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Abstract. In the field of industrial engineering, traditional methods for analyzing manufacturing 

process actions have limitations such as time-consuming, labor-intensive, and experience-

dependent. To address these challenges in action analysis, we propose an intelligent action 

recognition method based on both skeleton and video features, aiming to replace manual 

decomposition of action elements. The MediaPipe framework is used for human posture 

estimation to obtain the skeleton sequence, and the CNN-GRU model is constructed action 

recognition based on skeleton features. For hand movements involving the use of industrial 

gloves, an enhanced TimeSformer video understanding model is introduced for action 

recognition based on video features. This improvement incorporates uniform attention and 

external attention mechanisms, resulting in enhanced model performance. The final experimental 

validation for the self-constructed process action dataset shows that the online detection speed 

of the skeleton action recognition model reaches 25 FPS, and the accuracy of the end-to-end 

video action recognition model is improved by 10.5 percentage points compared to the base 

model. 
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1.  Introduction 

In manufacturing systems, analyzing frontline operators' process actions is crucial for improving 

industrial engineering production processes. Stemming from Gilbreth's pioneering work in motion study, 

action analysis involves observing and recording actions, followed by decomposing action elements 

based on operator movement sequences. Traditional methods rely on manual on-site observation and 

action decomposition, which is time-consuming, labor-intensive, and prone to high error rates due to 

subjectivity. Research on intelligent action recognition is crucial for improving management and 

production efficiency in manufacturing. Common production process actions include: carry, dismantle, 

delay, check, preset, operate, move, and others. In the deep learning era, significant progress has been 

made in action recognition models, with most exhibiting excellent performance on public datasets. 

Human pose estimation technology involves detecting key points in the human skeleton. Cao et al. 

[1] introduced the Openpose model, which employs a bottom-up approach to cluster key points. Google 

Research released a human pose estimation method based on MediaPipe, and Blaze Pose, proposed by 

Bazarevsky et al. [2], relies on a single camera to infer the coordinates of 33 3D body keypoints. Zhang 
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et al. [3] proposed the Mediapipe Hands model, which infers 21 3D keypoints for hand tracking. 

Behavior recognition is a fundamental task in the field of video understanding. Carreira et al. [4] 

introduced the I3D model, a two-stream model based on 3D convolutions for video feature extraction. 

3D networks have dominated the video understanding field since then, until the emergence of the Vision 

Transformer (ViT) [5]. TimeSformer[6] was the first model to apply the Vision Transformer to video 

understanding, introducing a separation of spatiotemporal self-attention. Google Research also made 

improvements to the ViT model, proposing the ViViT model[7], a Transformer-based video 

classification model. 

2.  Framework of action recognition tasks 

In the industrial domain, there is a lack of relevant action datasets specifically tailored to production and 

manufacturing scenarios. Additionally, there is a scarcity of experimental research on the practical 

application of models in the industrial sector. Furthermore, existing datasets for most human pose 

estimation models do not include images of hands wearing industrial gloves. Consequently, when 

performing process action recognition based on skeleton sequences, hand actions involving glove-

wearing cannot be accurately identified through hand key points. To address these issues, this paper 

proposes a sequential detection approach for process action based on both skeleton sequences and video 

features. The approach involves collecting data for different process actions based on commonly used 

ergonomic action elements, and a schematic framework is illustrated in figure 1. 

 

Figure 1. Process action recognition task framework. 

The main contributions of this paper are summarized below: (1) Creating a dataset for process action 

in the industrial domain: The dataset is generated by collecting skeleton data and video data for different 

process actions based on commonly used ergonomic action elements in human factors engineering. The 

research focuses on 12 classes of dynamic feature process actions, including 8 effective actions, 2 

ineffective actions, and 2 auxiliary actions. (2) Constructing a skeleton action recognition model: The 

Holistic solution in MediaPipe is employed for human pose estimation to obtain skeleton sequences. 

Ultimately, a CNN-GRU network is utilized for the classification of process actions. (3) Constructing a 

video action recognition model: To address glove-wearing hand action recognition challenges, an end-

to-end video classification model, TimeSformer, is created. External and uniform attention mechanisms 

are introduced for enhanced performance. 

