
A fast convergence bidirectional a star path planning

algorithm

Yixin Luo

School of Automation, Northwest Polytechnic University, Xi’an, Shanxi, 710129,

China

2020lyx@mail.nwpu.edu.cn

Abstract. A* and bidirectional A* have been classical pathfinding algorithms for long with

many derivatives specially designed for their exclusive situations. To solve the problem of the

bidirectional A* algorithm being inefficient in some situations, this paper gives a kind of

optimized algorithm with a new dynamic parameter in the heuristic function and a 25% increase

in efficiency. By modifying the weights, the proportion between distance and efficiency can be

well balanced. This paper uses some typical problems for simulation and paints the scatter

diagram of different weights to figure out the relationship between the weight and the balance.

In the end, the author gives suggestions on optimizing the coefficient due to the rule, which

stands for gradually promoting the weight of the dynamic parameter until the path doesn’t keep

optimal, for various situations and how to further modify the heuristic function for better

performance.

Keywords: Heuristic Algorithm, Path Planning; Bidirectional A* Algorithm, Efficiency

Improvement

1. Introduction

The A* algorithm is a famous search algorithm used to find the best path from the initial state to the

target state in various fields, such as robotics, digital games, DNA alignment, etc. The bidirectional A*

algorithm is a heuristic search algorithm improved based on the A* algorithm. Unlike A*, which can

only search from the starting point to the end point, it searches from both the initial state and the target

state until the boundaries of the two searches meet, thus finding the optimal path. After adopting this

strategy, compared with the A* algorithm, the bidirectional A* algorithm can significantly reduce the

search space and improve search efficiency [1]. However, because in the conventional bidirectional A*

algorithm, the search expansion direction always points towards the fixed end/starting point direction,

and the heuristic function does not include obstacles along the way, it cannot avoid dead ends. In

situations where this problem exists, the bidirectional A* algorithm usually needs to consume more

search space nodes than A* to complete the task [2][3]. Therefore, the first target is improving the

heuristic function for better obstacle avoidance capabilities. In view of the fact that in some situations

we do not know all the poses of obstacles in advance, there can’t be obstacle parameters added to the

heuristic function. Instead, the option of adding the dynamic distance, which represents the distance

between the two latest expansion points is taken, so as to make the exploration expansion direction offset

towards the other exploration direction. The experiments in this article mainly use Python for algorithm

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/54/20241642

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

241

programming and simulation and Matlab for data processing. This research aims to enhance the

efficiency of path searching and planning, especially for wheel robots and small autonomous vehicles,

in closed two-dimensional rooms like smart factories and hospitals.

2. Literature review

Heuristic algorithm has been famous for long and is a classic algorithm. Within a few years of its

invention, many derivative algorithms have been developed, including restricting the search area,

decomposing the search problem and limiting the search links [4]. In recent years of research in this

field, researchers have mostly made deeper modifications to the original algorithm to better adapt to

specific scenarios or some indicators, including adding a large number of parameters to make the

algorithm better simulate the real environment [5]; Erke S, Bin D and other researchers carry out more

detailed optimization including global planning and key points around obstacles and add new

technologies to improve specific indicators [6]; Dexin Yu, Luchen Wang and some other researchers

optimize the algorithm to Weighted A* algorithm and the Bidirectional Weighted A* algorithm so that

it can still maintain efficiency in a large-scale debt environment [7]. This study focuses on solving the

problem of the efficiency of the bidirectional A* algorithm being significantly reduced in certain

environments, such as converse and embedded environments. Similar to some of the algorithms studied

in other papers, this paper also adds weights to the parameter coefficients of the heuristic function for

more subtle adjustments. However, the algorithm in this paper also differs from most algorithms in that

it has dynamic parameter and the adaptability, which can adjust the path more flexibly according to the

environment. In addition, the algorithm in this paper is also an instant algorithm, which can run smoothly

without global information.

