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Abstract. Pneumonia is a common respiratory disease characterized by inflammation in the 

lungs, emphasizing the importance of accurate diagnosis and timely treatment. Despite some 

progress in medical image segmentation, overfitting and low efficiency have been observed in 

practical applications. This paper aims to leverage image data augmentation methods to mitigate 

overfitting and achieve lightweight and highly accurate automatic detection of lung infections in 

X-ray images. We trained three models, namely VGG16, MobileNetV2, and InceptionV3, using 

both augmented and unaugmented image datasets. Comparative results demonstrate that the 

augmented VGG16 model (VGG16-Augmentation) achieves an average accuracy of 96.8%. 

While the accuracy of MobileNetV2-Augmentation is slightly lower than that of VGG16-

Augmentation, it still achieves an average prediction accuracy of 94.2% and the number of model 

parameters is only 1/9 of VGG16-augmentation. This is particularly beneficial for rapid 

screening of pneumonia patients and more efficient real-time detection scenarios. Through this 

study, we showcase the potential application of image data augmentation methods in pneumonia 

detection and provide performance comparisons among different models. These findings offer 

valuable insights for the rapid diagnosis and screening of pneumonia patients and provide useful 

guidance for future research and the implementation of efficient real-time monitoring of lung 

conditions in practical healthcare settings. 
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1.  Introduction 

The lung is the main organ of the respiratory system, and X-ray examination provides precise 

information about lung shadows, lesion morphology, and other properties. With the outbreak of Covid-

19, there has been an increasing focus on lung health, making lung health monitoring more prevalent. 

Traditional image analysis methods use manual segmentation and statistical classification to identify 

lung infections, but these methods are inefficient. In recent years, the development of convolutional 

neural networks (CNNs) has significantly improved the ability to classify and detect objects in image 

analysis. 

However, in the pursuit of accuracy, many studies have overlooked the lightweight aspect of models. 

In previous research, some models have reached depths of hundreds of layers or more, resulting in 
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slower model execution, longer monitoring times per instance, reduced monitoring efficiency, and 

increased monitoring costs. These factors limit the practical application of these models in monitoring 

scenarios. This study aims to investigate and compare the efficiency and accuracy of three CNN models, 

namely VGG16, MobileNetV2, and InceptionV3, in lung infection detection tasks. 

Considering the limited number of training samples in the original dataset, we employed geometric 

data augmentation techniques to expand the dataset and improve the training effectiveness. In this study, 

we selected VGG16, MobileNetV2, and InceptionV3, which are well-established CNN models in image 

classification, known for their excellent performance and reliability, for comparison. By evaluating the 

lightweight nature and accuracy of these models, we will be able to determine the most suitable model 

for lung infection detection tasks. 

This research holds significant importance in achieving lightweight models for lung infection 

detection. By reducing model complexity and parameter count, it becomes possible to lower the cost of 

medical devices and enhance the feasibility of deploying the models in practical applications, including 

remote healthcare scenarios. Furthermore, this study provides a foundation for further improvements 

and optimizations in lung infection detection technology, thereby enhancing the efficiency and accuracy 

of medical diagnosis and monitoring. 

2.  Related Work 

Data augmentation methods have been widely used in deep learning tasks, but they require manual 

design. For natural image datasets like CIFAR-10 and ImageNet, common methods include image 

translations and horizontal reflections [1]. In this study, we performed data augmentation operations 

such as translation, rotation, and scaling on the Chest X-Ray Images dataset. 

Deep learning has been extensively applied to classification problems. In the mentioned studies, the 

Vgg16 model was employed for facial expression recognition tasks in the education domain [2], while 

the MobileNetV2 model was used for fruit image classification [3]. Additionally, Qian compared the 

performance of models such as InceptionV3 and Vgg16 in galaxy morphology classification [4]. 

