
Multi-Label Sampling based on Label Imbalance Rate and

Neighborhood Distribution

Zhen Zhang

Data Science and Advanced Computing, University of Reading, Reading Whiteknights

House, Reading RG6 6UR

zhen.zhang@student.reading.ac.uk

Abstract. Existing multi-label classification algorithms often assume that label distribution in

the training set is balanced, but practical datasets frequently exhibit significant label imbalance.

This imbalance affects the learning and generalization performance of the classifiers. To

address the problem of label imbalance in multi-label classification, this paper proposes a new

synthetic oversampling algorithm, named Multi-Label Synthetic Oversampling based on Label

Imbalance Rate and Neighborhood Distribution (MLSIN). This algorithm synthesizes new

samples by considering both the imbalance rate of labels and the distribution of samples in

their neighborhood, aiming to improve the classifier’s performance on minority labels. The rest

of this chapter first introduces the evaluation metrics for multi-label classification effectiveness.

Then it defines and computes the degree of label imbalance, describes the calculation of

imbalance weights, and proposes a sample type correction penalty strategy, detailing the

algorithm's process for selecting base and auxiliary samples., and validates the proposed

method on public datasets and summarizes the experimental results.

Keywords: Multi-Label classification, Class imbalance, Imbalance Rate, Heuristic sampling

1. Introduction

Multi-label learning, which assigns multiple labels to a single sample, is prevalent in various fields

such as text [1, 2], image [3-5], video [6, 7], and bioinformatics [7]. Regarding the class imbalance

problems, the accuracy of the classifier on minorities can be severely impaired by class imbalance.

Nevertheless, accurate classification of minority classes is essential because minorities have more

significant information. Existing methods to handle class imbalance are divided into two groups. One

is called algorithm adaptation which makes the classifier skewed to the minority, the other is data

preprocessing, including oversampling and undersampling. Compared with algorithm adaptation,

sampling methods have a wider scope of application because they do not rely on the choice of the

classifier [8-10].

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/57/20241317

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

104

Figure 1. The impact of label imbalance on multi label classification

Figure 1 shows the evaluation results of Macro-F under different label imbalances in a multi-label

dataset. This study found that the higher the imbalance level, the lower the value of Macro-F. Using

neighborhood information has proven effective in multi-label contexts, particularly in oversampling

strategies that mitigate overfitting and noise. This paper introduces a new sampling method that

leverages label imbalance rates and neighborhood distribution. Comprehensive comparisons and

parameter analyses of this method are presented in subsequent sections.

2. Related Work

2.1. Multi-label classification

Multi-label classification (MLC) assigns multiple labels to each instance within a dataset, Let D =
{xi, Yi|1 ≤ i ≤ n}. For sample xi, Yi represents its associated labels as a binary sequence, where

“Yij=1” indicates presence and “Yij=0” absence. The objective of MLC is to learn a function

mapping xi → Yi for each instance.

MLC algorithms can be categorized by their utilization of label correlation: First-order methods

like Binary Relevance (BR) [11] and Multi-label k nearest neighbors (MLkNN) [12] treat labels

independently. Second-order approaches, exemplified by Calibrated Label Ranking (CLR) [13],

account for pairwise label correlations. High-order methods, such as RAndom k-labELsets (RAkEL)

and Classifier Chain (CC) [14-15], consider more complex label dependencies. While first-order

methods offer simplicity, higher-order techniques provide a nuanced understanding of label

relationships.

2.2. Measure imbalance

There are three different measures are proposed to estimate class imbalance between labels for

multi-label data [16-18]. In Eq.(1), the Imbalance ratio per Label (IRLbl) is proposed to be calculated

by mining the relationships between the labels.

𝑰𝑹𝑳𝒃𝒍 = 𝒄𝒎𝒂𝒙
𝟏 /𝒄𝒋

𝟏 (𝒋 ∈ 𝟏, 𝟐, 𝟑. 𝒒) (1)

As can be seen in Eq.(2), MeanIR is obtained by averaging the IRLbl about all labels. This study

defines that a label with IRLbl >MeanIR is the minority label but IRLbl <MeanIR is the majority

label.

𝑴𝒆𝒂𝒏𝑰𝑹 =
𝟏

𝒒
∑ 𝑰𝑹𝑳𝒃𝒍𝒋

𝒒
𝒋=𝟏 (2)

The coefficient of variation of IRLbl (CVIR) is a measure that quantifies the variation of IRLbl,

reflecting the similarity of the degree of class imbalance across all labels.

