
Dual attention-enhanced SSD: A novel deep learning model 

for object detection 

Haotian Liu 

Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, 

China 

lee15634356527@gmail.com 

Abstract. Object detection is a fundamental task in computer vision with significant implications 

across various applications, including autonomous driving, surveillance, and image 

understanding. The accurate and efficient detection of objects within images is crucial for 

enabling machines to interpret visual information and make informed decisions. In this paper, 

we present an enhanced version of the Single Shot MultiBox Detector (SSD) for object detection, 

leveraging the concept of dual attention mechanisms. Our proposed approach, named SSD-Dual 

Attention, integrates dual attention layers into the SSD framework. These dual attention layers 

are strategically positioned between feature maps and prediction convolutions, enhancing the 

model's ability to capture informative feature representations across a wide range of object scales 

and backgrounds. Experimental results on the PASCAL VOC 2007 and 2012 datasets validate 

the effectiveness of our approach. Notably, SSD-Dual Attention achieves an impressive mean 

Average Precision (mAP) of 78.1%, surpassing the performance of SSD models enhanced with 

attention mechanisms such as SSD-ECA, SSD-CBAM, SSD-Non-local attention and SSD-SE 

attention, as well as the original SSD. These results underscore the enhanced accuracy and 

precision of our object detection system, marking a substantial advancement in the field of 

computer vision. Code is available at https://github.com/AlexHunterLeo/Dual-attention-

Enhanced-SSD-A-Novel-Deep-Learning-Model-for-Object-Detection 
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1.  Introduction 

Object detection [1], the task of identifying and precisely locating objects within images, stands as a 

foundational challenge in the realm of computer vision [2]. Thanks to the rapid advancements in deep 

convolutional neural networks (CNNs) [3], object detection has made significant strides, opening the 

doors to a multitude of practical applications. The prowess of object detection plays an indispensable 

role in a variety of automated systems [4], encompassing advanced surveillance systems [5], 

autonomous vehicles [6], and smart industrial automation [7]. In the realm of automated surveillance 

[8], object detection takes centre stage, facilitating the tracking of individuals and vehicles through video 

feeds to discern anomalies or suspicious activities [9]. For the domain of autonomous vehicles [6], the 

ability to detect objects such as cars, pedestrians, and traffic signs is paramount for safe and efficient 

navigation. Likewise, in the context of smart factories [10], object detection assumes a pivotal role, 

empowering automated visual inspection by reliably identifying defects and anomalies in real-time. 
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Historically, detection frameworks such as R-CNN [11] relied on regional proposal algorithms, 

which proved to be computationally inefficient. In contrast, one-stage detectors like SSD [12] have 

revolutionized the field by circumventing the need for proposal generation, directly predicting object 

classes and bounding boxes from feature maps. This unified approach has paved the way for real-time 

object detection [13], a critical requirement for applications like self-driving cars [6]. However, SSD 

encounters challenges when confronted with small objects and complex environments. 

To bolster the performance of SSD, we introduce the integration of dual attention mechanisms [14], 

which are designed to focus on informative regions and channels while filtering out extraneous data. By 

selectively accentuating crucial features, attention mechanisms hold the potential to significantly 

enhance both object localization and classification. Our research endeavours to fortify SSD with a 

lightweight dual attention mechanism, thereby fostering robust object detection capabilities that 

transcend varying scales and environmental conditions. This enhanced SSD promises to elevate the 

accuracy of automated visual inspection in manufacturing settings, enabling the more precise and 

reliable detection of anomalies. 

2.  Previous works 

Earlier CNN-based object detection frameworks, such as R-CNN [11], relied on external region proposal 

algorithms to identify potential object regions, which were then subjected to subsequent classification. 

While these methods delivered high accuracy, their reliance on intricate multi-stage pipelines led to 

inefficiencies during inference. To address this, approaches like Fast R-CNN and Faster R-CNN [15] 

were introduced, allowing for shared feature extraction across proposals using a unified network 

architecture. The introduction of the Region Proposal Network in Faster R-CNN further eliminated the 

need for external region proposal algorithms. Nevertheless, the two-stage pipeline [16] still imposed 

limitations on inference speed. 

