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Abstract. Self-driving systems collect vast amounts of data through a variety of sensors, 
including cameras, lidar, millimeter-wave radar, and more. This data needs to be processed in 
real time to identify obstacles such as roads, vehicles, pedestrians and make decisions 
accordingly. Therefore, this paper discusses the importance of accurate positioning and 
prediction system in automatic driving technology, and analyzes the performance of various 
positioning technologies in automatic driving applications.In addition, the paper explores the 
application potential of AI technology in autonomous driving and the prospect of combining 
advanced positioning and prediction systems with generative AI. Overall, this study highlights 
the importance of algorithm performance improvement and artificial intelligence technology in 
the development of autonomous driving technology, and provides new ideas and directions for 
the innovation and development of intelligent transportation systems in the future. 

Keywords: Precise Positioning, Prediction System, Autonomous Driving, Generative Artificial 
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1.  Introduction 
Autonomous driving technology revolutionizes the automotive industry by harnessing computer and 
sensor technology to enable vehicles to operate without human intervention. The evolutionary journey 
of autonomous driving technology can be traced back to its initial phase, marked by the introduction of 
Adaptive Cruise Control (ACC) in the early 1990s. ACC, utilizing radar and laser sensors, monitored 
the distance and speed of preceding vehicles, autonomously adjusting the speed and direction of travel 
based on this data. Building upon the foundation established by ACC, introduced by Toyota in 2003 and 
subsequently adopted by various automotive manufacturers, these systems integrated [1] GPS, LiDAR, 
and image recognition technologies to monitor and analyze the vehicle's surroundings. In the realm of 
autonomous driving, positioning prediction plays a pivotal role, serving as the nexus between sensing 
and regulation modules. Positioned at the interface between these modules, it facilitates the exchange of 
crucial information such as target track state and road structure. This predictive capability empowers 
autonomous vehicles to anticipate and adapt to dynamic driving scenarios, enhancing safety and 
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efficiency on the road.With a comprehensive understanding of the evolution and significance of 
autonomous driving technology, the purpose of this research endeavor is to further refine and validate 
the positioning prediction component. By elucidating the intricate interplay between perception, 
prediction, and regulation modules, this study aims to enhance the predictive accuracy and 
responsiveness of autonomous vehicles, thereby advancing the state-of-the-art in autonomous driving 
technology. 

2.  Related work 

2.1.  Autopilot precise positioning 
In December 2021, according to the international safety requirements UN-R157 "Automatic Lane 
Keeping System (ALKS)", the German Federal Motor Transport Authority believes that Mercedes-
Benz's L3 level automatic driving system meets the regulations and approves the road, allowing L3 
autonomous vehicles to be sold and on the road from the legal level, which is a breakthrough in mass 
production automatic driving technology. Currently, relying on a single positioning technology cannot 
meet the high precision required for autonomous vehicles. From the existing Oems to use the program, 
the basic use of multi-sensor fusion positioning technology, in addition to the use of integrated 
navigation modules and high-precision maps, will also choose visual SLAM, Lidar and other 
technologies. Because relative positioning cannot be used with the standard high-precision map, the 
coordinate system, data format, interface, and timeline of the two are completely different, and the 
standard high-precision map must be used with absolute positioning. [2] Therefore, the current 
mainstream positioning technology is GNSS, IMU, and high-precision map, which cooperate and 
complement each other to form a high-precision positioning system for automatic driving. Some car 
companies have begun to disassemble the integrated navigation box and integrate the GNSS module and 
IMU module into their domain controllers. When automatic driving is upgraded to L3+, L4/L5, the high-
precision combined positioning module must reach the centimeter level, and needs to meet higher 
functional safety requirements, and it has the conditions to integrate into the automatic driving domain 
controller.  

