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Abstract. The application of synaptic device-based neuromorphic computing in artificial 

intelligence is an emerging research field aimed at simulating the structure and function of the 

human brain and realizing high-efficiency, low-power, and adaptive intelligent computing. This 

paper reviews the principles, growth and challenges of neuromorphic devices based on 

synapses computing and its applications and perspectives in artificial intelligence fields like an 

image processing as well as natural language processing. The paper first introduces the basic 

concepts, properties and classification of synaptic devices, as well as the basic framework and 

algorithms of neuromorphic computing. Then, the paper analyzes the advantages and 

difficulties of neuromorphic computing based on synaptic devices, including the preparation, 

testing, modelling and integration of the devices, as well as the system’s architecture, 

programming and optimization. Then, this paper gives examples of the applications and effects 

of synaptic device-based neuromorphic computing in artificial intelligence fields such as image 

processing and natural language processing, including image denoising, image segmentation, 

image recognition, text classification, text summarization, and text generation. Finally, this 

paper summarizes the current research status and future synaptic device-based neuromorphic 

computing trends. It puts forward some research directions and suggestions to promote the 

development and innovation in this field. 

Keywords: Neuromorphic Computing, Synaptic Devices, Artificial Intelligence, Synaptic 

Plasticity, Efficient Computing 

1.  Introduction 

Artificial Intelligence (AI) is an important driving force in today’s technological development, which 

involves a number of disciplines and fields, such as computer science, electrical engineering, 

mathematics, physics, biology, psychology, philosophy, and so on. Artificial intelligence aims to 

enable machines to simulate and surpass human intelligence, and realize autonomous, efficient and 

flexible information processing and decision-making. The application of AI has widely penetrated into 

various aspects, such as healthcare, education, transportation, entertainment, security, etc., bringing 

great convenience and value to human life and social progress. 

However, AI also faces some challenges and limitations, one of which is the traditional computing 

model based on the von Neumann architecture, which is centered on logical operations and data 

storage, and performs computation in a serial, synchronous, and deterministic manner, which is very 
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different from that of the human brain. The human brain is based on neurons and synapses as the basic 

unit and calculates in a parallel, asynchronous, and stochastic way, with a high degree of plasticity, 

adaptivity, and energy conservation. Therefore, how to borrow and simulate the computational mode 

of the human brain is a crucial research direction of artificial intelligence. 

Neuromorphic computing is a new computing paradigm that mimics the computational model of 

the human brain, which aims to realize efficient, low-power, and adaptive intelligent computing. The 

key to neuromorphic computing is synaptic device, which is an electronic device that can mimic the 

function of synapses with the characteristics of non-volatility, adjustability, polymorphism, etc., and 

can realize the functions of synapses, such as learning, memory and transmission. Neuromorphic 

computing systems based on synaptic devices can realize the construction and operation of large-scale 

neural networks and the processing of complex intelligent tasks. 

The research objective of this paper is to explore the applications and effects of synaptic 

device-based neuromorphic computing in artificial intelligence, as well as the problems and challenges 

it faces. The research questions of this paper are whether Neuromorphic computing of synaptic devices 

based on synaptic devices can improve the performance and efficiency of artificial intelligence, and 

how to optimize and improve the design and implementation of neuralmorphic computing based on 

synaptic devices systems. The research hypothesis of this paper is that synaptic device-based 

neuromorphic computing can improve the performance and efficiency of artificial intelligence to a 

certain extent. Still, it also needs to solve some technical and theoretical problems and challenges. The 

research framework of this paper is: firstly, to review the principle, growth and challenges of 

neuromorphic devices based on synapses computing; secondly, to introduce the application and effect 

of synaptic device-based neuromorphic computing in artificial intelligence fields like an image 

processing as well as natural language processing; and finally, to summarize the current status of 

neuralmorphic computing based on synaptic devices and the future trend, and to put forward some 

research directions and suggestions. 