𝑪𝑽𝑰𝑹 =
𝟏

𝑴𝒆𝒂𝒏𝑰𝑹
√∑

(𝑰𝑹𝑳𝒃𝒍𝒋−𝑴𝒆𝒂𝒏𝑰𝑹)𝟐

𝟏−𝒒

𝒒
𝒋=𝟏 (3)

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/57/20241317

105

the high CVIR indicates that there are significant differences in the level of imbalance among the

labels, while a low value indicates that the labels experience similar levels of imbalance.

3. Proposed method

MLSIN first calculates a matrix C ∈ ℝ n∗n that stores the proportion of majority class values in the

distribution of sample neighborhood labels, this matrix records the proportion of k nearest neighbors

of each sample that are not equal to their labels, where k is a hyper-parameters [19]. The calculation

method is to first find the k nearest neighbor samples of each sample xi, for each label lj, and then

calculate the proportion of kNN of sample xi that are not equal to their labels. The calculation

method is as shown in Eq.(4):

 𝑪𝒊𝒋 =
𝟏

𝒌
∑ ⟦𝐘𝐢𝐣 ≠ 𝐘𝐤𝐣⟧𝐱𝐢∈𝐤𝐍𝐍𝐱𝐢

 (4)

where the notation ⟦Θ⟧ represents the indicator function, which yields 1 if ⟦Θ⟧ is true and 0

otherwise.

Next, MLSIN calculate the sample weight wi for each sample in the dataset. The larger the

sample weight, the easier it is to selected as the base sample during the sampling process. The specific

steps of calculation are to calculate the values of the training sample xi in matrix C. The specific

steps of calculation are to sum the values of the training xi in matrix C to obtain the weight wi of a

single sample, which can represent the difficulty of correctly predicting the minority labels associated

with the sample. To simplify the formula, assuming the minority class value in the label is 1, the

calculation formula is shown in Eq.(5):

 𝒘𝒊 = ∑ 𝑪𝒊𝒋⟦𝐘𝐢𝐣 = 𝟏⟧
𝒒
𝒊=𝟏 (5)

The sample type matrix T divides minority class samples into four categories based on their Cij

values, including intra-class (IC), boundary (BD), out of class (OB), and outlier (OT).

IC: 0 < Cij < 0.3, the intra class samples are located in areas with dense minority class samples.

BD: 0.3 ≤ Cij < 0.5, boundary samples are located at the decision boundary, usually between

minority and majority classes.

OB: 0.5 ≤ Cij < 0.7, outliers are closer to the majority class than boundary samples. At the sample

outside the boundary. When selected for generating new samples, the label values of the new samples

will be directly set to minority classes.

OT: 0.7 ≤ Cij < 1, outliers are surrounded by majority class samples.

In addition, the type of majority class samples is defined as majority (MJ). Let T={IC, BD, OB, OT,

MJ} be the matrix that stores the distribution of neighborhood labels, and Tij be the type value of Yij.

After determining the sample type matrix T, the algorithm will make a correction to the sample type.

For all OB samples, if one of its k nearest neighbor samples is of type IC or BD, the type of that

sample will be corrected to BD.

The MLSIN algorithm presented in this text is a synthetic sampling method developed from the

MLSOL algorithm. It takes into account both the label imbalance rate and neighborhood distribution.

The pseudocode shown in Table 1 outlines the algorithm's process. Initially, it calculates the label

imbalance rate and the imbalance weight as well as a matrix C representing the proportion of majority

class values in the neighborhood label distribution. These variables are used to compute the sample

neighborhood weight and type matrix T, which will be utilized for selecting base samples and

generating new ones. The algorithm then iteratively selects a base and auxiliary sample for the

generation of new instances and adds them to the dataset. The process concludes when the number of

generated samples reaches a predetermined threshold, ending the oversampling method.

