
338

Clairvoyance: Vision-impaired friendly assistive mobile device

Yuanhao Chen1, 3, 4, Ziyu Zhan2, 5
1School for Engineering of Matter, Transport and Energy Arizona State University,
Tempe, Arizona, United States of America
2School of Mechanical Engineering Southern Illinois University Edwardsville
Edwardsville, Illinois, United States of America
3Corresponding author

41810310168@qq.com
5czxycx@163.com

Abstract. Our design is a wearable device that assists the visually impaired to move. Our
goal is to enable visually impaired people to travel alone after wearing our designs, helping
them reduce the risks they may face when walking out alone. After several iterations of design
ideas, our final design mainly relies on two webcams, Jetson TX2 Development board, and
six vibrators. These components are installed on a sports vest and a belt. We decided to use
visual systems and GPS to predict the trajectory of people and objects, and help users identify
the direction of obstacles and achieve the purpose of obstacle avoidance through vibrators at
different positions.

Keywords: Vision-Impaired, Avoid Obstacles, Motion Trajectory Prediction, Obstacle Contour
Recognition

1. Introduction

1.1. General Background
In an effort to address the mobility challenges of the 253 million people globally affected by visual
impairment, our team is developing an innovative product aimed at enhancing the independence and
quality of life for this demographic. Our solution stands out in the current market by offering a user-
friendly and multi-functional navigation aid that prioritizes safety, ease of use, and efficient route
planning, fostering greater confidence and reducing accident risks for visually impaired individuals.
This endeavor represents a step towards a future where visual impairment does not significantly limit
personal autonomy [1].

1.2. Problem Statement
Urban road planning is becoming increasingly complex with the rapid development of science and
technology in today’s world. At the same time, the types of transportation have become very diverse.
Under the new urban road planning, more and more intersections and traffic lights appeared.
Although this contributes to the development of urban transportation, it has caused significant
obstacles to the travel of vision-impaired people. The constantly updated roads make it difficult for

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

45

339

vision- impaired people to plan travel routes. Faster modern vehicles, crossroads and roadside obstacles
threaten the safety of vision-impaired people while walking independently. Because of the above
situation, we have analyzed several problems that the manufactured products must solve [2]. To help
visually impaired people reduce the safety hazards of travel independently, the most important problem
is how to give early warning and help vision-impaired people avoid obstacles. While walking without
any aids, it is impossible for a vision-impaired person to see the approaching obstacle like a normal
person and take action in advance to change the direction of travel and even avoid it. When we are
designing a product, we must not only consider whether its function is practical, but also whether the
product is beautiful in appearance and whether it is convenient for consumers to use. Through the
survey of other similar products on the market, the actual feedback of users’ experience is generally
that the product lacks convenience. The hands are completely restrained when using the guide cane. At
the same time, some other products also restrict users’ freedom to varying degrees. In response to the
problems above, we decided to make some improvements in the products we are going to design.

1.3. Design Goals
In order to solve the problem of how to help visually impaired people avoid obstacles as well as moving
pedestrians and vehicles before a collision occurs [3]. We need to use several components like camera,
GPS and vibrator. Cameras capture and identify people and objects in front of and behind the user.
Mainboard analyzes a series of images captured, identifies stationary obstacles and moving objects.
Predict and simulate the trajectory path of moving objects and calculate the speed of movement. The
user’s position is detected by GPS at regular intervals, expressed and recorded by latitude and longitude
coordinates. A user’s movement trajectory is simulated through several coordinates [4]. Comparing the
two simulated paths, in the event of a collision, the motherboard will generate a signal to activate the
vibrating device as a warning until the possibility of a collision disappears. We installed a total of six
vibrators on our product to provide the possible collision directions as accurately as possible. The
success of our project is that the camera can identify objects, GPS can detect position coordinates, and
the program can simulate the predicted trajectory path. When a collision is predicted, a signal is
generated and drives the vibration motor in the corresponding position to start vibrating. Also, in
order to improve the portability and comfort of the product, we will not use the traditional blind cane
design. We designed it as a wearable vest. This design can completely liberate the user’s hands and
greatly improve portability.

2. Design

2.1. Discussion of Designing Process
Our initial idea was to use a wearable sports vest. A camera was installed in the center of the front to
identify people and objects ahead. Three distance sensors were installed under the camera and on both
sides of the vest to measure the distance between obstacles in front of the user and on the left and
right sides of the user. Several vibrators were mounted under the vest straps. When the distance
sensor detects that the distance between the obstacle and the user is less than a critical value, the
vibrator would start to work. The motherboard and battery were mounted on the back. This design can
concentrate the entire system on a single vest, but the disadvantages are also obvious. The sensors on
both sides are easily blocked by the users’ arms. In addition, the vibration sense is not obvious due
to the influence of clothes thickness.