3. Background

The A* algorithm first appeared in the 1968 paper "A Formal Basis for the Heuristic Determination of

Minimum Cost Paths" by P. E. Hart, N. J. Nilsson, and B. Raphael [8]. The paper elaborates on the basic

operation logic of A*: the algorithm uses an open list and a closed list to manage state expansion. The

open list stores the search boundary, i.e., candidate states. The closed list stores states that have already

been expanded. The A* algorithm selects the state with the smallest f value from the open list for

expansion each time, generates its successor states, and adds them to the open list or updates their g

values. At the same time, the expanded state is added to the closed list. The algorithm terminates when

the open list is empty or the target state is expanded.

By using heuristic information, the A* algorithm significantly reduces the search space without

sacrificing the optimality of the solution. The A* algorithm is complete and optimal if the heuristic

function is admissible or consistent. The A* algorithm is also the most efficient if the heuristic function

is the best, i.e., closest to the actual cost [9].

Due to the potentially exponential number of expanded states, many extensions and variants have

been proposed to improve its performance. Some extensions attempt to adapt the A* algorithm for

parallel execution, utilizing multi-core machines and computing clusters. Some extensions transform

the A* algorithm into a bidirectional heuristic search, i.e., searching from both the initial state and the

target state until the boundaries of the two searches meet, finding the optimal path [10].

The basic principle of the bidirectional A* algorithm is to use two evaluation functions, f1 and f2,

which combine the actual cost g1 and g2 from the initial state to the current state and the estimated cost

h1 and h2 from the current state to the target state, to select the most promising state for expansion. If

h1 and h2 satisfy the consistency condition, the bidirectional A* algorithm can guarantee to find the

optimal solution.

Unlike the unidirectional A* algorithm, the bidirectional A* algorithm uses two open lists and one

closed list to manage state expansion. The open list stores the search boundary, i.e., candidate states.

The closed list stores states that have already been expanded by the two searches. The bidirectional A*

algorithm selects the state with the smallest f value from the two open lists for expansion each time,

generates its successor states, and adds them to the open list or updates their g values. At the same time,

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/54/20241642

242

the expanded state is added to the closed list. The algorithm terminates when the open list is empty or

the boundaries of the two searches meet.

By using heuristic information, the bidirectional A* algorithm reduces the search space and improves

search efficiency, as Figure 1 shows. Although it cannot be guaranteed to find the optimal solution, the

solution found in practical applications is usually not much worse than the optimal solution.

Figure 1. Bidirectional A* better in typical occasion

In response to the shortcomings of the bidirectional A* algorithm, i.e., the search boundaries may

miss each other, resulting in a large amount of computation in the post-processing stage, subsequent

researchers have proposed many improvements and variants to improve its performance [3]. The

algorithm introduced in this article is a bidirectional A* algorithm based on bidirectional dynamic

distance.

3.1. Analysis

In typical bidirectional problems, the evaluation function is like as:

𝑓 = 𝑔 + ℎ(1)

where g represents the actual cost from the start node to the current node, and h estimates the distance

from the current node to the target node. Nodes choose to expand neighboring nodes with smaller f

values, meaning the search direction always tends to prioritize adjacent nodes closer to the target,

without considering obstacles ahead. This includes scenarios where obstacles form detour closed shapes

and situations where the graph becomes symmetric about the center after symmetry, like the occasions

of Figure 2.

Figure 2. Occasions where bidirectional A* worse than regular A*

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/54/20241642

243

In global path planning, since the state of all nodes is known (i.e., the distribution coordinates of all

obstacles can be used for path planning), the obstacles can be treated as a higher-weighted component

of h. This strategy allows more flexible descriptions of different types of obstacles and terrain effects

on the path, making it suitable for global path planning in complex terrains and traffic conditions.

However, if detailed information about obstacle distribution is lacked or it it comes to the second

scenario described in the first paragraph, this approach may fail. Therefore, this research needs an

algorithm that improves efficiency for both special cases. Considering that the previous conventional

heuristic function h had a fixed target point, more dynamic parameters are considered to be incorporated.

Since only boundary nodes are constantly changing in the dynamic replacement process between the

two lists, the distance between the two boundary nodes is introduced as a parameter into the heuristic

function h, creating a dynamic distance. It is assigned a certain weight, resulting in the modified heuristic

function:

 ℎ(𝑛) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠𝑡𝑎𝑡𝑖𝑐) + 𝑎 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑𝑦𝑛𝑎𝑚𝑖𝑐) (2)

Temporarily setting a = 1, from Figure 3, it is obvious that compared to the conventional bidirectional

A* algorithm, this approach significantly improves computational efficiency, reducing node resource

consumption by at least 25% or more.