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/57/20241317

106

Table 1. Pseudocode of MLSIN

Input: Multi-label Dataset: D, Sampling Rate: p, the nearest neighbor k

Output: Sampled Multi-label Dataset: D’

1 Calculate the number of new samples that need to be generated Num=n*p

2 Find k nearest neighbors for each sample

3 Calculate matrix C based on Eq.(4)

4 Define the type matrix T based on Eq.(5)

4 Copy Dataset D’← D

6 While Num>0:

 Select samples in D based on the value of w

 Select reference samples from neighboring samples based on the value of w

 Generate xg through linear interpolation and use T to generate Yg

 D’=D’∪(xg,Yg)

7 Return D’

4. Experiments and Analysis

This study selected 12 MLDs that are widely used in different fields such as text, image, and

bioinformatics, all data sets will be downloaded in MULAN. A simple feature selection approach is

applied that retains the top 20% (Corel5k), top 10% (BibTex, medical, Enron) and the top 1%

(rcv1subset), method is compared with two heuristic neighbor-based sampling methods (MLSMOTE,

MLSOL) and two random sampling methods (MLROS, MLRUS), Especially, this experiment

analyzed three label sets assigned methods (Union, Ranking, Intersection) about MLSMOTE [20, 21].

The sampling ratio p is selected from {0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7} for parametric sampling

methods (MLROS, MLSOL, and MLRUS). What’s more, four standard multi-label learning

algorithms (MLkNN, BR, CC, RAkEL) are used to display the universality of our methods. Regarding

the BR, CC, and RAkEL, Decision-Tree is also used as the based classifier. Based on a rule-of-thumb,

k=10 as the neighbor is set for MLkNN, k=3 and n=2q for RAkEL, and k=5 as the neighbor for

MLSMOTE.

This paper chooses the multi-label evaluation metrics including Macro-averaged AUCROC (area

under the receiver operating characteristic curve) to evaluate the performance of previous methods and

the method proposed. Then, 5*2 cross-validation will be applied. Finally, to maintain the sample

distribution of MLD, multi-label iterative stratification is applied to divide MLD into the training set

and the test set.

The summary provided indicates that the MLSIN method outperforms other methods in AUC,

showcasing significant improvement (Table 2). It tops average rankings across classifiers, suggesting

wide applicability. Neighbor-based methods like MLSOL and MLSMOTE with Ranking also do well,

but not as much as MLSIN. Conversely, MLRUS, due to its random undersampling nature, may

eliminate crucial samples, making it less effective. The performance of MLSIN with MLkNN as a

base classifier is noteworthy, and it is most effective in addressing imbalance within labels, essential

for precision and recall in classification. However, in algorithms like RAkEL and CC, which consider

label correlation, MLSIN's impact is less pronounced compared to MLkNN.

5. Conclusion

In the experiments, different settings for one parameter are used, while keeping others unchanged at

the setting. The application of MLSIN improves the performance of the classifier. that proves to

generate some samples will aid classifier learning from the training set. However, as the sampling ratio

continues to increase, the performance of the classifier will decrease, because excess samples may

distort the original class distributions, and then add to the difficulty of classification. In particular, for

the base classifier RAkEL, which transforms the label subsets into classes. When the sampling ratio

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/57/20241317

107

exceeds 0.1, the evaluation measures decrease significantly, mainly because RAkEL is sensitive to the

change in the label set of samples. Otherwise, MLkNN is the best-performing classifier, and under

different sampling ratios, the three evaluation measures perform relatively stable without significant

decline. MLSIN obtains information from natural neighbors to generate samples, which can provide

more guidance for neighbor-based MLkNN.

Research on existing multi-label resampling methods for handling imbalances reveals that current

approaches often overlook the variations in label imbalance rates. Therefore, by integrating label

imbalance rates with neighborhood distribution for sample selection, the sampling intensity for labels

with a higher degree of imbalance is increased, allowing them to have a greater probability of being

chosen during sample selection. A penalty strategy is introduced when classifying types of minority

label samples, allowing for more cautious type correction and enhancing the information of minority

class samples on the decision boundary. These methods effectively reduce the degree of imbalance in

multi-label datasets, while also enhancing the classifier’s ability to learn from and classify minority

class labels and decision boundaries, thereby improving classification performance.

References

[1] G. Tsoumakas, I. Katakis, I. Vlahavas, Mining Multi-label Data [C]// Data Mining and

Knowledge Discovery Handbook, 2009: 667-685.

[2] Zhang M. L., Zhou Z. H. A review on multi-label learning algorithms [J]. IEEE transactions on

knowledge and data engineering, 2013, 26(8): 1819-1837.

[3] Tsoumakas G., Katakis I. Multi-label classification: An overview [J]. International Journal of

Data Warehousing and Mining (IJDWM), 2007, 3(3): 1-13..

[4] Buczak A. L., Guven E. A Survey of Data Mining and Machine Learning Methods for Cyber

Security Intrusion Detection [J]. IEEE Communications Surveys & Tutorials, 2015, 18(2):

1153-1176.