Therefore, we considered changing the position of the sensors and vibrators [5]. Our subsequent idea
was to design a sliding bracket on the shoulder strap for the sensors which were originally on the sides.
Users can also adjust the sensor position according to individual body type differences. We want to place
the vibrator as close to the skin as possible. So we decided to separate the vibrating part from the vest
and make two vibrating bracelets. The user can figure out the position of the obstacle by sensing the
vibration of the left and right wrists. However, after consideration, this design still has some
shortcomings. Vibration on the wrist is obviously a burden to the user. Our original intention is to free

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

46

340

the hands of users. This idea obviously goes against the original intention. Sensors located on the
shoulder are limited by the angle and cannot exert its maximum value and the test results cannot meet
our requirements. So, we decided to add an exercise waist belt and move vibrators into the belt. The
waist belt is used in conjunction with the vest. Users can figure out the position of obstacles by sensing
the vibrating parts on the belt. The number of vibrators in the belt was determined to be six. Six
vibrators are evenly distributed to accurately reflect obstacles from different directions [6]. This design
greatly enhances the aesthetics of the product, and also improves the user’s wearing experience, so that
the sense of vibration can be clearly transmitted to the user.

For distance sensors, we finally decided to give up the use of tasteless sensors. Accordingly, we
added another camera on the back. Therefore, we need to upgrade the quality of our cameras to increase
the visibility of the cameras. We ended up choosing two 1080p webcams for our product.

Regarding the motherboard, at the beginning we decided to install two microprocessors, Raspberry
Pi 3, to process the images captured by the two webcams on the front and back. But after the Alpha
prototype testing [7], we realized that the Raspberry Pi lacks computing power. Finally, we upgraded
our board to an NVIDIA Jetson TX2 development board. We installed it on the back together with a
12V 7AH Lithium Battery as its power source.

2.2. Final Design
We will use two webcams, Jetson TX2, GPS module power supply and vibration motors. We will
place them on a vest and a waist. The product can predict the trajectory of obstacles and users and
determine whether there will be an intersection. The vibration motors one the waist will remind users of
the direction of the obstacles. The advantage is that it can accurately predict the direction and distance
of obstacles, while the disadvantage is that Jetson’s limited computing power may lead to insufficient
alarm time.

2.3. Backup Plans
Our backup plan from last semester was about some of the constraints we encountered. One is that we
chose a 2D fish-eye camera with no built-in depth of field. During the coding process, the coding amount
of the depth of field will be greatly increased, and it is highly uncontrollable. Another is the huge
workload of the code. We need to implement three major code function modules: obstacle recognition,
trajectory prediction and relative motion position and velocity analysis. Our plan is that if the code effort
is too large for a 2D camera, we can opt for a 3D camera, which has its own depth of field and saves
a bit of code analysis. In addition, for image distortion, we can write a specific function to solve this
problem, convert the distorted image into a normal image and analyze it. These plans were adopted or
replaced as we changed cameras and processors. Specifically reflected in technical analysis and Alpha
& Beta testing section.

3. Analysis
In the analysis stage, we made a detailed analysis of the prototype and software requirements of
the whole product, as shown in the Table 1 below:

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

47

341

Table 1. Final Parameters Specification

METRIC UNITS VALUES

Total mass kg < 7

Vibration motor speed rpm 6000

Vibration motor voltage supply V 5

Battery voltage V 12

Duration of battery single using h 10

Camera voltage input V 4 − 8

Camera detection distance range m 0.5 − 30

Vertical detection angle range deg -45 − 45

Horizontal detection angle range deg -60 − 60

Camera detection frequency FPS 1 − 3

Camera feedback time s 0.5 − 1.5

Product affordable force N < 100

GPS positioning error m < 5

Product surface material – waterproof & breathable

Sale price $ 649

These established parameters determine that our design will use two cameras and six vibrators. The
weight of the whole product is just suitable for one person to wear, which will not affect the walking
speed or be too light to cause discomfort. The product needs enough space to place the processor and
the power supply, so it’s best to take the shape of clothes and put the power supply and the processor
inside the clothes. We installed a camera on the chest and back respectively, and sewed all the wires in
the clothes, which not only ensured the connection between various components, but also ensured that
they would not be damaged by external forces [8]. The product needs enough space to place the
processor and the power supply, so it’s best to take the shape of clothes and put the power supply and
the processor inside the clothes. We installed a camera on the chest and back respectively, and sewed all
the wires in the clothes, which not only ensured the connection between various components, but also
ensured that they would not be damaged by external forces.

For our initial schematic, our software requirements and hardware requirements can be met in Fig.
1. The transmission of signals is very orderly, and the hardware can be well protected, which solves the
problem of being damaged by external impact.

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

48

342

Figure 1. Schematic of the Product

4. Alpha Prototype

4.1. Alpha Prototype Construction
In the process of building the Alpha prototype, we mainly focus on the compilation and modification of
some basic functions. We use raspberry pi to realize the functions of object recognition and GPS
track recording shown in Fig. 2.

Figure 2. Alpha Prototype: Camera and GPS Connection

In the object recognition function, we use a database named tensorflow, which contains data of about
90 kinds of objects. We imported it and compiled it, and it worked as smoothly as we expected. The
system correctly displays the captured images and clearly marks the names and similarities of the
recognized objects, but there are still several shortcomings. First, it can’t show the relative position
between the identified object and the screen picture. Second, the frame rate of the camera capturing
pictures will be very low, about 1fps because the data is analyzed in real time. For these two problems,
we have made corresponding improvements to the code.

