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Abstract. To improve the ability of video anomaly detection models to extract normal 

behavior features of samples and suppress abnormal behaviors, this paper proposes an 

unsupervised video anomaly detection model, which takes advantage of spatio-temporal 

feature fusion, storage module, attention mechanism, and 3D autoencoder model. The model 

utilizes autoencoder to capture scene feature maps to enhance anomaly feature extraction. 

These maps are merged with the original video frames, forming fundamental units constituting 

continuous sequences serving as the model's input. Moreover, the attention mechanism is 

integrated into the 3D convolutional neural network to strengthen the network's capability in 

extracting channel and spatial features from videos. Experimental validation is performed on a 

publicly accessible campus dataset, illustrating the model's superior accuracy in anomaly 

detection. 
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1.  Introduction 

Video anomaly behavior refers to a relatively rare type of behavior that often conflicts with common 
behavior and carries a certain degree of danger. Detecting these anomalies accurately and promptly is 
crucial for maintaining social security. The goal of video anomaly detection is to locate violations in 
time and space within video sequences, such as wrong-way driving, fighting, or crowd dispersal, by 

utilizing technologies such as computer vision and machine learning. Proper video anomaly detection 
methods can automatically learn normal behavior patterns in scenes and automatically detect 
deviations that significantly deviate from normal patterns. This not only significantly reduces labor 
costs but also has good timeliness and accuracy[1]. 

Unlike other supervised learning-based video behavior recognition tasks, video anomaly detection 
is not suitable for supervised learning methods due to the characteristics of vague definitions, rarity, 
and scene dependence of anomalous behavior. Therefore, most video anomaly detection adopts 

unsupervised learning methods. In related literature, some studies first use deep denoising autoencoder 
to reconstruct spatio-temporal cubes and use the output of fully connected layers as learned 
representations of video events[2]; and some studies use convolutional deep autoencoder to extract 
video features better[3]. These methods in the literature all use deep autoencoder and have achieved 
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good results. However, because videos have temporal continuity, the above methods only consider 
spatial feature extraction and ignore the correlation in time series.  

Combining spatial and temporal features is crucial for anomaly detection tasks. This paper 
introduces a novel deep learning-based method, which aims to optimize anomaly detection by 

integrating spatial multiscale features from normal scenes with temporal information. 
The structure of this method is illustrated in Figure 1. During the training process, the model 

assigns high weights to normal samples to focus on important information. However, during the 
testing phase, the extraction of features for abnormal behavior is not influenced by the same weights, 
which somewhat suppresses the generation of abnormal behavior. Additionally, the introduction of a 
memory module records the deep semantic features of different patterns in normal samples, thereby 
increasing the prediction error for abnormal samples. 

 

Figure 1. Anomaly detection reconstruction method diagram. 

2.  Module Design 

The structure of this method is illustrated in Figure 2. The framework is an encoding-decoding 
structure and mainly consists of a 3D autoencoder module, a 3DCBAM module and a memory module. 

 

Figure 2. Architecture Diagram of Anomaly Behavior Detection Network. 
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2.1.  Autoencoder 
An autoencoder is a neural network model that comprises an encoder and a decoder. Its purpose is to 
map input data to itself. The encoder compresses the input data into a low-dimensional feature vector, 
aiming to minimize information loss, while the decoder reconstructs the low-dimensional feature 

vector back into the original data accurately. Throughout the training process, the model endeavors to 
minimize the disparity between the input and the reconstruction, thus learning effective features within 
the data during the mapping process[4]. 

2.2.  3DCBAM 
The CBAM attention mechanism is a simple but highly effective attention module that can be used 

with feedforward convolutional neural networks[5]. It is made up of two parts: the channel attention 
module and the spatial attention module. CBAM can serialize feature maps created by convolutional 
neural networks and calculate attention maps in both channel and spatial dimensions. It then performs 
adaptive feature learning by multiplying the attention map and the feature map element-wise. This 
lightweight module can be embedded into any backbone network to improve performance. 
Researchers have attempted to apply CBAM to end-to-end training of 2D convolutional networks such 
as VGG, Inception, and ResNet[6]. To enhance the spatial feature utilization of 3D convolutional 

networks, this paper proposes the 3D-CBAM attention mechanism, with specific integration shown in 
Figure 3.  

 

Figure 3. 3DCBAM Structure Diagram. 

Unlike 2D convolutional networks, 3D convolutional networks have an additional depth dimension. 
Therefore, when extracting spatial features, it is necessary to consider variations in the depth 

parameter. For a feature map of an intermediate 3D convolutional layer F3D ∈ R
C×H×W×D, where C is 

the number of channels, 3DCBAM sequentially derives the channel attention feature map Mc3D ∈
RC×1×1×1 and the spatial attention feature map Ms3D ∈ R

H×1×D×W . The entire process can be 
represented by the following formulas: 

 )(F 333
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The 3DCBAM model has a channel attention module that focuses on the channels that are 
important in determining the final classification results of the fused 3D network. It selects features that 
have a decisive impact on predictions. Figure 4 shows the specific steps involved. Firstly, the input 

feature map F3Dundergoes average pooling and max pooling operations along the depth, height, and 
width dimensions separately. Then, the features processed separately by the MLP are summed 
element-wise, followed by a sigmoid activation operation. The resulting channel attention feature map 

Proceedings of  the 6th International  Conference on Computing and Data Science 
DOI:  10.54254/2755-2721/57/20241336 

214 



 

 

Mc3D is multiplied element-wise with the input feature map F3D to generate the final channel feature 

map F3D
′ . This is expressed by the following formula: 

 𝑀𝑐3𝐷(𝐹3𝐷) = 𝜎(𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙3𝐷(𝐹3𝐷)+ 𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙3𝐷(𝐹3𝐷))) 

                                        = 𝜎((𝑊1(𝑊0(𝐹𝑚𝑎𝑥

𝐶10𝑎𝑣𝑔
𝐶

  (3) 

In the equation, σ represents the sigmoid operation, and W needs to undergo ReLU activation. In 
this paper, the reduction ratio r is set to 4, which means that the number of channels C is transformed 
to C/4 during max-pooling and average-pooling operations, reducing the parameter count. Finally, the 
number of channels is restored to the original C through a fully connected layer. 