In contrast, one-stage detectors like SSD revolutionized object detection by obviating the need for 

proposal generation. Instead, they directly predict object classes and bounding boxes from feature maps 

of various scales using a single feed forward network. This streamlined approach has proven 

indispensable for real-time detection, particularly in applications like self-driving vehicles [17]. 

However, SSD has exhibited constraints in terms of generalization, particularly when confronted with 

small objects or challenging scenarios characterized by occlusion, clutter, and scale variations. 

The burgeoning field of attention mechanisms has demonstrated significant potential in enhancing 

model generalization by focusing on pertinent information. Notably, squeeze-and-excitation networks 

[18] have showcased the effectiveness of channel attention, while models like CBAM [19] have 

integrated both channel and spatial attention. Additionally, efficient channel attention [20] also has 

showcased the effectiveness of channel attention, while models like non-local neural networks [21] have 

integrated non-local operations. In alignment with these advancements, our research endeavours to 

elevate the performance of SSD by integrating dual attention mechanisms, which aim to enhance feature 

representations. By strategically emphasizing crucial regions and channels, attention mechanisms have 

the potential to confer substantial benefits to object detection across a wide spectrum of scales and 

environmental conditions. 

3.  Dataset and Preprocessing 

The PASCAL VOC dataset was adopted in our experiment, included VOC2007 and VOC2012. 

PASCAL VOC dataset was created for the purpose of object detection, which Labels objects in images 

with bounding boxes and their corresponding category labels. The dataset contains 20 object categories, 

which include various animals (person, bird, cat, cow, dog, horse, sheep), vehicles (airplane, bicycle, 

boat, bus, car, motorbike, train), and indoor objects (bottle, chair, dining table, potted plant, sofa, 

TV/monitor), seeing in Table 1, and there are some image examples with its ground truth labels and 

boxes in Fig.1. The images in the dataset have various resolutions. Most images in the PASCAL VOC 

dataset have resolutions of width x height in the range of 500 x 375 pixels or 375 x 500 pixels. Some 

images might be larger or smaller than this typical size. The reasons why we used PASCAL VOC dataset 
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are PASCAL VOC dataset contains both large objects and small objects for evaluating a detection 

model's ability to generalize across different size objects, PASCAL VOC dataset includes various 

challenges such as occlusions, truncations, and objects in different poses and also the original SSD paper 

used PASCAL VOC dataset, which makes us easier to compare our model’s performance and mean 

average precision to the original SSD. 

Table 1. Number of objects in the train set and test set. 

Train set Test set 

animals number of objects animals number of objects 

person 15576 person 5227 

bird 1820 bird 576 

cat 1616 cat 370 

cow 1058 cow 329 

dog 2079 dog 530 

horse 1156 horse 395 

sheep 1347 sheep 311 

vehicles number of objects vehicles number of objects 

airplane 1285 airplane 311 

bicycle 1208 bicycle 389 

boat 1397 boat 393 

bus 909 bus 254 

car 4008 car 1541 

motorbike 1141 motorbike 369 

train 984 train 302 

indoor objects number of objects indoor objects number of objects 

bottle 2116 bottle 657 

chair 4338 chair 1374 

dining table 1057 dining table 299 

potted plant 1724 potted plant 592 

sofa 1211 sofa 396 

TV/monitor 1193 TV/monitor 361 

total images 16551 total images 4952 

total objects 49653 total objects 14856 

 

(a)                                                                          (b) 
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(c)                                                                             (d) 

      

Figure 1. Some image examples with its ground truth labels and boxes from PASCAL VOC dataset. 

For the data pre-processing, in the first step we applied photometric distortions to the image. The 

distortions mainly focused on brightness, contrast, saturation, and hue. The factors used to adjust these 

four values were picked from a uniform distribution. Each distortion had a 50% chance of being applied, 

and the order they were applied is random. In the second step, we applied expand to our image with a 

50% probability. We created an empty image which was filled with the mean of ImageNet data that our 

base VGG was trained on. The length and width of the empty image were 1 to 4 times the length and 

width of the original image. The original image was then placed at random coordinates within this larger 

empty image. In the third step, we applied crop operation to our image. The length and width of the 

cropped region were 0.3 to 1 times the length and width of the original image. Then computed 

intersection over union (IoU) of the cropped region and all the bounding boxes of the original image, 

which were used to decide whether or not this cropped region was picked. After cropping, recalculated 

the four corners’ coordinates of the bounding boxes whose centres located in the cropped region. In the 

fourth step we apply flipping to our image with a 50% probability. Horizontally flip an image and all 

the bounding boxes in the image. In the fifth step we resize our image. We resize our image into 300 x 