[5] Zhou F., Huang S., Xing Y. Deep semantic dictionary learning for multi-label image

classification [C] Proceedings of the AAAI Conference on Artificial Intelligence. 2021,

35(4): 3572-3580.

[6] Harding S. M., Benci J. L., Irianto J., et al. Mitotic progression following DNA damage enables

pattern recognition within micronuclei [J]. Nature, 2017, 548(7668): 466-470.

[7] Zhu X., Li J., Ren J., et al. Dynamic ensemble learning for multi-label classification [J].

Information Sciences, 2023, 623: 94-111.

[8] B. Wu, E.H. Zhong, A. Horner, Q. Yang, Music emotion recognition by multi-label multi-layer

multi-instance multi-view learning [C]// Proceedings of the 22nd ACM International

Conference on Multimedia ACM, 2014: 117-126.

[9] Rastogi R., Kumar S. Discriminatory label-specific weights for multi-label learning with

missing labels [J]. Neural Processing Letters, 2023, 55(2): 1397-1431.

[10] Chen Ming-Syan, Han Jiawei, Yu P.S. Data mining: An Overview from a Database Perspective

[J]. IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6): 866-883.

[11] M.R. Boutell, J. Luo, X. Shen, C.M. Brown, Learning multi-label scene classification [J].

Pattern Recognition, 2004, 37(9): 1757-1771.

[12] Zhang M. L., Li Y. K., Yang H, et al. Towards class-imbalance aware multi-label learning [J].

IEEE Transactions on Cybernetics, 2020, 52(6): 4459-4471.

[13] Tarekegn A. N., Giacobini M., Michalak K. A review of methods for imbalanced multi-label

classification [J]. Pattern Recognition, 2021, 118: 107965.

[14] Mollas I., Chrysopoulou Z., Karlos S., et al. ETHOS: a multi-label hate speech detection dataset

[J]. Complex & Intelligent Systems, 2022, 8(6): 4663-4678.

[15] Charte F., Rivera A. J., del Jesus M. J., et al. Addressing imbalance in multilabel classification:

Measures and random resampling algorithms [J]. Neurocomputing, 2015, 163: 3-16.

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/57/20241317

108

[16] Charte F., Rivera A. J., del Jesus M. J., et al. MLSMOTE: Approaching imbalanced multilabel

learning through synthetic instance generation [J]. Knowledge-Based Systems, 2015, 89:

385-397.

[17] Chawla N. V., Bowyer K. W., Hall L. O., et al. SMOTE: synthetic minority over-sampling

technique [J]. Journal of artificial intelligence research, 2002, 16: 321-357.

[18] Pereira R. M., Costa Y. M. G., Silla Jr C. N. MLTL: A multi-label approach for the Tomek Link

undersampling algorithm [J]. Neurocomputing, 2020, 383: 95-105.

[19] Charte F., Rivera A., del Jesus M. J., et al. Resampling multilabel datasets by decoupling highly

imbalanced labels [C]// Hybrid Artificial Intelligent Systems: 10th International Conference,

HAIS 2015, Bilbao, Spain, June 22-24, 2015, Proceedings 10. Springer International

Publishing, 2015: 489-501.

[20] Liu B., Blekas K., Tsoumakas G. Multi-label sampling based on local label imbalance [J].

Pattern Recognition, 2022, 122: 108294.

[21] Zhang K., Mao Z., Cao P., et al. Label correlation guided borderline oversampling for

imbalanced multi-label data learning [J]. Knowledge-Based Systems, 2023, 279: 110938.

Appendix:

Table 2. M-AUCROC of comparison approaches in different classifier

M-AUCROC Default Union Ranking Intersect MLSOL MLROS MLRUS MLSIN

emotions 0.6762(7) 0.6791(4) 0.6823(2) 0.6403(8) 0.6790(5) 0.6778(6) 0.6819(3) 0.6826(1)

flags 0.6209(3) 0.6226(2) 0.6157(7) 0.6030(8) 0.6190(4) 0.6181(5) 0.6115(6) 0.6234(1)

scene 0.7495(3) 0.7479(6) 0.7449(8) 0.7444(7) 0.7499(2) 0.7494(4) 0.7487(5) 0.7503(1)

yeast 0.5623(4) 0.5607(8) 0.5630(3) 0.5610(7) 0.5643(1) 0.5620(5) 0.5619(6) 0.5643(2)