First of all, we read the description of the database and found that there are actually data that can
indicate the relative position, that is, the bounding box of the object. After deeply understanding its
operation mechanism, we extracted the positions of the four vertices of the bounding box from the array
and named them with different variables. The variables of these four vertices include their relative
positions to the screen. For this reason, we multiply the relative position by the pixel height and width
of the picture to get the relative position and pixel height of the bounding box. After getting the pixel

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

49

343

height, we use the rule of triangulation, and multiply the focal length by the actual height divided by the
pixel height to get the actual distance between the object and the user.

As for the low frame rate, because of the large database and high hardware requirements, we can
only reduce the size of the picture from 1280*720 to 640*480. After improvement, the frame rate has
been able to reach 2 FPS. In the GPS track recording part, we connect the GPS chip and raspberry pi as
shown in the figure. When the blue light flashes, it means that the circuit is connected correctly and can
start working. The chip needs to be in an open place to receive satellite signals. When it receives
signals well, the red light will flash.

4.2. Alpha Prototype Testing
In the alpha test, we mainly complete two tests [9], the first is the accuracy of object recognition, and
the second is the feasibility of GPS to record the user’s trajectory. All testing time are 300 seconds. First
is the accuracy of object recognition, we used the written program to recognize pedestrians on campus,
and made a table, which recorded the status of all pedestrians (near and still, far and still, near and
moving, far and moving) and the recognition results (Table II and Table III). Fig. 3 is the figure shows
how recognition looks like, and through binomial distribution, the recognition accuracy and error values
of all different situations were calculated in Fig. 4. The conclusion showed that the actual situation was
within the predicted range, and the recognition accuracy was high.

Table 2. Pedestrians Recognition Record

Pedestrian (Condition) Detected
Pedestrian 1 (FS) Yes
Pedestrian 2 (NM) Yes
Pedestrian 3 (NS) No
Pedestrian 4 (FM) Yes

.

{N: near, F: far, M: moving, S: static}

Table 3. Correct Recognition Probabilities

Pedestrian (Condition) Probability
Pedestrian (NM) 73/77 = 0.9481
Pedestrian (NS) 35/39 = 0.8974
Pedestrian (FM) 38/46 = 0.8261
Pedestrian (FS) 18/22 = 0.8182

Total 164/184 = 0.8913

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

50

344

Figure 3. Human Recognition Rendering

Figure 4. Binomial Distribution Analysis

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

51

345

For GPS track recording, we use the BN220 GPS chip, and its distance error can be controlled
within 2m. There are four pins in the chip, namely GND, TX, RX and VCC from left to right, which
are connected to the pins of raspberry pi in sequence. We have written the code to extract the current
latitude and longitude of the user every ten seconds and replace the coordinates in the original two
matrices and draw the two coordinates in a straight line on the map of the HTML file, as shown in
Fig. 5.

Figure 5. GPS Trajectory Recording

For the whole alpha test, what we can improve is the object recognition function. The result of the
low frame rate is that capturing images is slow, but the road conditions are changing rapidly [10]. So
we hope to modify the code logic, changing the real-time analysis into storing images first, and then
using script analysis in the background, which can greatly reduce the interval time between capturing
images and reduce the memory occupation of raspberry pi.

According to all the feedback from the alpha test, our product is feasible at present, because all the
data analysis and target functions can be well realized, and the calculation results can be obtained in
a small error time.

5. Beta Prototype

5.1. Beta Prototype Construction
In the Beta prototype, for the first step, we are going to build the actual electrical circuit of this system.
All of the required hardware here includes one GPS module, six vibrating mini motors and two USB
cameras. The power for Jetson board is about 19 volts. The approach for connecting a vibrating mini
motor is for GPIO control, since the supply voltage is over the maximum value of it, a protecting register
is necessary for each branch. In terms of GPS, it is working with serial communication. As it’s shown
in Fig. 6 below, this is the working circuit of the whole system.

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

52

346

Figure 6. Electrical Circuit of System

5.2. Beta Prototype Testing
Here is the part of Beta Testing. We were focusing on getting more tests on the prediction of
trajectory and sending out the warning signals from the system to the users. To achieve the prediction
of trajectory of objects, we were using a neural network that is based on the mathematical model of
probability contribution. The theory of how this neural network works is to estimate the final
destination and to record the past specific-duration trajectory, and then to analyze the future prediction.
In order to get this neural network working for the test on prediction on trajectory, we need our own
dataset. Therefore, initially, we took a video of objects on the road for processing through the test.
Next, the dataset for neural network is accumulated with RGB pixel values of a bunch of images.
There are built-in functions from Open CV library to convert a video to a set of RGB values. About
this dataset, it is created with 30 frames of a video, and each frame is with a resolution of 640*480
pixels. Finally, we should get a set of data as shown in the Table below.