300. Because the bounding boxes coordinates data we read is not fractional coordinates, the bounding 

boxes coordinates need to be divide by the former size of the image, then multiply 300. For the pre-train, 

we use VGG-16 weights for our VGG layer [22]. VGG-16 was one of the top-performing architectures 

on the ImageNet classification challenge. Initializing our model with weights from a pre-trained VGG-

16 model leads to better convergence during training and improved detection accuracy. 

4.  Model 

4.1.  Dual attention-Enhanced SSD structure 

From our Fig. 2, there are four parts in our model VGG convolution part, auxiliary convolution part, 

prediction convolution part, attention part. For the VGG convolution part, the Conv1 has two 

convolution layers, one pooling layer. Conv2 has two convolution layers, one pooling layer. Conv3 has 

three convolution layers, one pooling layer. Conv4 has three convolution layers, one pooling layer. 

Conv5 has three convolution layers, one pooling layer. Conv6 has one convolution layer. Conv7 has one 

convolution layer. For the auxiliary convolution part, the Conv8 has two convolution layers. Conv9 has 

two convolution layers. Conv10 has two convolution layers. Conv11 has two convolution layers. For 

the feature map, we got them from the last convolution layer of Conv4, the last convolution layer of 

Conv7, the last convolution layer of Conv8, the last convolution layer of Conv9, the last convolution 

layer of Conv10, the last convolution layer of Conv11. We sent these feature map to attention part then 

to the prediction convolution part. For prediction convolution part, in the Fig. 1 we draw one convolution 
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block for each feature map. But in fact, we used two convolution blocks for each feature map, one for 

the prediction of the bounding boxes, one for the prediction scores for each class. 

 

Figure 2. Dual attention-Enhanced SSD. 

 

Figure 3. Dual attention. 

The attention we used was dual attention. Dual attention combined position attention and channel 

attention, seeing in Fig. 3. Each feature map would be passed in position attention block and channel 

attention block, then we added up the result of position attention block and channel attention block. 

Then we sent the sum of these two to the prediction convolution block. By incorporating dual attention 

after each feature map but before each prediction convolution block to enhance the SSD, prediction 

block could focus on relevant regions and channels, the model might reduce the impact of background 

noise or irrelevant regions in the image, leading to better generalization. 

 

Figure 4. Position attention. 
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We used the input from the feature map to create query, key, value matrices by convolution layer, 

reshaping, transposing. The attention score between different positions in the input was computed by 

taking the dot product of the query and key matrices. Softmax was applied to the scores along the last 

dimension to produce the attention weights. We multiplied the value matrix with the attention weights 

which is transposed to get the attention output, and then reshaped it. We multiplied the attention output 

with a learnable weight and added the original input to get the final output. Position attention focused 

on the location of the aspect. It emphasized certain spatial locations in the feature map that are more 

informative or relevant to the task. The Fig. 4 is the calculation process of position attention. 

We used the input from the feature map to create query, key, value matrices by reshaping, transposing 

without convolution layer. The dot product of the query and key was taken to calculate the energy. Then 

we took the maximum value along each row, expanded it to the shape of the original energy tensor, 

subtracted the original energy tensor to get the scores. Softmax was applied to the scores along the last 

dimension to produce the attention weights. We multiplied the attention weights with the value matrix 

to get the attention output, and then reshaped it. We multiplied the attention output with a learnable 

weight and added the original input to get the final output. Channel attention focused on the class of 

aspect. By adjusting the focus on the channels of the feature maps, the model can emphasize certain 

channels that are more informative for the detection task. The Fig.5 is the calculation process of channel 

attention. 

 

Figure 5. Channel attention. 

The following table is the comparison of parameters between our dual attention-enhanced SSD and 

the original SSD, seeing table 2. 