2.  Basic concepts, properties and classification of synaptic devices   

2.1.  Characterization of synaptic devices 

A synaptic device is a technological gadget that can replicate the capabilities of a synapse, which is the 

basis and core of neuromorphic computing. Synapses are connection points between neurons, which 

enable the transmission and regulation of neural signals, as well as learning and memory in neural 

networks. The main function of synaptic devices is to simulate the change in resistance of synapses, 

i.e., synaptic plasticity, which is the information storage and processing mechanism in neural 

networks. 

2.2.  The properties of synaptic devices 

The properties of synaptic devices [1] include the following: 

1. Non-volatile: the synaptic device can maintain its resistive state, i.e. memory state, after power 

failure, realizing long-term information storage. 

2. Adjustability: The synaptic device can dynamically change its resistive state, i.e., synaptic 

weight, according to the strength, frequency and time of the input signal, realizing short-term 

information processing. 

3. Polymorphism: Synaptic devices can realize different synaptic plasticity according to different 

operating modes, such as long time-range enhancement (LTP), long time-range depression (LTD), 

short time-range plasticity (STP), etc., to realize diverse information encoding and decoding. 

4. Low power consumption: synaptic devices can operate under low voltage and low current 

conditions, realizing low energy consumption for information storage and processing. 

2.3.  Classification of synaptic devices [2]  

There are mainly the following types: 
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1. Classification by material: synaptic devices can be divided into metal oxide synaptic devices, 

organic molecule synaptic devices, carbon-based synaptic devices, nanowire synaptic devices and so 

on, according to the type and composition of their materials. 

2. Classification by structure: synaptic devices can be classified into planar structure synaptic 

devices, three-dimensional structure synaptic devices, heterogeneous structure synaptic devices and so 

on according to the form and characteristics of their structure. 

3. Classification by mechanism: synaptic devices can be classified into electron-migration synaptic 

devices, ion-migration synaptic devices, phase-change synaptic devices and so on, according to the 

physical and chemical mechanism of its resistance change. 

2.4.  Applications of various synaptic devices and their advantages:  

Electrically Stimulated Synaptic Devices [3, 4]: - Advantages: complete simulation of synaptic 

functions, device scalability and good durability. - Applications: Mainly used to simulate the functions 

of excitatory synaptic current (EPSC), inhibitory synaptic current (IPSC), long time-range potentiation 

(LTP), long time-range depression (LTD), and synaptic plasticity related to timing-dependent plasticity 

(STDP). Figure 1 shows the basic functions of some kinds of photoelectric synaptic devices. 

Electrically stimulated synaptic devices can induce neuromodulatory effects within the sensorimotor 

cortex through continuous whole hand sensory electrical stimulation. This stimulation reduces the 

activity of inhibitory neural circuits and strengthens excitatory synapses, which promotes the 

formation of long-term potentiation mechanisms (LTP), affecting cortical plasticity. This synaptic 

plasticity is essential for neuronal activity-dependent changes that can be induced by electrical 

stimulation, thus positively affecting neurorehabilitation. The advantage of electrically stimulated 

synaptic devices is their ability to induce neuroplasticity, enhance cortical excitability, and positively 

impact the recovery of motor function. Through stimulation, the excitability of the motor cortex can be 

increased and the recovery of motor function can be facilitated. In addition, electrical stimulation can 

be used to treat neurological conditions like Parkinson’s illness and multiple sclerosis, as well as 

diseases such as neuropathic pain. 

