm uses two open lists and one 

closed list to manage state expansion. The open list stores the search boundary, i.e., candidate states. 

The closed list stores states that have already been expanded by the two searches. The bidirectional A* 

algorithm selects the state with the smallest f value from the two open lists for expansion each time, 

generates its successor states, and adds them to the open list or updates their g values. At the same time, 
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the expanded state is added to the closed list. The algorithm terminates when the open list is empty or 

the boundaries of the two searches meet. 

By using heuristic information, the bidirectional A* algorithm reduces the search space and improves 

search efficiency, as Figure 1 shows. Although it cannot be guaranteed to find the optimal solution, the 

solution found in practical applications is usually not much worse than the optimal solution. 

 

Figure 1. Bidirectional A* better in typical occasion 

In response to the shortcomings of the bidirectional A* algorithm, i.e., the search boundaries may 

miss each other, resulting in a large amount of computation in the post-processing stage, subsequent 

researchers have proposed many improvements and variants to improve its performance [3]. The 

algorithm introduced in this article is a bidirectional A* algorithm based on bidirectional dynamic 

distance. 

3.1.  Analysis 

In typical bidirectional problems, the evaluation function is like as: 

𝑓 =  𝑔 +  ℎ(1) 

where g represents the actual cost from the start node to the current node, and h estimates the distance 

from the current node to the target node. Nodes choose to expand neighboring nodes with smaller f 

values, meaning the search direction always tends to prioritize adjacent nodes closer to the target, 

without considering obstacles ahead. This includes scenarios where obstacles form detour closed shapes 

and situations where the graph becomes symmetric about the center after symmetry, like the occasions 

of Figure 2. 

 

 

Figure 2. Occasions where bidirectional A* worse than regular A* 
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In global path planning, since the state of all nodes is known (i.e., the distribution coordinates of all 

obstacles can be used for path planning), the obstacles can be treated as a higher-weighted component 

of h. This strategy allows more flexible descriptions of different types of obstacles and terrain effects 

on the path, making it suitable for global path planning in complex terrains and traffic conditions. 

However, if detailed information about obstacle distribution is lacked or it it comes to the second 

scenario described in the first paragraph, this approach may fail. Therefore, this research needs an 

algorithm that improves efficiency for both special cases. Considering that the previous conventional 

heuristic function h had a fixed target point, more dynamic parameters are considered to be incorporated. 

Since only boundary nodes are constantly changing in the dynamic replacement process between the 

two lists, the distance between the two boundary nodes is introduced as a parameter into the heuristic 

function h, creating a dynamic distance. It is assigned a certain weight, resulting in the modified heuristic 

function: 

 ℎ(𝑛)  =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠𝑡𝑎𝑡𝑖𝑐)  +  𝑎 ∗  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑𝑦𝑛𝑎𝑚𝑖𝑐) (2) 

Temporarily setting a = 1, from Figure 3, it is obvious that compared to the conventional bidirectional 

A* algorithm, this approach significantly improves computational efficiency, reducing node resource 

consumption by at least 25% or more. 

 

Figure 3. Optimized algorithm improves efficiency 

3.2.  Experiment 

To further explore the impact of the change in weight 'a' on efficiency, the author gradually increases 

the value of 'a' in four typical situations, then counts the number of nodes consumed and the path length, 

and obtains the following Figure 4 and Table 1:  

Table 1. Results of different environments as 'a' increases 

a weight 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1 

Maze1 
nodes 533 511 520 453 346 346 389 395 316 279 

steps 48 48 48 48 48 48 49 48 48 50 

Maze2 
nodes 682 508 594 556 464 477 392 395 380 443 

steps 54 54 54 56 54 57 57 57 57 58 

Maze3 
nodes 1018 1002 969 919 891 813 797 748 727 727 

steps 65 65 65 65 65 65 65 68 65 65 

Maze4 
nodes 2085 2036 2028 1732 1657 1981 1500 1440 1406 1288 

steps 51 51 51 52 51 51 51 53 55 51 

a weight 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

Maze1 
nodes 351 364 346 389 317 267 284 230 212 356 

steps 49 50 48 54 50 51 50 53 55 48 
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Table 1. (continued). 