Table 2. Comparison of parameters between SSD and Dual attention-Enhanced SSD 

SSD Dual attention-Enhanced SSD 

Layer Output Shape Number of 

parameters 

Layer Output Shape Number of 

parameters 

VGG 

convolution 

part1 

[512,38,38] 7,635,264 VGG convolution 

part1 

[512,38,38] 7,635,264 

   Dual attention-4_3 [512,38,38] 328,320 

VGG 

convolution 

part2 

[1024,19,19] 12,848,640 
 

VGG convolution 

part2 

[1024,19,19] 12,848,640 

 

   Dual attention-7 [1024,19,19] 1,312,000 

Auxiliary 

convolution 

part1 

[512,10,10] 1,442,560 Auxiliary 

convolution part1 

[512,10,10] 1,442,560 

   Dual attention-8_2 [512,10,10] 328,320 

Auxiliary 

convolution 

part2 

[256,5,5] 360,832 Auxiliary 

convolution part2 

[256,5,5] 360,832 

   Dual attention-9_2 [256,5,5] 82,240 
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Auxiliary 

convolution 

part3 

[256,3,3] 328,064 Auxiliary 

convolution part3 

[256,3,3] 328,064 

   Dual attention-10_2 [256,3,3] 82,240 

Auxiliary 

convolution 

part4 

[256,1,1] 328,064 Auxiliary 

convolution part4 

[256,1,1] 328,064 

   Dual attention-11_2 [256,1,1] 82,240 

Prediction 

convolution 

[8732,4] 

[8732,21] 

3,341,550 Prediction 

convolution 

[8732,4] 

[8732,21] 

3,341,550 

Total parameters 26,284,974 Total parameters 28,500,334 

Trainable parameters 26,284,974 Trainable parameters 28,500,334 

4.2.  MultiBox loss, Non-Maximum Suppression and Mean Average Precision  

We generated anchor boxes for every feature map, resulting in a total of 8732 anchor boxes generated. 

Then, we computed the Intersection over Union (IoU) between the ground truth bounding boxes of an 

image and the 8732 anchor boxes, resulting in an IoU matrix with dimensions (number of objects in the 

image, 8732). For each anchor box, we determined the most likely corresponding ground truth bounding 

box and indexed it in a tensor. Similarly, for each ground truth bounding box, we identified the most 

suitable anchor box. These mappings ensured that each ground truth object was associated with an 

anchor box. Anchor boxes with an IoU below a specified threshold were labeled as 0. Using these labels, 

we derived encoded ground truth boxes from the anchor boxes. A boolean tensor was used to identify 

non-zero labels, allowing us to select the relevant ground truth and prediction boxes. We computed the 

location loss using the L1Loss and the confidence loss using the CrossEntropyLoss. The final loss value 

combined both of these losses, taking into account positive and hard negative confidence losses. 

The predicted boxes were decoded using anchor boxes to obtain decoded predicted boxes for object 

detection. For each class, 8732 boxes were extracted and filtered based on a threshold score. These 

filtered boxes were subsequently ranked by their scores, and an Intersection over Union (IoU) matrix 

was computed among them. Non-maximum suppression was applied, starting from the box with the 

highest score, and any boxes with a high IoU value relative to it were suppressed. This process continued, 

ensuring that already suppressed boxes remained suppressed. Ultimately, only a few unsuppressed boxes 

remained for each class. These unsuppressed boxes for all classes constituted the final predicted ground 

truth boxes. 

For every class, we calculated the Average Precision (AP). AP represents precision averaged over a 

set of recall values. Precision and recall are two primary metrics in object detection. Precision measures 

the accuracy of the detections, while recall measures how many of the true objects were detected. We 

calculated the number of true positives and false positives for each detection for the given class. Using 

these true positives and false positives, we computed the cumulative precision and recall at each 

detection. Precision values were extracted for various recall thresholds, and their mean provided the AP 

for that class. After obtaining the AP for each class, the mean of these values yielded the Mean Average 

Precision (mAP). 

5.  Results 

5.1.  Experiment Result including mAP and Detection Visualization 

In our experiments, we utilized the VGG16 architecture, which had been pre-trained on the ImageNet 

dataset. We made specific architectural modifications by converting the fully connected layers fc6 and 

fc7 into convolutional layers. Additionally, we removed all dropout layers and the fc8 layer. During the 

training process, we employed a batch size of 8, initialized the learning rate at 10^-3, decayed it to 10^-

Table 2: (continued). 
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4 at iteration 80000, and further decreased it to 10^-5 at iteration 100000. We conducted a total of 

120000 iterations. 