 

Figure 1. Overview of this Review. Optoelectronic synaptic devices have basic functionalities such 

as STP, LTP, STDP, and SRDP. These devices can be categorized into optically stimulated synaptic 

devices [4]. 
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Optically stimulated synaptic devices [5]: - Advantages: High bandwidth, quick transmission, 

and the ability to replicate eyesight directly for color identification. - Applications: mainly used for 

optical simulation and color recognition. Synaptic devices activated by light have several benefits and 

applications. First, they are able to reduce the computational burden by performing in-sensor 

preprocessing during image data acquisition. This preprocessing includes contrast enhancement and 

image filtering of the image, which helps improve the accuracy of image recognition. In addition, 

photostimulated Synaptic mechanisms can imitate human synaptic properties, like long- and 

short-term memory, to achieve photon-triggered synaptic plasticity. These properties make optically 

stimulated synaptic devices potentially useful in machine vision systems. For example, 

photostimulated synaptic devices can be used for image contrast enhancement, producing 

preprocessed images that help improve image recognition accuracy. In addition, these devices can be 

used for moving object detection by filtering the image to extract certain characteristics from the 

picture data, like edge detection and image relief. In addition, optically stimulated synaptic devices can 

be applied to artificial sensory systems, such as simulated pain receptors, for timely detection of 

potentially dangerous damage. These applications indicate that synaptic devices activated by light 

have a wide range of potential applications in image processing and perception. 

Optical synergistic synaptic devices [4]: - Advantages: 1. Wide bandwidth: Optical synergistic 

synaptic devices are characterized by wide bandwidth and can receive both optical and electrical 

stimuli. 2. low impedance and capacitive delay: these devices have very low impedance and capacitive 

delay, enabling fast signaling. 3. global regulation: optoelectronic synergistic synaptic devices can 

globally regulate multiple synaptic devices, offering the advantage of global regulation. 4. Mixing 

visual perception, signal processing, and memory: This is important in the context of neuromorphic 

computing because humans acquire most of their information through the biological visual cortex 

system. APPLICATIONS: 1. simulation of neural activity 2. image recognition 3. signal filtering 4. 

logic functions This example is about the application of near-infrared quantum dot emitting diodes of 

light (NIR QLEDs) as optoelectronically synergistic synaptic devices. As shown in figure 2, these NIR 

QLEDs have a multilayer structure including Ag/ZnO/Si NCs/PFN/P3HT/PEDOT:PSS/ITO/glass. this 

structure allows these devices to mimic important synaptic plasticity. Among them, the Si NCs layer is 

the key functional layer miming synaptic plasticity, while the PFN layer blocks the electron escape 

from the silicon QDs layer. These NIR QLEDs emit light at a peak wavelength of 850 nm, which 

allows them to operate in the near-infrared spectral range. In addition, the P3HT layer has a high 

carrier mobility, which helps to balance the carrier injection in the device. The application of these 

devices demonstrates the potential applications of optoelectronically synergistic synaptic devices for 

image recognition and memory, especially in modeling important synaptic plasticity. The design and 

application of such device structures provide important examples for developing optoelectrically 

synergistic synaptic devices in neuromorphic computing and image processing. 

There are benefits to electrically triggered synaptic devices in modeling synaptic function, while 

Advantages of optically stimulated synaptic devices in large bandwidth and quick speed of 

propagation. Optically synergistic synaptic devices have combined visual perception, signal 

processing, and memory functions for neural activity simulation, image recognition, and so on. These 

devices have many applications in neuromorphic computing and artificial neural networks. 

  

Figure 2. Schematic of an NIR Si QD-based QLED [4]. 

Proceedings of Urban Intelligence: Machine Learning in Smart City Solutions - CONFSEML 2024
DOI: 10.54254/2755-2721/65/20240511

256



3.  Basic framework and algorithms for neuromorphic computing 

3.1.  Characterization of Neuromorphic computing 

Neuromorphic computing is a computational paradigm that mimics the human brain and aims to 

realize highly efficient, low-power, and adaptive intelligent computing. The basic framework of 

neuromorphic computing is a neural network composed of synaptic devices, which can realize 

large-scale parallel, distributed, event-driven information processing. The basic algorithm of 

neuromorphic computing is a learning rule based on synaptic plasticity, which can achieve 

self-organization, self-adaptation and self-optimization of neural networks [6]. 