3.  Construction Methods of Work Procedure Action Recognition Model 

Utilizing a standard 2D camera in conjunction with the MediaPipe framework for human pose estimation, 

the acquired three-dimensional skeleton keypoint coordinates are fed into a CNN-GRU network for 

action classification. For video data, pre-trimmed video segments are input into the enhanced 

TimeSformer model for training. Ultimately, the model predicts action categories frame by frame within 

the video stream. 
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3.1.  Skeleton-based action recognition 

3.1.1.  Human pose estimation. Developing a human pose estimation model involves three solutions, 

and the workflow is illustrated in figure 2. MediaPipe Pose initially utilizes a face-based human 

detection system to locate regions of interest (ROI) within each frame. These ROIs are then cropped and 

used as input for the human keypoint detector, predicting the coordinates of body keypoints within the 

ROIs. MediaPipe Hands focuses on hand keypoints, obtaining their coordinates through a palm detection 

and hand keypoints detection system. MediaPipe Holistic integrates body and hand keypoints, creating 

a semantically consistent end-to-end solution while simultaneously inferring multiple neural networks. 

The process involves using MediaPipe Pose for keypoint detection, obtaining 33 body keypoints, 

exporting 3 ROIs for each hand, and enhancing the ROIs using a hand-specific cropping model. 

Subsequently, MediaPipe Hands infers 42 hand keypoints. Finally, the keypoints from both the hand 

and body models are fused to derive a total of 75 keypoint coordinates. 

 

Figure 2. Workflow for human posture estimation. 

3.1.2.  CNN-GRU. To enhance real-time performance and reduce computational resource utilization, a 

CNN-GRU action classidfication model based on skeleton sequences is proposed. The model predicts 

action categories frame by frame in real-time video streams, constructing action features by considering 

both historical and current temporal information. In this model, the GRU architecture combines the input 

gate and forget gate of the LSTM model into an update gate, controlling the amount of past memory 

information retained for the current moment's data. The CNN-GRU model built in this study is a hybrid 

predictive model based on convolutional neural networks and gated recurrent units, as depicted in table 

1. Initially, features are extracted using CNN, followed by utilizing the GRU neural network to learn the 

dynamic patterns of feature variations for prediction. On one hand, leveraging the powerful feature 

extraction capability of CNN, intrinsic connections between skeleton data are explored, thereby reducing 

the scale and complexity of the original data. On the other hand, the temporal memory capacity of the 

GRU neural network is employed to learn the dynamic patterns within the skeleton data, establishing a 

nonlinear relationship between input and output. 

Table 1. Model structure of CNN-GRU 

Layer Output shape Param Connected to 

Input Layer (None, 30, 258) 0  

Conv1D (None, 28, 64) 49600 Input Layer 

MaxPooling1D (None, 14, 64) 0 Conv1D 

Flatten (None, 896) 0 MaxPooling1D 

Dense (None, 64) 57408 Flatten 
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Reshape (None, 64, 1) 0 Dense 

GRU (None, 64, 100) 30900 Reshape 

GRU_1 (None, 100) 60600 GRU 

Dense_1 (None, 64) 6464 GRU_1 

Concatenate (None, 128) 0 Dense  Dense_1 

3.2.  Video-based action recognition 

3.2.1.  TimeSformer. In order to recognize hand movements during the process of wearing work gloves, 

improvement and training were conducted based on the TimeSformer model. As depicted in figure 3, 

the model architecture of TimeSformer is illustrated. The backbone network utilizes the Vision 

Transformer network, and a separate spatiotemporal attention mechanism is constructed to reduce 

computational load. As shown in figure 3a, the video segment is initially inputted, and each frame is 

divided into multiple image patches. These two-dimensional image patches are transformed into one-

dimensional embedding vectors through a linear mapping layer. After concatenating the classification 

tokens and position encoding, the result is passed to the Transformer encoder. In figure 3b, the tokens 

undergo L layers of encoder, with each encoder layer involving multi-head self-attention(MSA), layer 

normalization(LN), and a multi-layer perceptron(MLP). Figure 3c illustrates the separate spatiotemporal 

attention mechanism, where temporal self-attention is first applied to all image patches within the same 

frame, followed by spatial self-attention to the corresponding positions of image patches in different 

frames. Finally, the classification head MLP Head processes the class token for classification symbols, 

yielding the ultimate prediction results. 