On the PASCAL VOC dataset, which encompasses both VOC2007 and VOC2012, we conducted a 

comparative evaluation against the original SSD, SSD-ECA (Efficient Channel Attention), SSD-CBAM 

(Convolutional Block Attention Module), SSD-Non-local attention and SSD-SE (Squeeze-and-

Excitation) attention models. All methods underwent fine-tuning using the same pre-trained VGG16 

network. In the context of training on the PASCAL VOC dataset, Table 3 demonstrates that our SSD-

Dual attention model outperforms the original SSD, SSD-ECA, SSD-CBAM, SSD-Non-local attention 

and SSD-SE attention models in terms of accuracy. The mean Average Precision (mAP) of the original 

SSD was reported in the original SSD paper. Our SSD-Dual attention model achieves a 3.8% higher 

mAP compared to the original SSD. 

Table 3. PASCAL VOC dataset test detection results 

Model mAP aero bike bird boat bottle bus car cat chair cow 

SSD 74.3 75.5 80.2 72.3 66.3 47.6 83.0 84.2 86.1 54.7 78.3 

SSD-ECA 76.9 77.9 84.2 77.5 70.4 46.0 86.8 85.8 88.0 59.3 81.1 

SSD-CBAM 77.3 79.3 85.4 76.9 71.8 46.7 86.8 86.4 88.0 58.9 82.0 

SSD-Non-local 

attention 
77.4 82.4 84.3 77.4 65.2 48.8 87.7 86.1 88.5 58.9 83.5 

SSD-SE attention 77.5 81.4 85.2 77.8 71. 7 47.3 87.4 86.4 87.7 57.4 79.7 

SSD-Dual attention 78.1 81.1 84.5 78.2 71.5 49.2 86.0 85.9 88.5 60.7 86.7 

Model mAP table dog horse mbike person plant sheep sofa train TV 

SSD 74.3 73.9 84.5 85.3 82.6 76.2 48.6 73.9 76.0 83.4 74.0 

SSD-ECA 76.9 75.6 85.3 87.8 83.9 78.8 52.7 77.5 77.9 87.2 75.2 

SSD-CBAM 77.3 75.1 85.3 87.3 85.0 78.4 52.8 76.5 80.7 86.8 75.1 

SSD-Non-local 

attention 
77.4 76.6 85.1 88.0 84.7 78.8 51.7 78.8 79.9 85.9 76.6 

SSD-SE attention 77.5 75.7 85.4 88.4 84.0 79.0 54.1 78.6 78.5 86.6 77.1 

SSD-Dual attention 78.1 75.7 85.1 88.3 84.4 79.8 54.4 78.5 80.2 87.0 76.0 

 

The following pictures are the detection results of original SSD and SSD-Dual attention. 

(a)                                                                         (b) 
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(c)                                                                         (d) 

     

Figure 6. Comparison of detection results between original SSD and SSD-Dual attention. (a)(c) the 

result of original SSD. (b)(d) the result of SSD-Dual attention. 

Figure 6 provides clear visual evidence of the enhanced performance of SSD-Dual attention 

compared to the original SSD. Particularly, in Fig.6 (b), SSD-Dual attention successfully detects the 

chair within the image, whereas the original SSD fails to detect any object. This observation strongly 

suggests that our model has significantly improved detection capabilities in comparison to the original 

SSD. Subsequently, we computed the confusion matrix for both the original SSD and SSD-Dual 

attention. We established a threshold of 0.5 for the Intersection over Union (IoU) between the final 

predicted boxes and the ground truth boxes, and the results are presented in Figure 7. 

 
Figure 7 provides valuable insights into the performance of SSD-Dual attention compared to the 

original SSD. Notably, SSD-Dual attention predicts a significantly higher number of matching boxes 

(a)                                                                              (b) 

 

Figure 7. Confusion matrix when IoU threshold is 0.5. (a) confusion matrix of original SSD when IoU 

threshold is 0.5. (b) confusion matrix of SSD-Dual attention when IoU threshold is 0.5. 
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for the classes bird, chair, cow, and plant. Additionally, it predicts slightly more matching boxes for 

classes such as boat, bottle, bus, motorbike, and sheep. This analysis indicates that the primary challenge 

in object detection, both for the original SSD and SSD-Dual attention, lies in accurately predicting the 

positions of bounding boxes. Once this aspect is successfully addressed, the task of class classification 

becomes relatively easier. To assess the accuracy of the final predicted boxes, we further increased the 

threshold for IoU between the final predicted boxes and the ground truth boxes to 0.8. The resulting 

outcomes are presented in Figure 8. 