Corel5k 0.5211(5) 0.5214(3) 0.5203(7) 0.5206(6) 0.5220(1) 0.5213(4) 0.5201(8) 0.5218(2)

medical 0.7083(4) 0.7075(5) 0.7088(3) 0.7098(2) 0.7043(6) 0.7073(7) 0.6967(8) 0.7130(1)

enron 0.5798(3) 0.5797(4) 0.5775(8) 0.5778(7) 0.5790(6) 0.5802(2) 0.5792(5) 0.5812(1)

rcv1subset1 0.5925(7) 0.5946(4) 0.5952(2) 0.5929(5) 0.5950(3) 0.5927(6) 0.5876(8) 0.5968(1)

rcv1subset2 0.5875(4) 0.5887(3) 0.5870(6) 0.5864(7) 0.5905(1) 0.5872(5) 0.5849(8) 0.5893(2)

rcv1subset3 0.5863(7) 0.5891(4) 0.5924(1) 0.5879(6) 0.5903(2) 0.5879(5) 0.5859(8) 0.5901(3)

cal500 0.5069(5) 0.5086(3) 0.5107(1) 0.5055(8) 0.5081(4) 0.5065(6) 0.5064(7) 0.5095(2)

bibtex 0.5697(3) 0.5712(2) 0.5680(6) 0.5609(8) 0.5691(4) 0.5691(5) 0.5660(7) 0.5739(1)

Ave-Ranking 4.58(5) 4.00(3) 4.50(4) 6.58(7) 3.25(2) 5.00(6) 6.58(7) 1.50(1)

Wilcoxon + + + + + + +

M-AUCROC Default Union Ranking Intersect MLSOL MLROS MLRUS MLSIN

emotions 0.7069(3) 0.7070(2) 0.7064(4) 0.6940(8) 0.7033(7) 0.7064(5) 0.7040(6) 0.7073(1)

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/57/20241317

109

flags 0.5671(7) 0.5724(3) 0.5682(5) 0.5687(4) 0.5748(1) 0.5673(6) 0.5652(8) 0.5733(2)

scene 0.9254(7) 0.9261(3) 0.9258(5) 0.9258(4) 0.9264(2) 0.9256(6) 0.9247(8) 0.9277(1)

yeast 0.6704(3) 0.6693(7) 0.6734(1) 0.6703(4) 0.6698(5) 0.6674(8) 0.6698(6) 0.6711(2)

Corel5k 0.5315(4) 0.5314(5) 0.5315(3) 0.5317(2) 0.5297(7) 0.5308(6) 0.5295(8) 0.5407(1)

medical 0.7924(4) 0.7903(5) 0.7903(6) 0.7903(7) 0.7948(2) 0.7894(8) 0.7929(3) 0.7956(1)

enron 0.6328(7) 0.6339(4) 0.6347(2) 0.6344(3) 0.6335(5) 0.6333(6) 0.6304(8) 0.6350(1)

rcv1subset1 0.6850(6) 0.6900(3) 0.6887(4) 0.6882(5) 0.6969(1) 0.6832(7) 0.6749(8) 0.6920(2)

rcv1subset2 0.6859(6) 0.6874(5) 0.6889(3) 0.6876(4) 0.7023(1) 0.6841(7) 0.6801(8) 0.6904(2)

rcv1subset3 0.6914(5) 0.6946(4) 0.6949(3) 0.6887(7) 0.6953(2) 0.6899(6) 0.6843(8) 0.6968(1)

cal500 0.5265(4) 0.5270(3) 0.5258(6) 0.5216(8) 0.5271(2) 0.5259(5) 0.5240(7) 0.5272(1)

bibtex 0.6733(3) 0.6786(2) 0.6610(7) 0.6541(8) 0.6704(4) 0.6662(6) 0.6703(5) 0.6801(1)

Ave-Ranking 4.91(5) 3.83(3) 4.08(4) 5.33(6) 3.25(2) 6.33(7) 6.91(8) 1.33(1)

Wilcoxon + + + + + + +

M-AUCPR Default Union Ranking Intersect MLSOL MLROS MLRUS MLSIN

emotions 0.6783(4) 0.6772(6) 0.6817(2) 0.6415(8) 0.6777(5) 0.6846(1) 0.6746(7) 0.6816(3)

flags 0.6208(3) 0.6183(6) 0.6138(7) 0.5824(8) 0.6193(4) 0.6229(2) 0.6192(5) 0.6252(1)

scene 0.7485(6) 0.7502(3) 0.7402(7) 0.7391(8) 0.7495(4) 0.7489(5) 0.7520(1) 0.7508(2)

yeast 0.5618(3) 0.5567(8) 0.5603(5) 0.5578(7) 0.5604(4) 0.5620(2) 0.5589(6) 0.5621(1)