In the field of medical imaging, deep learning has shown remarkable capabilities for disease detection 

and classification tasks. Rahman et al. utilized AlexNet, ResNet18, DenseNet201, and SqueezeNet for 

the detection of three types of pneumonia (normal, bacterial pneumonia, and viral pneumonia) using a 

total of 5247 images. Among them, the DenseNet201 model achieved the best prediction accuracy of 

98% [5]. However, due to its depth of 201 layers, the DenseNet201 model has a large number of 

parameters, making it prone to overfitting. Furthermore, Kim et al. applied the EfficientNet V2-M deep 

learning model to the multiclass classification of chest X-ray images for various lung diseases, with a 

total of 10,000 images for normal, pneumonia, and pneumothorax. They achieved validation 

performance with an accuracy of 82.15%, sensitivity of 81.40%, and specificity of 91.65%. However, 

this model has a large number of parameters, reaching 53,155,512, requiring further model compression 

[6]. Ayan et al. compared the performance of Vgg16 and Xception models on the Chest X-Ray Images 

dataset, with the best recall rate and accuracy being 89.1% and 84.5%, respectively. The lower accuracy 

may be attributed to the small dataset size [7]. Apostolopoulos et al. demonstrated that MobileNetV2 

outperforms VGG19 in terms of specificity on a dataset of only 1427 X-ray images [8]. However, due 

to the small dataset size, overfitting is likely to occur, and further validation should be performed after 

data augmentation.  

These studies demonstrate the effectiveness of different deep learning models in medical image 

analysis tasks, including pneumonia detection and lung infection classification. However, further 

exploration of parameter compression techniques is still needed to improve the efficiency and 

practicality of these models in real-world applications, while also addressing the issue of overfitting in 

research. 
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3.  Dataset and Geometric Transformation-based Data Augmentation 

3.1.  Chest X-Ray Images Dataset 

Our study utilized the publicly available Chest X-Ray Pneumonia database sourced from Kaggle, which 

originated from Mendeley Data [9]. This database consists of three folders: training, testing, and 

validation sets, each containing subfolders representing two classes (Pneumonia/Normal). A total of 

5,856 X-ray images in JPEG format were included in the dataset, distributed across the Pneumonia and 

Normal categories. The training set comprised 5,216 samples, with Pneumonia samples accounting for 

74.29% of the total; the testing set consisted of 634 samples, with Pneumonia samples representing 

62.50% of the total; and the validation set contained 16 samples, with Pneumonia samples comprising 

50% of the total. Pneumonia samples could be attributed to viral infection, bacterial infection, or mixed 

infection. Figure 1 illustrates six randomly selected image samples from different categories in the 

dataset, wherein images (a), (b), and (c) depict healthy lung structures, while images (d), (e), and (f) 

exhibit typical radiographic features of pneumonia, such as infiltrations and shadows. By conducting in-

depth examination and analysis of these images, exploring the morphological characteristics of 

pneumonia lesions in comparison to normal lung structures, we can gain further insights into the diverse 

manifestations of pneumonia, enhance early detection rates, alleviate the burden on the healthcare 

system, and improve treatment outcomes for patients. 

 

Figure 1. Original data in the dataset: Images of normal (a, b, c) and pneumonia (d, e, f) cases 

3.2.  Data Preprocessing and Augmentation 

Each image must undergo preprocessing based on the specific deep neural network being used, 

involving resizing and normalization. Different neural networks require images of different sizes based 

on their architecture. MobileNetV2 requires images of size 224 × 224, while InceptionV3 and VGG16 

require images of size 229 × 229. 