(a)                                                                              (b) 

 

Figure 8. Confusion matrix when threshold IoU is 0.8. (a) confusion matrix of original SSD when IoU 

threshold is 0.8. (b) confusion matrix of SSD-Dual attention when IoU threshold is 0.8. 

From Fig.8, we can observe that SSD-Dual attention predicts more matching boxes for most of the 

classes at a higher IoU threshold. This indicates that the bounding boxes predicted by SSD-Dual 

attention are more accurate. From Fig.7 and Fig.8, we can conclude that whether or not the model could 

detect the objects in the image has not improved significantly from original SSD to SSD-Dual attention, 

but for the accuracy of the detections of the model has improved. 

5.2.  Improvement Effect of Dual Attention on SSD Structure Performance 

The position attention in the dual attention mechanism typically generates a map of the same height and 

width as the feature map, with each value indicating the importance of the corresponding spatial location. 

This enables the model to concentrate on specific spatial regions within a feature map. On the other 

hand, the channel attention component assigns weights to each channel in a feature map, enabling some 

channels to be amplified while others are suppressed. Channel attention allows the model to prioritize 

certain channels over others. 

One of the key challenges in SSD is effectively handling small objects and objects with varying 

aspect ratios. By introducing attention mechanisms between the feature maps and the prediction 

convolution layers, the model can dynamically select the most crucial features for predicting bounding 

boxes and object classes. This can be especially advantageous when detecting small objects or objects 

with non-standard aspect ratios. Regions in the image that are irrelevant or unimportant feature channels 

can introduce noise into the model's predictions. Attention mechanisms help mitigate this issue by 

suppressing these irrelevant regions or channels, enabling the model to make predictions based on more 

pertinent information. By focusing on specific regions or channels, attention can also lead to a reduction 
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in the computational resources required for prediction convolution layers to make accurate predictions 

of bounding boxes and classes. This resource efficiency is particularly valuable in resource-constrained 

environments or real-time applications.  

5.3.  Performance Comparison between SSD-ECA, SSD-CBAM, SSD-Non-local attention, SSD-SE 

attention and SSD-dual attention 

SSD-ECA deploys efficient channel attention that captures channel-wise interdependencies without the 

need for the expensive squeeze operation. Specifically, the feature maps undergo an adaptive average 

pooling layer, a 1D convolutional layer, a sigmoid activation function to produce channel-wise attention 

weights. Multiply the weights with original feature maps. ECA focuses only on channel attention and is 

designed to be lightweight, it might not compete with the richer feature capturing capability of dual 

attention, which leads to enhanced performance. 

SSD-CBAM incorporates both spatial and channel attention but uses a slightly different architecture 

than dual attention. CBAM introduces attention maps sequentially along two separate dimensions rather 

than in parallel or through shared operations. While this sequential approach can be beneficial, it may 

lead to a slight performance decrease if the channel attention suppresses critical channels required by 

subsequent position attention. Additionally, the channel attention component of CBAM may not be as 

effective. 

SSD-Non-local attention uses non-local operations which is to compute the response at a position as 

a weighted sum of the features at all positions in the input feature map. Specifically, use the pairwise 

function which is implemented as a dot product of transformed feature maps to determine the weights. 

Multiply the weights which are normalized by softmax function with transformed feature map. Reshape, 

project the result and add to the original feature maps. Non-local attention can capture long-range 

dependencies in the data, but it may not be as effective as dual attention in capturing relevant features. 

SSD-SE attention employs channel attention to adjust the importance of different channels within an 

image. It calculates channel weights based on global information and utilizes these weights to assign 

importance to each channel. This mechanism introduces only channel attention, resulting in a relatively 

low increase in computational cost and model parameters when compared to position attention 

mechanisms. By focusing on channel weight adjustment, SSD-SE attention can be particularly effective 

in cases where certain channels play a crucial role, although it may not capture spatial dependencies as 

effectively. 