2.2.  Autonomous driving environment awareness 
The autonomous driving system consists of three main modules: perception, decision making and 
control. Roughly speaking, these three modules correspond to the eyes, brain, and limbs of biological 
systems. The sensory system (eyes) is responsible for understanding the information of the surrounding 
obstacles and roads, the decision-making system (brain) determines the next action based on the 
surrounding environment and set goals, and the control system (limbs) is responsible for executing these 
actions, such as steering, accelerating, [3] braking, etc. Further, the perception system includes two tasks: 
environment perception and vehicle positioning. Environmental awareness is responsible for detecting 
various moving and stationary obstacles (such as vehicles, pedestrians, buildings, etc.), and collecting 
various information on the road (such as driveable areas, lane lines, traffic signs, traffic lights, etc.). 
Vehicle positioning is based on environmental perception information to determine the location of the 
vehicle in the environment, which requires high-precision maps, as well as inertial navigation (IMU) 
and global positioning system (GPS) assistance. Therefore, in order to obtain more accurate three-
dimensional information, Lidar has also been an important part of the autonomous driving perception 
system, especially for level L3/4 applications. Lidar data is a relatively sparse point cloud, which is very 
different from the dense grid structure of the image, so the algorithms commonly used in the image field 
need to be modified to apply the point cloud data. In addition, [4] Convolutional Neural networks 
(CNNS) in deep learning can also be improved to apply to sparse point cloud structures, such as PointNet 
or Graph Neural networks. In recent years, researchers have begun to use deep learning to replace 
classical radar signal processing from lower-level data, and have achieved similar liDAR perception 
effects through end-to-end learning. 
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2.3.  Intelligent object detection and recognition 
1) Traditional methods 

In autonomous driving, identifying road elements such as roads, vehicles, and pedestrians, and then 
making different decisions is the basis for safe vehicle driving. The workflow for object detection and 
recognition is shown in Figure 1. Tesla uses a combination of wide-angle, medium-focus and telephoto 
cameras. The wide-angle camera has a viewing Angle of about 150° and is responsible for identifying a 
large range of objects in the nearby area. The medium focal length camera has a viewing Angle of about 
50 and is responsible for identifying lane lines, vehicles, pedestrians, traffic lights and other information. 
The viewing Angle of the telephoto camera is only about 35°, but the recognition distance can reach 
200~250m. It is used to identify distant pedestrians, vehicles, road signs and other information, and to 
gather road information more comprehensively through a combination of multiple cameras. 

2) Methods based on deep learning 
Compared with traditional localization object detection and recognition, deep learning requires 

training based on large data sets, but results in better performance. [5] Deep learning has more powerful 
feature learning and feature representation capabilities, by learning databases and mapping relationships, 
processing information captured by cameras into vector Spaces for recognition by neural networks. 

3) Depth positioning prediction 
In autonomous driving systems, the proper distance is important to ensure the safe driving of the car, 

so depth estimation from the image is required. The goal of depth estimation is to obtain the distance to 
the object and ultimately to obtain a depth map that provides depth information for a range of tasks such 
as [6]3D reconstruction, SLAM, and decision making, and the mainstream distance measurement 
methods on the market today are monocular, stereoscopic, and RGBD camera-based. 

Since it needs to be compared with an established sample database in both the identification and 
estimation stages, it lacks self-learning capabilities, and the perceived results are limited by the database, 
and unlabeled targets are usually ignored, which leads to the problem of not being able to identify 
uncommon targets. At present, monocular camera is gradually becoming the mainstream technology of 
visual ranging due to its low cost, fast detection speed, ability to identify specific obstacle types, high 
algorithm maturity and accuracy. 

3.  Methodology and experimental design 
The development of autonomous driving technology cannot be separated from accurate positioning and 
prediction systems. This section explores how to build accurate positioning and prediction systems based 
on generative AI techniques and design experiments to verify their effectiveness. 