Table 4. Example of RGB Pixel Values

75 43 44
94 60 61
78 42 44
80 39 43
102 60 64
96 51 56

Table 5. ADE & FDE for Prediction of Trajectory

Average ADE 17.378018939916593
Average FDE 35.37710504579852

Once we get the dataset, then we can import it into a neural network and do training for prediction
of trajectory. In order to acquire a good performance of the result of the neural network, we set up
the number of epochs as 650, which means how many cycles the neural network did for training.
After completing the process of training, we get two values of error for prediction of trajectory,

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

53

347

Average Displacement Error (ADE) and Final Displacement Error (FDE), which stands for the
percentage of error with respect to the actual position. These two values are listed in Table V above.

In addition, we also acquired the data of prediction of trajectory, we need to plot it as well as plotting
trajectory of the User from GPS. However, the result of data from a neural network is a 3D tuple, but
data from GPS is a 2D array. In order to be able to plot both two on the same graph, we have to
convert the 3D tuple to a 2*2 array as the first step. Then, we assume that x-axis is latitude and y-
axis is longitude. We get the plot as shown in Fig. 7

Figure 7. Plot of User’s & Object’s Trajectory

By then getting the information if two trajectories are intersected or not, which is the key command
to activate the vibrating motor to send out the warning signal. However, specifically which vibrating
motor will be activated? In other words, what is the direction of objects coming from? This is
controlled by the information from the bounding box in the part of object recognition. Bounding box
tells us what the vectors of positions are in terms of upper- left point and low-right point. With both
two vectors of positions and revolution of image, we can decide where the object is coming from. The
conditions of control are shown as Fig. 8 below.

Figure 8. Conditions for Motors Controlling

6. Final Product Design
After several iterations of design ideas, our final design is shown in Fig. 9 and Fig. 10 below. The
materials we used for our final design were an Nvidia Jetson TX2 development board, two 1080p
webcams, a GPS component, a bulletproof vest, a sports belt, a 12V 7AH Lithium Battery, and six
vibrator motors.

Two webcams are mounted on the front and rear center of the vest. The NVIDIA Jetson TX2
development board and battery are mounted below the webcam on the back. Six vibration motors are
mounted evenly on the belt. All the cables go through the inter layers of the vest fabric and are
reinforced through sewing. The positive and negative wires of six vibration motors are assembled and
connected to the Jetson TX2 board. The webcam captures people and objects within its visual range and
passes a series of image data to the Nvidia Jetson TX2 development board. Jetson then analyzes the

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

54

348

series of images, simulates the motion trajectories of front and rear pedestrians and objects, and
calculates their speed.

GPS detects the user’s position and outputs it in the form of latitude and longitude coordinates. Jetson
simulates the user’s movement trajectory and speed through the series of coordinates. Jetson plots
several simulated trajectory paths on a single plot. Once it finds that the user’s trajectory intersects with
the trajectory of other objects, Jetson will send a signal to drive the vibration motor at the corresponding
position to start working as a warning. Six vibrators are attached to an independent belt, providing
vibration feedback in six directions.

Figure 9. Final Design Prototype

Figure 10. Final Product

7. Miscellaneous

7.1. Cost Analysis
The estimated manufacturing cost of our final product is almost 888 dollars. The MSRP should be 1099
dollars. We decided to build a long-term relationship with suppliers and plan to produce 5000 products
per year, so we materials at a price slightly lower than the market wholesale price. See Table for
detailed information.

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

55

349

Table 6. MSRP Analysis

MRSP Analysis (5000 pieces / year)

1. MATERIAL Quantity Cost Total
NVIDIA Jetson TX2
development board 5,000.0000 $200.00 $1,000,000.00

Webcam 10,000.0000 $4.70 $47,000.00

256GB SD Card 5,000.0000 $30.00 $150,000.00

Bulletproof vest 5,000.0000 $25.00 $125,000.00

Vibration motor 30,000.0000 $1.35 $40,500.00

12V 7AH Lithium Battery 5,000.0000 $25.00 $125,000.00

Sports waist belts 5,000.0000 $10.00 $50,000.00
Indirect costs (35% of all

material) – 35% $538,125.00

MATERIAL – – $2,075,625.00

2. LABOR Set Up (# of Min) Run (# of Min) Cost / Hour Total

Assembly 5 50,000.00 $6.00 $5,000.50

Sewing 10 100,000.00 $20.00 $33,336.67

Machining 5 50,000.00 $10.00 $8,334.17

Welding 5 150,000.00 $30.00 $75,002.50

Labor – – – $121,673.83

3. OVERHEAD 100% $2,197,298.83
(ON MATERIAL & LABOR

COSTS) Subtotal $4,394,597.67

25% Profit 1.25

4. Price $5,493,247.08

7.2. Time Line
The actual timeline is a little different between we planned before. We finished the GPS part and realized
identifying objects and measuring their size before the spring break. However, we did not finish the
trajectory prediction part [11]. There are several reasons. The first problem is that finally we did not use
raspberry pi but Jetson TX2, which wastes us a lot of time completing transfer of all data, code and
libraries. Meanwhile, due to our unfamiliarity with Jetson TX2, we spent a lot of time learning how
to use it. After the spring break, we finally finished the task of trajectory prediction, and the real
data were collected for testing. We did not finish the vibration part, but we can plot two lines from
GPS and trajectory prediction on one figure and define whether they have the potential to have an
intersection. The timeline figure (Fig. 11) is attached below.