In contrast, SSD-Dual Attention combines position and channel attention mechanisms in a 

straightforward manner, applying them in parallel or simultaneously to feature maps. Position and 

channel attentions are applied independently and then combined, leveraging both spatial and channel-

wise information equally to achieve superior performance. Among the three attention mechanisms, SSD-

Dual Attention performs the best in terms of mean Average Precision (mAP). The computational 

overhead and added complexity associated with SSD-Dual Attention are deemed acceptable for our 

specific application. 

6.  Discussion 

From Table 3, it is evident that all attention mechanisms have exhibited improvements in Mean Average 

Precision (mAP) when compared to the baseline SSD model. Among them, SSD-Dual attention stands 

out with the highest overall mAP performance. Several object classes have shown significant 

enhancements with the integration of attention mechanisms. For instance, in the "Bird" category, all 

attention mechanisms surpassed the baseline SSD, with SSD-Dual attention leading at 78.2 mAP. The 

"Cow" category also saw improvements across the board, with all attention mechanisms surpassing the 

baseline SSD, with SSD-Dual attention leading at 86.7 mAP. On the other hand, there were object 

categories that exhibited marginal or no improvements with the incorporation of attention mechanisms. 

Notably, the "Bottle" category showed minimal improvement across all models, suggesting that 

attention mechanisms may not be as effective for certain object categories. Likewise, in the "Dog" 

category, improvements were minimal across all attention mechanisms compared to the baseline. 
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Throughout the evaluation, SSD-Dual attention consistently ranked at the top or near the top across 

all object categories. By incorporating dual attention into the SSD architecture, this study offers a means 

to enhance object detection performance in intricate settings. Scenarios characterized by overlapping 

objects, varying scales, or occlusions stand to benefit from the integration of dual attention. This model 

concurrently directs its focus towards pivotal regions while accentuating pertinent features, ultimately 

resulting in improved object detection in complex environments. Remarkably, our approach implements 

dual attention in a lightweight manner, augmenting the SSD structure without imposing substantial 

computational overhead. Consequently, an SSD equipped with dual attention stands to achieve superior 

performance, which holds particular relevance for engineering applications demanding lightweight 

models. 

The combination of position and channel attention proved to be a highly effective and adaptive 

approach. Positional attention proves invaluable in assessing the significance of distinct spatial regions 

within each feature map. This proves especially advantageous given that SSD extracts features from 

multiple layers, each representing different scales. The application of positional attention can potentially 

amplify regions within each feature map that hold greater relevance for the detection of objects of 

corresponding scales. Furthermore, channel attention aids in evaluating the importance of various 

feature channels. In the context of SSD, where features from diverse layers are utilized, channel attention 

helps prioritize feature channels with greater relevance to the final prediction. In essence, this serves as 

an adaptive fusion mechanism, accentuating the most informative channels from different scales prior 

to the prediction phase. 

Introducing dual attention mechanisms does indeed increase computational complexity, potentially 

leading to longer training times. While dual attention has demonstrated significant improvements across 

numerous categories, there are instances, such as in the case of "dog," where the improvement is 

marginal. It is conceivable that challenges in detection for certain classes may arise from factors beyond 

feature distinction, which attention mechanisms may not fully address. Moreover, the inclusion of 

additional parameters through attention mechanisms carries a potential risk of overfitting, particularly 

when training on smaller datasets. 

In our experiments, we employ VGG16 as our foundational convolutional structure due to its 

simplicity and strong performance. Nevertheless, as deep learning research has advanced, newer 

architectures have emerged that offer superior accuracy and efficiency compared to VGG16. One such 

architecture is ResNet[23], which introduces the innovative concept of residual blocks. Each residual 

block incorporates skip connections that bypass one or more layers, effectively mitigating the vanishing 

gradient problem. This characteristic allows ResNet to achieve much greater depth than VGG. The 

increased depth of the ResNet architecture enables it to capture more abstract and intricate patterns 

within images, which can be highly advantageous for object detection. 