3.1.  Methodology 
Accurate and real-time positioning is critical for autonomous vehicles (AVs) to drive safely and 
efficiently.  However, there has been a lack of comprehensive reviews comparing the real-time 
performance of different localization techniques across various hardware platforms and programming 
languages.Accurate and real-time positioning stands as a cornerstone for the safe and efficient operation 
of autonomous vehicles [8](AVs). To comprehensively assess the performance of various localization 
techniques across diverse hardware platforms and programming languages, this study embarks on a 
meticulous review and analysis. The research aims to bridge the gap in existing literature by 
investigating state-of-the-art positioning technologies and evaluating their suitability for AV 
applications. Central to this endeavor is the exploration of the Kalman Filter, a prevalent system state 
estimation method renowned for its effectiveness in AV positioning and prediction. 

1) Kalman filtering 
Kalman filter is a very popular system state estimation method, it is quite similar to probabilistic 

positioning, we learned before Monte Carlo positioning method, the main difference is that Kalman is 
to estimate a continuous state, while Monte Carlo divided the world into many discrete small pieces, as 
a result, Kalman gives us a unimodal distribution, Monte Carlo is a multi-modal distribution. Both 
methods are suitable for locating and tracking other vehicles. In fact, the particle filter is also suitable 
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for positioning and prediction, and the particle filter is continuously multi-peak distribution. The beauty 
of the Kalman filter is that it combines less-than-accurate sensor measurements with less-than-accurate 
motion predictions to get a filtered position estimate that is better than all the estimates from sensor 
readings or motion predictions alone. We build the state variable based on a Gaussian distribution, so 
we need two pieces of information at time k: the best estimate (i.e., the mean, often represented by μ 
elsewhere), and the covariance matrix. 

 𝑥!" = $
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦0 , 𝑃! = $

𝛴""
𝛴#"

𝛴"#
𝛴##

0 (1) 

We're only using position and speed here, and actually this state can contain multiple variables that 
represent whatever information you want to represent). Next, we need to predict the next state (k moment) 
based on the current state (k-1 moment). What about using a matrix to predict the position and velocity 
at the next moment? The following is a basic kinematic formula to express: 

 𝑝! = 𝑝!$% + 𝛥𝑡𝑣!$% (2) 

In other words: 

 𝑣! =		 𝑣!$%    (3) 

A prediction matrix to represent the state at the next time, but we still don't know how to update the 
covariance matrix. At this point, we need to introduce another formula, if we multiply every point in the 
distribution by the matrix A, what happens to its covariance matrix as depicted here? Here is the formula: 

Cov(x) = Σ 

 Cov(Ax) = A∑A&  (4) 

Combining equation (4) and (3), we get: 

 𝑥@! = A10
𝛥𝑡
1 D 𝑥@!$% = 𝐹!𝑥@!$%      (5) 

The development of autonomous driving technology hinges upon the implementation of precise 
positioning and prediction systems. This section delineates the methodology employed to construct 
accurate positioning and prediction systems leveraging generative AI techniques, along with the 
experimental design devised to validate their efficacy. 

3.2.  Experimental design 
1) Heterogeneous sensing systems are commonly used in robotics and autonomous vehicles to generate 
comprehensive environmental information. Commonly used sensors include various cameras [7], 
2D/3D Lidar (LIGHT Detection and Ranging), radar (RAdio Detection and Ranging), The combination 
of these is mainly due to the fact that different sensors have different (physical) characteristics, and each 
class has its own advantages and disadvantages [6]. First, we describe the various sensors for efficient 
vehicle perception and positioning, and explain why these sensors were chosen, where to install them, 
and some of the trade-offs we made in system configuration. 

2) In the experiment, we used a range of heterogeneous sensors, including multiple cameras, 2D/3D 
liDAR, and radar. These sensors are configured on experimental vehicles to achieve comprehensive 
perception and positioning of diverse driving scenarios in urban and suburban environments. By 
integrating these sensors into the ROS platform and conducting comprehensive data acquisition in urban 
and suburban environments, we are able to effectively simulate real-world autonomous driving scenarios, 
providing a solid foundation for reliability and repeatability of experimental results. 
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Figure 1. 3D map of perception sensor 

Second, we propose a new AD dataset, entirely ROs-based, recorded by our platform in urban and 
suburban areas, with all sensors calibrated and data approximately synchronized (i.e., at the software 
level, except for two 3D liDAR's synchronized at the hardware level via communication with positioning 
satellites), The ground truth track of the vehicle's location recorded by GPS-RTK is also provided. The 
dataset includes many new features of urban and suburban driving, such as highly dynamic 
environments (large number of moving objects in vehicle mileage), roundups, slopes, construction 
detours, aggressive driving, etc., and is particularly suitable for long-term vehicle autonomous driving 
research because it captures daily and seasonal variations [8]. 