Figure 3. Optimized algorithm improves efficiency

3.2. Experiment

To further explore the impact of the change in weight 'a' on efficiency, the author gradually increases

the value of 'a' in four typical situations, then counts the number of nodes consumed and the path length,

and obtains the following Figure 4 and Table 1:

Table 1. Results of different environments as 'a' increases

a weight 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1

Maze1
nodes 533 511 520 453 346 346 389 395 316 279

steps 48 48 48 48 48 48 49 48 48 50

Maze2
nodes 682 508 594 556 464 477 392 395 380 443

steps 54 54 54 56 54 57 57 57 57 58

Maze3
nodes 1018 1002 969 919 891 813 797 748 727 727

steps 65 65 65 65 65 65 65 68 65 65

Maze4
nodes 2085 2036 2028 1732 1657 1981 1500 1440 1406 1288

steps 51 51 51 52 51 51 51 53 55 51

a weight 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Maze1
nodes 351 364 346 389 317 267 284 230 212 356

steps 49 50 48 54 50 51 50 53 55 48

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/54/20241642

244

Table 1. (continued).

Maze2
nodes 443 410 433 455 449 470 480 488 431 445

steps 55 61 58 55 59 62 55 61 57 59

Maze3
nodes 743 749 768 756 732 703 769 729 726 750

steps 65 68 67 65 65 67 72 67 71 70

Maze4
nodes 1035 1323 1365 1366 1202 1253 898 1002 1123 1427

steps 55 55 51 57 55 57 55 54 54 74

Figure 4. Results of different environments as 'a' increases

From Figure 4, it can be seen that as 'a' increases, the overall trend of the number of nodes is

decreasing as all the last values are less than the initial ones, but it is still fluctuating locally. Cases of

orange, blue and black where the number of nodes in the conventional bidirectional A* is already small

can more clearly show a certain pattern than the larger pink one, and its fluctuations are more similar to

the step response curve of the inertia link after reaching the peak, and the amplitude of the fluctuations

decreases as 'a' increases. According to the root meaning of the function itself, increasing 'a' will cause

the dynamic distance weight to be far higher than the static distance and the cost of the starting point

distance, making the two expanded nodes converge at the fastest speed, and the expansion range is

almost straight. This can greatly save node resources and improve search efficiency. But at the same

time, because the path algorithm is to determine the optimal path according to the evaluation function

'f' after the two parties converge in the searched range, the sharply reduced search range will lead to a

reduction in available nodes, and the path finally formed by this is very likely not the shortest path. From

Table 1, it can be known that as long as 'a' continues to grow, the probability of the path not being

extreme will rise rapidly after reaching a certain level, and looking back at 'a=0', that is, when the

algorithm is a conventional bidirectional A* algorithm, all cases can output the best path.

With these data, a general method to achieve the highest efficiency while maintaining the optimal

path is summarized as gradually increasing the value of 'a' from 'a=0' until the path obtained several

consecutive times is not the optimal path. In the range that has been obtained, the corresponding optimal

optimization weight can generally be found. Of course, as the complexity of the problem increases,

especially when facing multi-layer problems formed by the combination of multiple simple problems,

although the overall trend of node consumption with the growth of 'a' is still gradually decreasing, due

to the greatly increased randomness, the local change trend is difficult to predict, and the statistical range

needs to be increased to improve the probability of finding the optimal solution.

3.3. Discussion

Because all problem situations show strong specificity and randomness, if a more precise optimal

solution is needed, it is basically necessary to calculate all the solutions that meet the conditions within

the range one by one, and the burden on computing power will also increase exponentially. Therefore,

roughly speaking, this method is not suitable for scenarios that require high-precision optimization, for

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/54/20241642

245

example, large-scale, complicated circuit planning. This algorithm is more suitable for other scenarios

that require a quick response, like vehicle navigation, and because in the above experimental cases, the

results of 'a=1' can basically maintain better results compared with the unoptimized bidirectional A*

algorithm, there is an average efficiency improvement of 36%, so the author suggests that the weight of

'a=1' can be used in rough scenarios. Of course, in extreme cases, if the application only pursues the

speed of the search and does not need the optimal path, a larger value of 'a' can also be used. At this

time, the path of the search is almost straight, which is more suitable for quick solving.