2.3.  Memory module 

Sometimes, the generalization capability of the Autoencoder can be too strong. In such cases, if the 
input embedding to the decoder is composed of embedding from normal samples, it can be anticipated 
that the reconstructed images produced by the decoder will primarily consist of features from normal 
samples. In this way, by suppressing the generalization capability, the reconstructed images can be 
forced to be closer to normal samples[7]. 

The specific approach is as follows: all embedding obtained by encoding normal samples is stored 

in memory. When an image is input, its embedding is extracted using the encoder. Then, the similarity 
between the image's embedding and each embedding in the memory is calculated individually (e.g., 
using cosine similarity). Subsequently, the embedding in the memory is weighted and averaged using 
the similarities as weights, resulting in a new embedding. This new embedding will possess two 
characteristics: it will be relatively close to the original image's embedding and composed of features 
from normal samples. This new embedding is then input into the decoder, enabling the generation of 
images close to the original image and resembling normal samples. 

The memory module essentially stores a matrix of size N×C, where C is consistent with the 

dimensionality of the encoding result Z. Each row in the memory is denoted by m, representing a 
storage item. Given the encoding result F, the memory network obtains Ĥ based on a soft addressing 
vector H (1xN), and H is also computed based on F (each item being non-negative). Here, N is a 
hyperparameter, and empirical evidence shows that 3DCAE-MEM is not sensitive to N, with larger 
values generally yielding better performance. 

 𝐹
^

= ℎ𝑀 = ∑ ℎ𝑖𝑚𝑖
𝑁
𝑖=1  (4) 

3.  Experiment analysis 

3.1.  Experiment dataset 

The Avenue[8], UCSDPed[9], and ShanghaiTech[10] datasets were used for video anomaly detection. 
These datasets have predefined training and testing sets, and anomaly events only exist during testing. 

3.2.  Evaluation standard 

In this section, the most commonly used evaluation metric in video anomaly detection, the Area Under 
the Curve (AUC), is employed for assessment. AUC focuses solely on the overall performance 
without considering the specific scores of positive and negative samples. Therefore, it effectively 
avoids the subjectivity introduced by empirical threshold setting during evaluation, making it 
particularly suitable for assessing the performance of tasks with imbalanced positive and negative 
samples. 

3.3.  Result 

Table 1 presents a comparison of the AUC performance metrics between the 3DCAE-MEM model 
and other mainstream methods across different datasets. It's evident from the table that in terms of 
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reconstruction algorithms, the proposed method in this paper performs similarly to memAE[11] and 
outperforms other traditional algorithms. This is attributed to the fact that memAE also adopts a model 
structure based on memory modules, which offers certain advantages in feature extraction. 

In this study, a Channel-Spatial Mixed Attention 3D-CBAM module is added before the memory 

module to better extract both global and local information from the feature maps. Since only normal 
data are involved in the training process, the 3D-CBAM mixed attention mechanism often cannot 
effectively extract features related to abnormal behavior in the test set. This prevents encoder features 
from directly concatenating into the decoder, thus resulting in abnormal behavior generating normal 
results. The memory mechanism at the bottleneck records prototype patterns of normal data, allowing 
for the constraint of abnormal behavior features during testing. This helps reduce the model's 
generalization ability while also improving accuracy. 

Table 1. Performance comparison of different methods. 

Method Ped1 Ped2 Avenue SH.Tech 

N
o

n
-R

ec
o
n
. HOFME 0.727 0.875 – – 

MPPCA+SF 0.742 0.613 – – 

Conv-AE 0.81 0.9 0.702 – 

ST-AE 0.899 0.874 0.803 – 

Frame-Pred – 0.954 0.849 0.728 

R
ec

o
n

. 

AE – 0.917 0.810 0.697 

MemAE-nonSpar – 0.929 0.821 0.688 

MemAE – 0.941 0.833 0.712 

3DCAE-MEM 0.901 0.936 0.828 0.736 

4.  Conclusions 
This paper proposes a fusion model aimed at addressing some limitations of existing video anomaly 
detection methods. The model introduces a memory module on top of the AE network and integrates 
the 3D-CBAM attention mechanism to enhance feature recognition accuracy. Through this fusion, the 
model can more effectively capture key features in videos, thereby improving the performance of 

anomaly detection. Experiments conducted on campus datasets demonstrate the model's excellent 
performance in detecting abnormal behaviors. 

However, the model also has some limitations. The main issue is that the model requires fixed 
parameters for the same scene, and changing scenes necessitate retraining the model. This limits the 
flexibility and generality of the model in practical applications. The authors plan to address these 
issues further by developing a universal anomaly detection model applicable to most scenarios. This 
may involve optimizing the model structure, adapting parameters automatically, and employing other 
techniques to enhance the model's universality and applicability, thereby better addressing the needs of 

anomaly detection in different scenarios. 
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