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

56

350

Figure 11. Last Semester Timeline Gantt Chart

7.3. Learning Plans and New Knowledge Acquired
We learnt about how to use Jetson TX2 to train some models. Meanwhile we successfully use GPS to
get the latitude and longitude coordinates to get the users’ trajectory. We also learned how to capture
continuous images from the video and export them into pixel values.

7.4. Codes and Standards
We will strictly abide by professional and business ethical standards and requirements. All actions will
be in accordance with the provisions of the law and we will not steal the results of others [12]. The use
of other people’s technical and theoretical knowledge clearly states its origin. Meanwhile, we strictly
comply with product safety standards when making products to ensure the safe use of users.

8. Next Steps
Our project still has a lot of potential for improvement and development. Firstly, the functions that
our products can do at present are not very comprehensive. There should be many ideas for the
function of helping the visually impaired people to travel alone. So we can enrich the functionality of
our products, build another assistive system to ensure the safety level. Secondly, our products do not use
sensors for distance detection. Our team has also considered whether using lidar or other sensors can
achieve better results. A better solution is that we can build a sensor system, provides a double-protection
in case that vision not working accurately. Thirdly, our team also gave serious thought to the power
supply problem. At present, our products can continue to work for about ten hours on a single charge
and we can apply solar technology to extend the working duration. Otherwise, if we have more resources
and time, we can overcome some technical problems that we have not solved yet, such as processing
video automatically, letting the neural network match the identified object with the number and so on.

9. Conclusions
Our team has designed and manufactured a wearable device that can help users avoid obstacles in
view of the difficulty of traveling alone for visually impaired people. We decided to use the vision
system and GPS to predict the trajectory of the obstacle, and use the vibrator in different positions
to help the user identify the direction of the obstacle for the purpose of obstacle avoidance. During
the first semester, we clarified the direction of our subject, conducted market research, and understood
the objective needs of visually impaired people. We designed and modeled our product and purchased

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

57

351

the parts and materials we needed. In the second semester, we have a reasonable division of labor for
the functions we want to accomplish. We have carried out research on vision systems, GPS and neural
networks respectively. Finally, we carried out a series of data collection and functional tests and
completed the construction of the finished product. This project is roughly completed, and it can
predict the trajectory of humans and provide warnings via vibrators to users. But at present, our project
still has some errors and deficiencies. The direct beneficiaries of our products are all visually impaired
people. Relatively speaking, it’s able to help vision-impaired people decrease the risk of
independently walking on the street.

References
[1] Tim. “Object and Animal Recognition With Raspberry Pi and OpenCV.” core electronics,

https://core-electronics.com.au/guides/object-identify-raspberry- pi/.15 April 2022.
[2] Kuriakose, Bineeth, Raju Shrestha, and Frode Eika Sandnes. ”Tools and technologies for blind

and visually impaired navigation support: a review.” IETE Technical Review (2020): 1- 16.
[3] Real, Santiago, and Alvaro Araujo. ”Navigation systems for the blind and visually impaired: Past

work, challenges, and open problems.” Sensors 19.15 (2019): 3404.
[4] National Federation of the Blind. “Blindness Statistics”. National Federation of the Blind,

https://nfb.org/resources/blindness-statistics 4 December 2021.
[5] Strap Technologies. https://strap.tech/ . 4 December 2021.
[6] Church, Andy. “This is Why Product Quality is Important for Consumer Brands (5 Reasons)”.

Insight Quality Services, https://insight-quality.com/why- product-quality-is- important/ 3
September 2021.

[7] Hattori, Masayuki, and Sumiyoshi Abe. ”Path probability of stochastic motion: A functional
approach.” Physica A: Statistical Mechanics and its Applications 451 (2016): 198- 204.

[8] Hesse, Constanze, et al. ”Pathways involved in human conscious vision contribute to obstacle-
avoidance behaviour.” European Journal of Neuroscience 36.3 (2012): 2383-2390.

[9] Tim. “Detect Speed with a Raspberry Pi, Camera and OpenCV.” core electronics, https://core-
electronics.com.au/guides/detect-speed-raspberry-pi/ .15 April 2022.

[10] EdjeElectronics, and ladyada, and davidbradway. “Tutorial to set up TensorFlow Object
Detection API on the Raspberry Pi.” Github, https://github.com/EdjeElectronics/
TensorFlow- Object-Detection-on-the-Raspberry-Pi .20 April 2022.

[11] Automaticaddison. “How to Read Input from a Push Button Switch on Raspberry Pi 3 Model B+.”
Automatic Addison, https://automaticaddison.com/how- to-read-input-from-a- push-button-
switch-on-raspberry-pi-3-model-b/ . 20 April 2022.

[12] BOXENTRIQ, “https://www.boxentriq.com/code-breaking/pixel-values-extractor”, Pixel Values
Extractor, 20 April 2022.