3.2.  The basic framework of neuromorphic computing consists of the following main components: 

1. Neuron: the basic unit of a neural network responsible for receiving, integrating and distributing 

neural signals. Various neuron models exist, such as impulse neuron, membrane potential neurons, etc., 

which are selected according to the application requirements. 

2. Synapse: the connection point between neurons, responsible for neural signaling, network 

learning and memory. Synapse models include linear and nonlinear synapses, which are selected 

according to learning rules and goals. 

3. Neural network: an information processing system composed of neurons and synapses, capable 

of realizing complex intelligent tasks. Various network structures, such as fully connected, 

convolutional, and recurrent networks, are chosen according to data characteristics. 

3.3.  The basic algorithms for neuromorphic computing include the following: 

Unsupervised Learning Based on Synaptic Plasticity [7]: unsupervised learning according to 

synaptic plasticity refers to the neural network automatically adjusts the weights of the synapses 

according to the statistical characteristics of the input data to realize feature extraction and clustering 

of the data and so on. Typical algorithms of unsupervised learning based on synaptic plasticity are 

Haibu learning, competitive learning, self-organizing mapping, etc., which can realize the 

self-organization and self-adaptation of neural networks. This paper introduces A new unsupervised 

learning rule inspired by the brain called voltage-dependent synaptic plasticity (VDSP) for online 

implementation regarding neuromorphic computing hardware. The synaptic conductance is updated by 

the VDSP learning rule only on the impulses of the postsynaptic neurons, which reduces the number of 

updates and does not call for more storage space. The rule also adapts to the input signal frequency, 

eliminating the need to manually adjust hyperparameters. The study achieved good accuracy by 

training a solitary layer impulse neural network (SNN) to recognize handwritten digits. This suggests 

that the VDSP learning rule has potential for application in challenges involving the perception of 

spatial patterns. Future research will take into account more complex tasks and explore the scalability 

of VDSP in larger networks. As an example, the experiments in this paper show that the VDSP 

learning rule exhibits similar performance to the STDP learning rule in handling the handwritten digit 

recognition task, while being robust to the input’s temporal dynamics signals and eliminating the 

requirement that adjust the hyper-parameters of the input signals for distinct frequency ranges. This 

suggests that the VDSP learning rule has potential applications in dealing with real-world problems. 

Supervised Learning Based on Synaptic Plasticity [8]: supervised learning according to synaptic 

plasticity refers to the neural network that automatically adjusts the weights of the synapses according 

to the error in between the input data and the intended result data to realize the classification and 

regression of the data and so on. Typical algorithms of supervised learning based on synaptic plasticity 

include back propagation, perceptron, support vector machine, etc., which can realize 

self-optimization and self-learning of neural networks. Supervised learning based on synaptic 

plasticity is a learning method for pulsatile neural networks (SNNs), where synaptic plasticity means 

the strength of the connection between synapses can be adjusted according to the temporal correlation 

between neurons. In this paper, researchers used a long-term memory SRM (spike response model) to 

implement under supervision based on synaptic plasticity. They conducted experiments on four UCI 
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datasets, including the PIMA, Iris, WBC, and Liver datasets. The researchers conducted their 

experiments by normalizing and converting the feature values to frequency intervals and then 

encoding each frequency value as a pulse training using a linear coding approach. They compared 

their proposed algorithm with other algorithms, including SpikeProp, SWAT, and multi-ReSuMe. The 

experimental results showed that their method achieved higher classification accuracy on these 

datasets. For example, their method achieves an average classification accuracy of 69.5% per sample 

on the PIMA dataset, compared to 67.7% and 66.7% for the other methods, respectively. On the WBC 

dataset, their method’s average per-sample classification accuracy was 68.1%, while the classification 

accuracies of the other methods were 62.4% and 61.7%, respectively. These results indicate that the 

supervised learning method based on synaptic plasticity achieves good classification performance on 

these datasets. 