Corel5k 0.5107(5) 0.5106(7) 0.5108(3) 0.5102(8) 0.5110(2) 0.5107(4) 0.5107(6) 0.5120(1)

medical 0.7084(4) 0.7086(3) 0.7081(5) 0.7087(2) 0.7061(7) 0.7081(6) 0.7058(8) 0.7103(1)

enron 0.5736(5) 0.5738(4) 0.5740(3) 0.5712(8) 0.5726(6) 0.5748(2) 0.5713(7) 0.5801(1)

rcv1subset1 0.5916(6) 0.5919(3) 0.5918(4) 0.5917(5) 0.5919(2) 0.5898(7) 0.5892(8) 0.5925(1)

rcv1subset2 0.5846(8) 0.5859(4) 0.5870(2) 0.5846(7) 0.5872(1) 0.5856(6) 0.5859(5) 0.5861(3)

rcv1subset3 0.5854(7) 0.5872(3) 0.5857(8) 0.5849(8) 0.5878(1) 0.5857(5) 0.5865(4) 0.5859(2)

cal500 0.5051(7) 0.5069(4) 0.5086(1) 0.5049(8) 0.5063(3) 0.5053(6) 0.5056(5) 0.5076(2)

bibtex 0.5672(3) 0.5727(1) 0.5661(6) 0.5596(8) 0.5669(4) 0.5667(5) 0.5660(7) 0.5675(2)

Table 2. (continued).

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/57/20241317

110

Ave-Ranking 5.08(5) 4.00(2) 4.41(4) 6.92(7) 3.58(2) 4.25(3) 5.75(6) 1.67(1)

Wilcoxon + + + + + + +

M-AUCPR Default Union Ranking Intersect MLSOL MLROS MLRUS MLSIN

emotions 0.6721(6) 0.6763(4) 0.6778(2) 0.6404(8) 0.6750(5) 0.6771(3) 0.6681(7) 0.6798(1)

flags 0.6105(7) 0.6128(5) 0.6128(4) 0.5855(8) 0.6218(1) 0.6170(2) 0.6123(6) 0.6147(3)

scene 0.7399(7) 0.7402(6) 0.7434(5) 0.7467(4) 0.7482(2) 0.7472(3) 0.7397(8) 0.7502(1)

yeast 0.5585(6) 0.5588(4) 0.5607(1) 0.5587(5) 0.5590(3) 0.5578(7) 0.5571(8) 0.5607(2)

Corel5k 0.5196(8) 0.5213(2) 0.5203(5) 0.5207(4) 0.5215(1) 0.5202(6) 0.5197(7) 0.5211(3)

medical 0.7084(5) 0.7110(2) 0.7090(4) 0.7061(8) 0.7080(6) 0.7101(3) 0.7064(7) 0.7118(1)

enron 0.5771(6) 0.5774(5) 0.5769(7) 0.5775(4) 0.5785(2) 0.5783(3) 0.5767(8) 0.5811(1)

rcv1subset1 0.5873(7) 0.5881(5) 0.5898(3) 0.5880(6) 0.5900(2) 0.5883(4) 0.5861(9) 0.5908(1)

rcv1subset2 0.5832(7) 0.5841(3) 0.5839(4) 0.5834(5) 0.5867(1) 0.5834(6) 0.5830(8) 0.5845(2)

rcv1subset3 0.5828(7) 0.5865(2) 0.5849(4) 0.5837(5) 0.5857(3) 0.5833(6) 0.5809(8) 0.5866(1)

cal500 0.5075(6) 0.5082(4) 0.5095(1) 0.5053(8) 0.5085(3) 0.5081(5) 0.5058(7) 0.5086(2)

bibtex 0.5681(4) 0.5652(7) 0.5660(5) 0.5592(8) 0.5683(3) 0.5683(2) 0.5653(6) 0.5692(1)

Ave-Ranking 6.33(7) 4.08(4) 3.75(3) 6.08(6) 2.67(2) 4.25(5) 7.41(8) 1.59(1)

Wilcoxon + + + + + + +

Table 2. (continued).

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/57/20241317

111