Maze2 
nodes 443 410 433 455 449 470 480 488 431 445 

steps 55 61 58 55 59 62 55 61 57 59 

Maze3 
nodes 743 749 768 756 732 703 769 729 726 750 

steps 65 68 67 65 65 67 72 67 71 70 

Maze4 
nodes 1035 1323 1365 1366 1202 1253 898 1002 1123 1427 

steps 55 55 51 57 55 57 55 54 54 74 

 

Figure 4. Results of different environments as 'a' increases 

From Figure 4, it can be seen that as 'a' increases, the overall trend of the number of nodes is 

decreasing as all the last values are less than the initial ones, but it is still fluctuating locally. Cases of 

orange, blue and black where the number of nodes in the conventional bidirectional A* is already small 

can more clearly show a certain pattern than the larger pink one, and its fluctuations are more similar to 

the step response curve of the inertia link after reaching the peak, and the amplitude of the fluctuations 

decreases as 'a' increases. According to the root meaning of the function itself, increasing 'a' will cause 

the dynamic distance weight to be far higher than the static distance and the cost of the starting point 

distance, making the two expanded nodes converge at the fastest speed, and the expansion range is 

almost straight. This can greatly save node resources and improve search efficiency. But at the same 

time, because the path algorithm is to determine the optimal path according to the evaluation function 

'f' after the two parties converge in the searched range, the sharply reduced search range will lead to a 

reduction in available nodes, and the path finally formed by this is very likely not the shortest path. From 

Table 1, it can be known that as long as 'a' continues to grow, the probability of the path not being 

extreme will rise rapidly after reaching a certain level, and looking back at 'a=0', that is, when the 

algorithm is a conventional bidirectional A* algorithm, all cases can output the best path. 

With these data, a general method to achieve the highest efficiency while maintaining the optimal 

path is summarized as gradually increasing the value of 'a' from 'a=0' until the path obtained several 

consecutive times is not the optimal path. In the range that has been obtained, the corresponding optimal 

optimization weight can generally be found. Of course, as the complexity of the problem increases, 

especially when facing multi-layer problems formed by the combination of multiple simple problems, 

although the overall trend of node consumption with the growth of 'a' is still gradually decreasing, due 

to the greatly increased randomness, the local change trend is difficult to predict, and the statistical range 

needs to be increased to improve the probability of finding the optimal solution. 

3.3.  Discussion 

Because all problem situations show strong specificity and randomness, if a more precise optimal 

solution is needed, it is basically necessary to calculate all the solutions that meet the conditions within 

the range one by one, and the burden on computing power will also increase exponentially. Therefore, 

roughly speaking, this method is not suitable for scenarios that require high-precision optimization, for 
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example, large-scale, complicated circuit planning. This algorithm is more suitable for other scenarios 

that require a quick response, like vehicle navigation, and because in the above experimental cases, the 

results of 'a=1' can basically maintain better results compared with the unoptimized bidirectional A* 

algorithm, there is an average efficiency improvement of 36%, so the author suggests that the weight of 

'a=1' can be used in rough scenarios. Of course, in extreme cases, if the application only pursues the 

speed of the search and does not need the optimal path, a larger value of 'a' can also be used. At this 

time, the path of the search is almost straight, which is more suitable for quick solving. 

4.  Conclusion 

This paper introduces a new kind of optimized bidirectional A* algorithm to improve efficiency in most 

situations, including special cases when regular bidirectional A* performs badly. In addition, a principle 

of further optimization of the weight which can guide to the optimal balance of distance and efficiency 

is developed. Due to limited conditions, this experiment only changed the weight of the dynamic 

distance and did not study the weight change of the static distance. Therefore, it is believed that further 

optimization should be to adjust the weights of both at the same time. They and the path cost 'g' together 

constitute the entire evaluation function 'f'. Adjusting the weights of the three of them is to change the 

offset of the expansion direction to the three directions. At the same time, changing the evaluation 

function 'f' will also change the path selection, which is also a direction of optimization. The heuristic 

function can be applied in a modular way; just like the adjustment of PID parameters, it should adjust 

the proportions of various parts according to actual needs to get the optimal solution. Including the 

dynamic distance mentioned in this article and parameters such as obstacles can be considered as 

modules to be added, but in the end, it is necessary to balance each item according to computing power 

and application direction to make the most suitable choice in the end. 
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