Reinforcement Learning Based on Synaptic Plasticity [9]: Learning reinforcement through 

synaptic plasticity refers to a neural network that automatically adjusts the weights of the synapses 

according to the rewards or penalties between the input data and the environmental feedback to realize 

decision making and control of the data, among others. Typical algorithms for reinforcement learning 

based on synaptic plasticity are Q-learning, policy gradient, actor-critic, etc., which can realize 

self-exploration and self-adaptation of neural networks. Reinforcement learning based on synaptic 

plasticity is an approach that mimics how the biological brain learns by adjusting synaptic weights to 

maximize the expected reward. This paper introduces a synaptic plasticity-based reinforcement 

learning rule called Synaptic Plasticity with Online Reinforcement Learning (SPORE). The rule 

modulates synaptic updates via global reward signals to maximize the expected reward. Specifically, 

SPORE does not converge to local maxima of synaptic parameter vectors, but continuously samples 

from solutions that are likely to yield high rewards. In addition, SPORE uses temperature parameters 

to modulate the distribution of solutions so that they can be highly explored or highly utilized. 

Examples in this paper include the use of SPORE to learn two visuomotor tasks: reaching and lane 

following. It is shown that SPORE is able to learn and perform these tasks in a simulated environment. 

In addition, the study notes that regulating the learning rate and controlling the temperature of the 

stochastic processes that regulate the dynamics of synaptic learning are critical to improving 

performance. Finally, the study also discusses how deep reinforcement learning techniques can be 

drawn upon to enhance SPORE’s functionality in visuomotor tasks. 

4.  Applications and perspectives of synaptic device-based neuromorphic computing in artificial 

intelligence 

The application and outlook of synaptic neuromorphic computing in artificial intelligence through 

devices is the focus and difficulty of this paper, which involves several fields and aspects, such as 

image processing, computer vision, pattern recognition, machine learning, and natural language 

processing, speech recognition, natural language generation, and so on. The main contents of 

Applications and Perspectives of Neuromorphic Computing in Artificial Intelligence based on 

Synaptic Devices are: 

The application cases and effects of synaptic device-based neuromorphic computing in artificial 

intelligence are the core part of this paper, which can demonstrate the advantages and potentials of 

synaptic device-based neuromorphic computing, as well as its roles and values in solving real-world 

problems and improving performance and efficiency [6]. In this paper, we will select some typical 

application areas and cases, such as image processing, natural language processing, etc., introduce the 

application methods and processes of synaptic device-based neuromorphic computing, as well as its 

comparison and analysis with the traditional artificial intelligence methods, and demonstrate the 

application effects and advantages of synaptic device-based neuromorphic computing, such as image 

denoising, image segmentation, image recognition, text classification, text summarization, text 

generation, etc. 
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5.  Conclusion 

The problems and challenges in the application of synaptic device-based neuromorphic computing in 

artificial intelligence is a key part of this paper, which can reveal the limitations and shortcomings of 

synaptic device-based neuromorphic computing, as well as its difficulties and obstacles in realizing a 

high level of artificial intelligence. In this paper, we will analyze the application problems and 

challenges of synaptic device-based neuromorphic computing in artificial intelligence from both 

technical and theoretical aspects, such as preparation, testing, modelling and integration of synaptic 

devices, architecture, programming and optimization of neuromorphic computing systems, and 

scalability, reliability and interpretability of neuromorphic computing. 

The current status and future trends of synaptic device-based neuromorphic computing in AI is the 

concluding part of this paper, which summarizes and evaluates the achievements and contributions of 

synaptic device-based neuromorphic computing in AI, as well as its potential and prospects in 

advancing the AI development and innovation, as well as its potential and prospects. In this paper, we 

intend to summarize the state of affairs now and in the future trends of synaptic device-based 

neuromorphic computing in AI from both academic and industrial perspectives, such as the research 

progress and hotspots of neuromorphic computing based on synaptic devices, the market demand and 

application scenarios of neuralmorphic computing based on synaptic devices, and the direction of 

synaptic device-based neuromorphic computing development and challenges. 
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