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

58

http://www.boxentriq.com/code-breaking/pixel-values-extractor
http://www.boxentriq.com/code-breaking/pixel-values-extractor
http://www.boxentriq.com/code-breaking/pixel-values-extractor

352

Appendix
Code used for GPS trajectory recording

1 import serial
2 import pynmea2
3 import time
4 import os
5 import folium
6

7 def gps_get():
8 print("Extract Value Start:")
9 previouslat = 0

10 previouslon = 0
11 presentlat = 0
12 presentlon = 0
13 coordinate = 0
14 count = 0
15 ser = serial.Serial("/dev/ttyTHS2", 9600)
16 print("Success! Going into the loop:")
17

18 while True:
19 line = str(ser.readline())[2:]
20 if line.startswith(’$GNGLL’):
21 line = line.replace(’\\r\\n\’’, ’’)
22 count += 1
23 if count == 1 or count % 10 == 0:
24 print("*********************")
25 line = line.replace(’\\r\\n\’’, ’’)
26 rmc = pynmea2.parse(line)
27 print("Position:")
28 print("N:", rmc.latitude, "degree")
29 print("E:", rmc.longitude, "degree")
30 latitude = rmc.latitude
31 longitude = rmc.longitude
32 if coordinate == 0:
33 startlatitude = rmc.latitude
34 startlongitude = rmc.longitude
35 startpoint = [startlatitude, startlongitude]
36 m = folium.Map(startpoint, zoom_start=100)
37 if coordinate == 1:
38 previouslat = rmc.latitude
39 previouslon = rmc.longitude
40 previouspos = [previouslat, previouslon]
41 if coordinate == 2:
42 presentlat = rmc.latitude
43 presentlon = rmc.longitude
44 presentpos = [presentlat, presentlon]
45 if coordinate >= 3:
46 previouslat = presentlat
47 previouslon = presentlon
48 presentlat = rmc.latitude
49 presentlon = rmc.longitude
50 previouspos = [previouslat, previouslon]
51 presentpos = [presentlat, presentlon]
52 location = [[previouslat, previouslon], [presentlat,
presentlon]]
53 route = folium.PolyLine(location,

weight=5, color=’blue’,
opacity=0.8).add_to(m)

54 m.save(os.path.join(’/home/jetson/senior_design/GPS’,
’Heatmap1.html’))
55 coordinate += 1
56 if count < 0:
57 break
58 if name == " main ":
59 gps_get()

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

59

353

Code used for object detection

1 import os
2 import cv2
3 import numpy as np
4 from picamera.array import PiRGBArray
5 from picamera import PiCamera
6 import tensorflow as tf
7 import argparse
8 import sys
9 import Jetson.GPIO as gpio

10 import time
11

12 # LED pin configuration
13 gpio.setwarnings(False)
14 gpio.setmode(gpio.BOARD)
15 LED1_pin = 40
16 LED2_pin = 38
17 LED3_pin = 35
18 LED4_pin = 12
19 LED5_pin = 32
20 LED6_pin = 29
21

22 # Setup LED pins as output
23 gpio.setup(LED1_pin, gpio.OUT, initial=gpio.LOW)
24 gpio.setup(LED2_pin, gpio.OUT, initial=gpio.LOW)
25 gpio.setup(LED3_pin, gpio.OUT, initial=gpio.LOW)
26 gpio.setup(LED4_pin, gpio.OUT, initial=gpio.LOW)
27 gpio.setup(LED5_pin, gpio.OUT, initial=gpio.LOW)
28 gpio.setup(LED6_pin, gpio.OUT, initial=gpio.LOW)
29

30 # Camera constants
31 IM_WIDTH = 640
32 IM_HEIGHT = 480
33

34 # Select camera type
35 camera_type = ’picamera’
36 parser = argparse.ArgumentParser()
37 parser.add_argument(’--usbcam’, help=’Use a USB webcam

instead of picamera’, action=’store_true’)
38 args = parser.parse_args()
39 if args.usbcam:
40 camera_type = ’usb’
41

42 # Import utilities
43 from utils import label_map_util
44 from utils import visualization_utils as vis_util
45

46 # Model setup
47 MODEL_NAME = ’ssdlite_mobilenet_v2_coco_2018_05_09’
48 CWD_PATH = os.getcwd()
49 PATH_TO_CKPT = os.path.join(CWD_PATH, MODEL_NAME, ’frozen_inference_graph.pb’)
50 PATH_TO_LABELS = os.path.join(CWD_PATH, ’data’, ’mscoco_label_map.pbtxt’)
51 NUM_CLASSES = 90
52

53 # Load the label map
54 label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
55 categories = label_map_util.convert_label_map_to_categories(label_map,

max_num_classes=NUM_CLASSES, use_display_name=True)
56 category_index = label_map_util.create_category_index(categories)
57

58 # Load Tensorflow model into memory
59 detection_graph = tf.Graph()
60 with detection_graph.as_default():
61 od_graph_def = tf.compat.v1.GraphDef()