To further enhance object detection performance, additional deconvolutional layers can be 

introduced after the auxiliary convolutional part of SSD. These layers facilitate the upsampling of 

feature maps, effectively incorporating context into higher-resolution layers. This approach significantly 

improves detection accuracy for smaller objects, which are typically challenging for SSD. By 

introducing these extra layers, which generate more feature maps, we can experiment with various 

anchor box scales and aspect ratios tailored to specific datasets or object types, thereby achieving further 

performance enhancements. 

The attention weights of dual attention mechanisms are computed using a fixed formula based on the 

dot product. While there are learnable parameters involved, the overall structure of the attention 

computation remains the same. We can try to use adaptive attention mechanism to have an attention 

mechanism that can alter its behaviour more drastically based on the content of the input. Using a small 

neural network to process the feature map for producing attention weights is one of the solutions. The 

network can learn more complex ways to generate attention weights based on the specifics of the input 

feature map. We can also apply hierarchical attention to have multiple layers or levels of attention 

mechanisms, where coarser levels guide the attention of finer levels. At the coarser levels, the attention 

mechanism provides a broad overview to help in focusing on larger, more general regions or aspects of 
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the input data. Guided by the coarse-level attention, the finer levels then focus on details on specific 

regions or features indicated by the higher-level context. 

We could conduct attention visualization for our SSD-Dual attention model in the future. Our model 

incorporates a lot of convolutional layers, we can use attention visualization to understand how models 

focus on specific parts of the input data, such as gradient-weighted class activation mapping[24] (Grad-

CAM) which used to visualize where convolutional neural networks look in an image to make decisions. 

Grad-CAM doesn't directly visualize attention weights but rather shows which regions in the image were 

most influential in producing a particular class output. For our dual attention component, visualizing 

attention is more straightforward. For position attention, it produces a spatial attention map, we can 

directly visualize this map as a heatmap. For channel attention, we can project the channel attention 

weights onto the spatial dimensions using the feature maps, essentially showing which features are 

highlighted by the channel attention. 

7.  Conclusion 

In conclusion, our study focused on the integration of different attention mechanisms into the Single 

Shot MultiBox Detector (SSD) framework for object detection. The performance of these variations was 

evaluated based on the mean Average Precision (mAP) metric, with the following overall rankings, from 

highest to lowest: SSD-Dual Attention, SSD-SE Attention, SSD-Non-local attention, SSD-CBAM, 

SSD-ECA and the original SSD. This ranking underscores the positive impact of incorporating attention 

mechanisms into the SSD architecture, resulting in improved object detection capabilities. 

Notably, SSD-Dual Attention emerged as the top-performing model, demonstrating its effectiveness 

across various object categories. Particularly noteworthy improvements were observed in categories 

such as birds, chairs, cows, and plants. This consistent enhancement across diverse object classes 

underscores the generalizability of the dual attention mechanism, allowing the model to adaptively 

capture both local and global context. This adaptability proves advantageous for detecting objects of 

varying sizes and characteristics. 

An important contribution of our study is the empirical evidence that integrating dual attention 

mechanisms with SSD leads to enhanced detection performance across multiple categories. This 

highlights the benefits of combining both position and channel attention in object detection tasks, as the 

dual attention mechanism strikes a balance between these two types of attention. Furthermore, SSD-

Dual Attention offers several innovations and improvements. Firstly, it enhances feature representations 

by enabling the model to focus on crucial spatial details and relevant feature channels. This refinement 

leads to improved object detection accuracy. Secondly, the dual attention mechanism enhances 

generalization, reduces noise in feature maps, and enhances robustness, making it suitable for object 

detection in challenging scenarios, including cluttered or low-quality images. 

The applications of SSD-Dual Attention are diverse. It can be adapted to new tasks with other 

datasets, such as detecting anomalies or regions of interest in medical images or objects in the field of 

autonomous driving. Transfer learning from larger datasets like PASCAL VOC can also be employed 

to fine-tune the model on smaller datasets, overcoming challenges related to limited annotated examples. 

Moreover, the dual attention mechanism has practical applications in visualization, aiding in the 

interpretation of the model's decisions. This interpretability is crucial in domains where understanding 

the model's reasoning is essential. 

Beyond object detection, dual attention mechanisms can be applied to various computer vision tasks, 

including image classification, image segmentation, image super-resolution, and image captioning. In 

each of these tasks, the dual attention mechanism enhances the model's ability to capture informative 

features, making it a valuable tool in the broader field of computer vision. 
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