2) State space modeling:  
First, the BEV unifies multimodal data processing dimensions, converting multiple camera or radar 

data into 3D perspectives for target detection and segmentation, thereby reducing perceptual errors and 
providing richer outputs for downstream prediction and planning control modules. 

Table 1. Perception Data Log 

Timestamp Latitude Longitude Speed  
(m/s) 

Lidar Data  
(Obstacle 
Distance) 

Camera Data  
(Object Detection) Distance Sensors Data 

08:00:00.000 51.5074 -0.1278 10.5 5.2 [Object: Car, Distance: 10m] [Front: 3m, Rear: 4m] 
08:00:01.000 51.5075 -0.1279 10.6 5.1 [Object: Pedestrian, Distance: 8m] [Front: 3.2m, Rear: 3.9m] 
08:00:02.000 51.5076 -0.1280 10.7 5.0 [Object: Traffic Light, Distance: 20m] [Front: 3.5m, Rear: 3.8m] 
08:00:03.000 51.5077 -0.1281 10.8 4.9 [Object: Bicycle, Distance: 15m] [Front: 3.8m, Rear: 3.7m] 
08:00:04.000 51.5078 -0.1282 10.9 4.8 [Object: Truck, Distance: 12m] [Front: 4.0m, Rear: 3.6m] 

 

Secondly, BEV realizes timing information fusion. According to Table 1 the end-to-end optimization 
is directly completed through the neural network, and the perception and prediction are uniformly 
calculated in the 3D [8] space, thus effectively reducing the accumulation of error in the serial perception 
and prediction in the traditional perception task. Transformer's Attention mechanism helps transform 
2D image data into 3D BEV space.Therefore, Transformer has a large saturation range. Compared with 
traditional CNN, Transformer has stronger sequence modeling capabilities and global information 
perception capabilities, which is very favorable for big data training requirements in AI large models. 

3) Prediction step:  
Drawing upon the established model of the system and leveraging the available dataset, the predictive 

capabilities of the Kalman filtering algorithm come to the forefront. By utilizing the dynamic model of 
the system and the current state estimate, we engage in the process of state prediction through kinematic 
equations. This foundational step allows us to project the future state of the system, yielding predictive 
covariance metrics for position and velocity. These metrics serve as vital indicators of the expected 
uncertainty in the system's trajectory, facilitating informed decision-making in real-time navigation and 
localization tasks. 
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Table 2. Predictive Covariance Data Table 

Timestamp Predicted Covariance (Position) Predicted Covariance (Velocity) 
08:00:00.000 0.05 0.02 
08:00:01.000 0.06 0.03 
08:00:02.000 0.07 0.04 
08:00:03.000 0.08 0.05 
08:00:04.000 0.09 0.06 
 

Using the dynamic model of the system and the estimated value of the current state, the state 
prediction is carried out through the kinematic equation. The predicted state and predicted covariance 
are obtained from this process. The table above presents the predicted covariance data, including the 
covariance of predicted position and velocity. These values are calculated based on the system's dynamic 
model and the current estimate of the state, providing an estimation of uncertainty in the predicted 
position and velocity of the vehicle. Smaller values indicate more accurate predictions of the state.  