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

60

354

62 with tf.io.gfile.GFile(PATH_TO_CKPT, ’rb’) as fid:
63 serialized_graph = fid.read()
64 od_graph_def.ParseFromString(serialized_graph)
65 tf.import_graph_def(od_graph_def, name=’’)
66a

67 sess = tf.compat.v1.Session(graph=detection_graph)
68

69 # Input tensor
70 image_tensor = detection_graph.get_tensor_by_name(’image_tensor:0’)
71 # Output tensors
72 detection_boxes = detection_graph.get_tensor_by_name(’detection_boxes:0’)
73 detection_scores = detection_graph.get_tensor_by_name(’detection_scores:0’)
74 detection_classes = detection_graph.get_tensor_by_name(’detection_classes:0’)
75 num_detections = detection_graph.get_tensor_by_name(’num_detections:0’)
76

77 # Frame rate calculation
78 frame_rate_calc = 1
79 freq = cv2.getTickFrequency()
80 font = cv2.FONT_HERSHEY_SIMPLEX
81

82 # Initialize camera
83 if camera_type == ’picamera’:
84 camera = PiCamera()
85 camera.resolution = (IM_WIDTH, IM_HEIGHT)
86 camera.framerate = 10
87 rawCapture = PiRGBArray(camera, size=(IM_WIDTH, IM_HEIGHT))
88 rawCapture.truncate(0)
89 for frame1 in camera.capture_continuous(rawCapture, format="bgr",
use_video_port=True):
90 t1 = cv2.getTickCount()
91 frame = np.copy(frame1.array)
92 frame.setflags(write=1)
93 frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
94 frame_expanded = np.expand_dims(frame_rgb, axis=0)
95

96 # Perform detection
97 (boxes, scores, classes, num) = sess.run(
98 [detection_boxes, detection_scores, detection_classes,
num_detections],
99 feed_dict={image_tensor: frame_expanded})

100

101 # Visualization of the results
102 vis_util.visualize_boxes_and_labels_on_image_array(
103 frame,
104 np.squeeze(boxes),
105 np.squeeze(classes).astype(np.int32),
106 np.squeeze(scores),
107 category_index,
108 use_normalized_coordinates=True,
109 line_thickness=8,
110 min_score_thresh=0.40)
111

112 cv2.putText(frame, "FPS: {0:.2f}".format(frame_rate_calc), (30, 50),
font, 1, (255,

255, 0), 2, cv2.LINE_AA)
113 cv2.imshow(’Object detector’, frame)
114 t2 = cv2.getTickCount()
115 time1 = (t2-t1)/freq
116 frame_rate_calc = 1/time1
117

118 if cv2.waitKey(1) == ord(’q’):
119 break
120 rawCapture.truncate(0)
121 camera.close()
122

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

61

355

123 elif camera_type == ’usb’:
124 camera = cv2.VideoCapture(0)
125 ret = camera.set(3, IM_WIDTH)
126 ret = camera.set(4, IM_HEIGHT)
127 while True:
128 t1 = cv2.getTickCount()
129 ret, frame = camera.read()
130 frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
131 frame_expanded = np.expand_dims(frame_rgb, axis=0)
132

133 # Perform detection
134 (boxes, scores, classes, num) = sess.run(
135 [detection_boxes, detection_scores, detection_classes, num_detections],
136 feed_dict={image_tensor: frame_expanded})
137

138 # Visualization of the results
139 vis_util.visualize_boxes_and_labels_on_image_array(
140 frame,
141 np.squeeze(boxes),
142 np.squeeze(classes).astype(np.int32),
143 np.squeeze(scores),
144 category_index,
145 use_normalized_coordinates=True,
146 line_thickness=8,
147 min_score_thresh=0.85)
148 cv2.putText(frame, "FPS: {0:.2f}".format(frame_rate_calc), (30, 50),
font, 1, (255,

255, 0), 2, cv2.LINE_AA)
149 cv2.imshow(’Object detector’, frame)
150 t2 = cv2.getTickCount()
151 time1 = (t2-t1)/freq
152 frame_rate_calc = 1/time1
153

154 if cv2.waitKey(1) == ord(’q’):
155 break
156 camera.release()
157

158 cv2.destroyAllWindows()

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

62

356

Code used for trajectory prediction
1 import torch
2 import torch.nn as nn
3 import torch.optim as optim
4 import torch.nn.functional as F
5 import sys
6 from torch.utils.data import DataLoader
7 import argparse
8 import copy
9 import matplotlib.pyplot as plt

10 import numpy as np
11 from models import *
12 from social_utils import *
13 import yaml
14

15 parser = argparse.ArgumentParser(description=’PECNet’)
16 parser.add_argument(’--num_workers’, ’-nw’, type=int, default=0)
17 parser.add_argument(’--gpu_index’, ’-gi’, type=int, default=0)
18 parser.add_argument(’--load_file’, ’-lf’, default="PECNET_social_model1.pt")
19 parser.add_argument(’--num_trajectories’, ’-nt’, default=3) # number of
trajectories to sample
20 parser.add_argument(’--verbose’, ’-v’, action=’store_true’)
21 parser.add_argument(’--root_path’, ’-rp’, default="./")
22 args = parser.parse_args()
23