 

Figure 3. Model architecture of TimeSformer.  (a) illustrates the architecture of the Vision Transformer 

model.  (b) showcases the internal structure of the Transformer encoder. (c) depicts the separate 

spatiotemporal attention. 

3.2.2.  External Attention and Uniform Attention. In the TimeSformer model, two new attention 

mechanisms have been introduced, primarily enhancing the relevant modules in the Transformer 

encoder. As depicted in figure 4b, External attention[8] serves as an improvement to self-attention in 

the original Transformer structure[9], making the Transformer, initially designed for the NLP domain, 

more applicable to computer vision tasks. It reveals the intrinsic connection between linear layers and 

Table 1. (continued). 
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attention mechanisms, demonstrating that linear transformations are, in fact, a specific form of attention 

implementation, leading to reduced computational complexity. Furthermore, based on two shared 

external memory units, the model implicitly learns features of the entire dataset rather than individual 

sample features, thereby enhancing the understanding of video context. 

Due to the self-attention mechanism employed by the ViT model to establish internal relationships 

within images, the model exhibits a strong preference for dense interactions. Uniform attention[10] 

assists the model in better understanding and processing different regions within an image. Figure 4c 

introduces the Context Broadcasting module (CB) at the MLP's end to manually incorporate uniform 

attention, thereby reducing the attention map density. Without the CB module, the ViT model must 

autonomously learn effective attention mechanisms, possibly resulting in insufficient attention to 

specific regions. Introducing the CB module guides attention allocation in each layer, promoting a more 

comprehensive focus on various image parts and facilitating improved video information learning. 

 

Figure 4. External attention and Uniform attention. (a) represents the Transformer encoder. (b) 

illustrates External Attention. (c) depicts Uniform Attention. 

4.  Dataset Creation and Model Training 

4.1.  Creation of the Action Dataset for Work Procedures 

The experimental environment setup for data collection is as follows: Intel Core i7-10750H 2.60GHz, 6 

cores 12 threads, 16GB memory, Windows 10 64-bit system, and a monocular RGB camera. The 

programming language used is Python 3.8, and the frameworks include OpenCV 4.6.0 and MediaPipe 

0.8.9. For skeleton action recognition, the experiment involved collecting skeleton sequences of 

different work procedures in various scenarios to create the dataset. Ten different work procedures were 

simulated and encoded according to the sequence of action categories: carry, move, select, preset, delay, 

stretch, check, operate, locate, and hold. Each action was recorded in 40 videos, with 30 consecutive 

frames per video used to generate dynamic action sequences. Each file includes 258 keypoint data, 

resulting in 7740 keypoint data for each action. In total, 400 videos and 12,000 data points were 

generated. The training set consists of 8400 data points, while the test set contains 3600 data points. 

For video action recognition, videos capturing hand actions of wearing gloves were recorded for an 

hour. The videos were then segmented and categorized into six different hand actions of wearing gloves: 

dismental, delay, check, use, rotation, and preset. The number of samples for each action is as follows: 

123 for dismental, 70 for delay, 251 for check, 78 for use, 233 for rotation, and 123 for preset. The 

videos for each category were shuffled and divided into training and validation sets, with a ratio of 0.8 

for the training set and 0.2 for the validation set. 
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4.2.  Training the Skeleton Action Recognition Model 