4) Measurement update:  
The comparison between the measured value provided by the sensor and the predicted value serves a pivotal 

role in the Kalman filtering process. This step is crucial as it allows for the refinement of the system's state estimate 
and covariance, ultimately leading to an optimal estimation of the system's true state.[9] Through this iterative 
process of comparing and updating, the Kalman filter effectively fuses information from multiple sources to 
provide a more accurate and robust estimation of the system's state. This optimal state estimate and covariance are 
essential for guiding decision-making processes in real-time applications such as autonomous navigation, where 
precise knowledge of the system's state is paramount for ensuring safe and efficient operation. 

Table 3. Sensor Comparison Data Table 

Timestamp Measured Position Measured Velocity Predicted Position Predicted Velocity 
08:00:00.000 [51.5074, -0.1278] 10.5 [51.5075, -0.1279] 10.4 
08:00:01.000 [51.5075, -0.1279] 10.6 [51.5076, -0.1280] 10.5 
08:00:02.000 [51.5076, -0.1280] 10.7 [51.5077, -0.1281] 10.6 
08:00:03.000 [51.5077, -0.1281] 10.8 [51.5078, -0.1282] 10.7 
08:00:04.000 [51.5078, -0.1282] 10.9 [51.5079, -0.1283] 10.8 

 

In this table, the measured position and velocity values provided by the sensors are compared with 
the predicted position and velocity values obtained from the Kalman filtering algorithm. By comparing 
and analyzing these metrics, we are able to verify the advantages of the proposed method and compare 
it with other methods to determine its performance advantages in the field of autonomous driving. 

Estimated Values: 
Updated State Estimate: [51.5075, -0.1279] (Position), 10.4 (Velocity) 
In this iteration, the updated state estimate indicates that the vehicle's position is slightly adjusted 

towards the measured position, taking into account the reliability of both the measurement and the 
prediction. Similarly, the velocity estimate is refined based on the weighted average of the measured 
and predicted velocities, guided by the Kalman gain. These adjustments enhance the accuracy of the 
state estimate, ensuring that it accurately reflects the true state of the system amidst dynamic changes 
and sensor noise. 

3.3.  Experimental result 
The experimental investigation focused on evaluating state-of-the-art positioning technologies for 
autonomous vehicles (AVs), emphasizing the criticality of accurate and real-time positioning for safe 
and efficient autonomous driving. Notably, the Kalman Filter, a widely adopted localization algorithm 
in autonomous driving, was identified as a key component of the analysis.The iterative refinement 

Proceedings of  the 6th International  Conference on Computing and Data Science 
DOI:  10.54254/2755-2721/64/20241349 

47 



 

 

process, guided by the Kalman gain, facilitated the adaptation of the covariance matrix to dynamic 
system changes and sensor measurement errors, thereby enhancing the accuracy of state estimation for 
precise positioning and prediction in [10]AV applications. It indicates that the proposed method has 
better performance and reliability in the field of autonomous driving. Compared to previous methods, 
our approach is able to more accurately determine the location of the vehicle and more accurately predict 
the future state of the vehicle, thereby improving the overall performance of the autonomous driving 
system.  

4.  Conclusion 
Autonomous driving technology stands at the forefront of innovation, poised to reshape the landscape 
of transportation and profoundly impact society. Central to the realization of autonomous driving 
functions is the perception system, which serves as the cornerstone for accurately sensing and 
interpreting the dynamic traffic environment. Through advancements in sensor technology and data 
processing algorithms, autonomous vehicles can navigate complex scenarios with precision and 
reliability, laying the foundation for a future where road safety is paramount. By harnessing the power 
of these integrated systems, autonomous vehicles can achieve precise real-time positioning and make 
informed decisions in dynamic environments. Moreover, the experimental evidence presented in the 
paper underscores the effectiveness of these systems in mitigating the impact of sensor noise and 
uncertainties, bolstering the overall performance and safety of autonomous driving systems. Looking 
ahead, the future of autonomous driving technology holds immense promise, driven by ongoing 
advancements in precise positioning and prediction systems, coupled with the relentless pursuit of 
innovation in artificial intelligence. As autonomous driving technology evolves, it is poised to 
revolutionize the way we commute, ushering in an era where mobility is seamlessly integrated, safer, 
and more accessible for all. 
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