24 dtype = torch.float64
25 torch.set_default_dtype(dtype)
26 device = torch.device(’cuda’, index=args.gpu_index) if

torch.cuda.is_available() else torch.device(’cpu’)
27

28 if torch.cuda.is_available():
29 torch.cuda.set_device(args.gpu_index)
30

31 checkpoint = torch.load(’../saved_models/{}’.format(args.load_file),
map_location=device)
32 hyper_params = checkpoint["hyper_params"]
33

34 def test(test_dataset, model, best_of_n=1):
35 model.eval()
36 assert best_of_n >= 1 and type(best_of_n) == int
37 test_loss = 0
38

39 with torch.no_grad():
40 for i, (traj, mask, initial_pos) in

enumerate(zip(test_dataset.trajectory_batches,
test_dataset.mask_batches,
test_dataset.initial_pos_batches)):

41 traj, mask, initial_pos = torch.DoubleTensor(traj).to(device),
torch.DoubleTensor(mask).to(device),
torch.DoubleTensor(initial_pos).to(device)

42 x = traj[:, :hyper_params["past_length"], :]
43 y = traj[:, hyper_params["past_length"]:, :]
44

45 y = y.cpu().numpy() # reshape the data
46 x = x.contiguous().view(-1, x.shape[1]*x.shape[2])
47 x = x.to(device)
48

49 future = y[:, :-1, :]
50 dest = y[:, -1, :]
51 all_l2_errors_dest = []
52 all_guesses = []
53 for index in range(best_of_n):
54 dest_recon = model.forward(x, initial_pos, device=device)
55 dest_recon = dest_recon.cpu().numpy()
56 all_guesses.append(dest_recon)

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

63

357

57 l2error_sample = np.linalg.norm(dest_recon - dest, axis=1)
58 all_l2_errors_dest.append(l2error_sample)
59 all_l2_errors_dest = np.array(all_l2_errors_dest)
60 all_guesses = np.array(all_guesses)
61 # average error
62 l2error_avg_dest = np.mean(all_l2_errors_dest)

63

64 # choosing the best guess
65 indices = np.argmin(all_l2_errors_dest, axis=0)
66 best_guess_dest = all_guesses[indices, np.arange(x.shape[0]), :]
67

68 # taking the minimum error out of all guess
69 l2error_dest = np.mean(np.min(all_l2_errors_dest, axis=0))
70

71 # back to torch land
72 best_guess_dest = torch.DoubleTensor(best_guess_dest).to(device)
73

74 # using the best guess for interpolation
75 interpolated_future = model.predict(x, best_guess_dest, mask,
initial_pos)
76 interpolated_future = interpolated_future.cpu().numpy()
77 best_guess_dest = best_guess_dest.cpu().numpy()
78

79 # final overall prediction
80 predicted_future = np.concatenate((interpolated_future,
best_guess_dest), axis=1)
81 predicted_future = np.reshape(predicted_future, (-1,

hyper_params["future_length"], 2))
82

83 # ADE error
84 l2error_overall = np.mean(np.linalg.norm(y - predicted_future,
axis=2))
85 l2error_overall /= hyper_params["data_scale"]
86 l2error_dest /= hyper_params["data_scale"]
87 l2error_avg_dest /= hyper_params["data_scale"]
88

89 return l2error_overall, l2error_dest, l2error_avg_dest,
predicted_future
90

91 N = args.num_trajectories # number of generated trajectories
92 model = PECNet(hyper_params["enc_past_size"],

hyper_params["enc_dest_size"], hyper_params["enc_latent_size"],
hyper_params["dec_size"], hyper_params["predictor_hidden_size"],
hyper_params[’non_local_theta_size’],
hyper_params[’non_local_phi_size’],
hyper_params[’non_local_g_size’], hyper_params["fdim"],
hyper_params["zdim"], hyper_params["nonlocal_pools"],
hyper_params[’non_local_dim’], hyper_params["sigma"],
hyper_params["past_length"], hyper_params["future_length"],
args.verbose)

93 model = model.double().to(device)
94 model.load_state_dict(checkpoint["model_state_dict"])
95

96 test_dataset = SocialDataset(set_name="test",
b_size=hyper_params["test_b_size"], t_tresh=hyper_params["time_thresh"],
d_tresh=hyper_params["dist_thresh"], verbose=args.verbose)

97 for traj in test_dataset.trajectory_batches:
98 traj -= traj[:, :1, :]
99 traj *= hyper_params["data_scale"]

100

101 # Average ADE/FDE for k=20 (to account for variance in sampling)
102 num_samples = 10 # 150
103 average_ade, average_fde = 0, 0
104 for i in range(num_samples):

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

64

358

105 test_loss, final_point_loss_best, final_point_loss_avg,
prediction_valueset = test(test_dataset, model,
best_of_n=N)

106 average_ade += test_loss
107 average_fde += final_point_loss_best
108

109 print("Average ADE:", average_ade/num_samples)
110 print("Average FDE:", average_fde/num_samples)

Proceedings of the 2nd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/65/20240469

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240469

65