The experimental environment configuration for training the skeleton action recognition model is as 

follows: NVIDIA GeForce RTX 3060 with 8GB VRAM, TensorFlow 2.8.0. The CNN-GRU network's 

first layer has an input dimension of (30, 258), indicating that each video consists of 30 frames, and each 

frame has 258 keypoints. The final model concatenates the fully connected layers from both the CNN 

and GRU networks, adjusting the output dimension as needed, and utilizes the softmax function for 

action classification. The loss function employed is the cross-entropy loss, and the Adam optimizer is 

chosen for continuously updating network weights. The experiments were conducted using a self-

constructed dataset simulating eight different work procedures. The evaluation metric utilized is the 

multi-class accuracy function, and the confusion matrix is employed to assess the accuracy of action 

classification for different work procedures. As shown in figure 5, a comparison among three different 

temporal models was performed. The horizontal axis represents predicted labels, while the vertical axis 

represents true labels. The LSTM network achieved a 97.7% accuracy after 180 iterations, with a total 

parameter count of 237,416. The GRU network reached a 99.2% accuracy after 80 iterations, with a 

total parameter count of 180,456. The CNN-GRU network achieved 100% accuracy after 80 iterations, 

with a total parameter count of 209,364. Therefore, the CNN-GRU model demonstrated the best 

performance in the work procedure action dataset based on skeleton features. 

 

Figure 5. Confusion matrix of skeleton action recognition models. (a) depicts the confusion matrix for 

the CNN-GRU model. (b) illustrates the confusion matrix for the GRU model. (c) represents the 

confusion matrix for the LSTM model. 

4.3.  Training the Video Action Recognition Model 

The experimental environment configuration for training the video action recognition model is as 

follows: Ubuntu 16.04 operating system, Intel(R) Xeon(R) Silver 4214R 2.40GHz processor, 256GB 

DDR4 1600MHz RAM, and 4 NVIDIA GeForce RTX 3090 GPUs with 24GB VRAM each. Key 

environment configurations include CUDA11.4, cuDNN8.2.4, and PyTorch1.13.0. During the 

experiments, adjustments were made to relevant parameters, setting the learning rate to 0.005, weight 

decay to 0.0001, and batch size to 8. Batch data loading was performed through 4 working processes. 

Each video was sampled with 16 frames, and the time interval between sampled frames was set to 16 

frames. In the comparative experiments, additional testing was conducted on the ViViT model using a 

self-constructed dataset of video work procedure actions. As depicted in figure 6a, the accuracy of the 

ViViT model is slightly lower compared to TimeSformer. However, with the incorporation of external 

attention and uniform attention, the accuracy of the ViViT model improved by 2.5 percentage points. 

As shown in figure 6b, the TimeSformer model achieved the highest accuracy after integrating the 

improved attention mechanisms, resulting in a 10.5 percentage point improvement over the base model. 

The proposed external attention mechanism incorporates two memory units using shared parameters 

across the entire dataset, implemented through linear layers. Strong regularization enhances attention 

generalization. The CB module introduces essential uniform attention to each layer of the ViT model, 
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addressing the challenging yet crucial dense interactions required by the ViT model. In the 

manufacturing context, where extensive datasets on work procedure actions are scarce, this study 

focuses on the noteworthy performance enhancement achieved by integrating improved attention 

mechanisms into the model.  

 

Figure 6. Accuracy of video action recognition models. (a) compares accuracy between TimeSformer 

and ViViT.  (b) depicts the accuracy trend during TimeSformer training. 

5.  Conclusion 

This study addresses limitations in traditional industrial engineering for work procedure analysis, 

renowned for its time and labor intensiveness. We focus on intelligent recognition using skeleton and 

video features, creating independent datasets for each format. A human pose model generates skeleton 

sequences, and a CNN-GRU network classifies dynamic features. Despite high prediction accuracy and 

online recognition speed (25FPS on CPU), this approach struggles to detect key points on gloved hands. 

To address this, an end-to-end TimeSformer for recognizing gloved hand actions is developed, 

enhancing performance with external and uniform attention. The ViViT model sees a 2.5 percentage 

point accuracy improvement with additional attention. The TimeSformer, with two attention 

mechanisms, exhibits a 10.5 percentage point accuracy increase over the base model, showcasing 

optimal performance on the work procedure action dataset. This study achieves intelligent recognition 

of work procedures, offering innovative solutions for manufacturing process optimization. 
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