4. Conclusion

This paper introduces a new kind of optimized bidirectional A* algorithm to improve efficiency in most

situations, including special cases when regular bidirectional A* performs badly. In addition, a principle

of further optimization of the weight which can guide to the optimal balance of distance and efficiency

is developed. Due to limited conditions, this experiment only changed the weight of the dynamic

distance and did not study the weight change of the static distance. Therefore, it is believed that further

optimization should be to adjust the weights of both at the same time. They and the path cost 'g' together

constitute the entire evaluation function 'f'. Adjusting the weights of the three of them is to change the

offset of the expansion direction to the three directions. At the same time, changing the evaluation

function 'f' will also change the path selection, which is also a direction of optimization. The heuristic

function can be applied in a modular way; just like the adjustment of PID parameters, it should adjust

the proportions of various parts according to actual needs to get the optimal solution. Including the

dynamic distance mentioned in this article and parameters such as obstacles can be considered as

modules to be added, but in the end, it is necessary to balance each item according to computing power

and application direction to make the most suitable choice in the end.

References

[1] P. O. N. Saian, Suyoto and Pranowo. (2016). "Optimized A-Star algorithm in hexagon-based

environment using parallel bidirectional search," 2016 8th International Conference on

Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, pp. 1-

5, doi: 10.1109/ICITEED.2016.7863246.

[2] Barker, J., & Korf, R. (2015). Limitations of Front-To-End Bidirectional Heuristic Search.

Proceedings of the AAAI Conference on Artificial Intelligence, 29(1).

[3] Barker, J. K. (2015). Front-To-End Bidirectional Heuristic Search. UCLA. ProQuest ID:

Barker_ucla_0031D_13333. Merritt ID: ark:/13030/m5gq95nz. Retrieved from

https://escholarship.org/uc/item/5j34j5bj

[4] Fu L , Sun D , Rilett L R . (2005). Heuristic shortest path algorithms for transportation applications:

State of the art [J]. Computers & Operations Research, 33(11):3324-3343.

[5] Liu, Chenguang, Qingzhou Mao, Xiumin Chu, and Shuo Xie. 2019. "An Improved A-Star

Algorithm Considering Water Current, Traffic Separation and Berthing for Vessel Path

Planning" Applied Sciences 9, no. 6: 1057.

[6] Erke S, Bin D, Yiming N, Qi Z, Liang X, Dawei Z. (2020). An improved A-Star based path

planning algorithm for autonomous land vehicles. International Journal of Advanced Robotic

Systems. 17(5). doi:10.1177/1729881420962263.

[7] Dexin Yu, Luchen Wang, Xincheng Wu, Zhuorui Wang, Jianyu Mao, and Xiyang Zhou. (2023).

"Implementation and visualization of weighted A-Star algorithm and bidirectional weighted

A-Star algorithm under large-scale road network", Proc. SPIE 12604, International Conference

on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2022), 126040F

(23 May 2023)

[8] P. E. Hart, N. J. Nilsson and B. Raphael. (1968). "A Formal Basis for the Heuristic Determination

of Minimum Cost Paths," in IEEE Transactions on Systems Science and Cybernetics, vol. 4,

no. 2, pp. 100-107, July 1968, doi: 10.1109/TSSC.1968.300136.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/54/20241642

246

[9] Thi Thoa Mac, Cosmin Copot, Duc Trung Tran, Robin De Keyser. (2016). Heuristic approaches

in robot path planning: A survey. Robotics and Autonomous Systems. Volume 86. 13-28.

ISSN 0921-8890.

[10] Rios, L. H. O., & Chaimowicz, L. (2011). Pnba*: A parallel bidirectional heuristic search

algorithm. In ENIA VIII Encontro Nacional de Inteligê ncia Artificial.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/54/20241642

247