Training a neural network requires a large amount of data. In real-world scenarios, doctors can use 

different operations such as rotation on various images. However, the original data is not robust enough 

as they have similar rotations, brightness, etc., which can deteriorate the generalization capability of the 

neural network. Data augmentation effectively utilizes existing data to enhance the neural network's 

ability to handle complex images and reduces the occurrence of model overfitting. In this study, the 

Chest X-Ray Healthy Image dataset was subjected to various augmentation techniques using the 

ImageDataGenerator in TensorFlow. These operations diversify the images in terms of position, 

orientation, brightness, and other aspects, providing a more diverse training dataset, thus improving the 

performance and robustness of the model. The following augmentation operations were performed on 

the Chest X-Ray Healthy Image dataset: 1) Image rotation: Randomly rotate the image by 0-10 degrees, 

providing spatial variation in position and orientation. 2) Translation: Perform horizontal and vertical 

shifts on the image, with shift distances set to 10% of the image size. This introduces minor variations 

in position, increasing data diversity. 3) Shearing: Apply shearing transformation to the image, shearing 

it counterclockwise by 0.5. This introduces distortion in the image's orientation. 4) Scaling: 
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Simultaneously scale the length and width of the image by the same factor, altering the image's size. 5) 

Brightness adjustment: Randomly modify the image's brightness during the data augmentation process. 

This simulates changes in lighting conditions and increases data diversity. 

 

 

Figure 2. Comparison of Data Augmentation: Original images before augmentation (Top 1) and 

augmented images after data augmentation (Bottom 4). 

As illustrated in Figure 2, data augmentation enhances the model's generalization capability when 

trained on the dataset, while also mitigating overfitting on small samples, thereby facilitating the 

comparison of performance metrics for subsequent models. 

4.  VGG16, MobileNetV2, and InceptionV3 

4.1.  Three Models 

The InceptionV3 model is the third-generation model in Google's Inception series, which introduces 

several innovative ideas in neural network design [10]. In comparison to other neural network models, 

the most notable characteristic of the Inception network is the expansion of convolutional operations 

between network layers. It utilizes convolutional kernels of different sizes to obtain receptive fields of 

varying scales and combines features from different scales through concatenation.  

The core of InceptionV3 is represented as follows: Here, X represents the input feature map, Conv 

denotes convolutional operation, MaxPooling represents max pooling operation, and Concat indicates 

feature concatenation operation. By employing multiple convolutional kernels and MaxPooling at 

different scales, the InceptionV3 model can simultaneously capture features at various scales and 

concatenate them to enrich the model's representation of image features. The formula is expressed as 

follows: 

 𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑉3(𝑋) = 𝐶𝑜𝑛𝑐𝑎𝑡([𝐶𝑜𝑛𝑣(𝑋), 𝐶𝑜𝑛𝑣(𝑋), 𝐶𝑜𝑛𝑣(𝑋), 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑋)]) (1) 

VGG (Visual Geometry Group), proposed by the Visual Geometry Group at Oxford [11], has made 

a significant contribution by demonstrating that increasing the depth of a network can improve its 

performance to a certain extent. The VGG network has two variations: VGG16 and VGG19, with the 

main difference lying in their depths. In this study, we selected the VGG16 model, which is suitable for 

the Kaggle Chest X-Ray Healthy Image dataset. 

The MobileNetV2 network is an improved version proposed by the Google team in 2018. Compared 

to the MobileNetV1 network, MobileNetV2 exhibits improvements in both accuracy and model size. It 
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adopts a structure called "Inverted Residuals with Linear Bottlenecks" [12], which utilizes depthwise 

separable convolutions and linear bottlenecks to achieve the design of a lightweight model. 

The architecture of the MobileNetV2 model is represented as follows: Here, X represents the input 

feature map, Conv denotes the convolutional operation, DepthwiseConv represents the depthwise 

separable convolution operation, and Bottleneck represents the linear bottleneck connection. 

MobileNetV2 reduces the computational complexity through depthwise separable convolutions and 

ensures rich feature representation through linear bottleneck connections. This design allows 

MobileNetV2 to maintain high accuracy while being lightweight, making it suitable for deployment in 

resource-constrained environments. The formula is expressed as follows: 

 𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉2(𝑋) = 𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 (𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑣(𝑋))) (2) 

Among the three models mentioned above, VGG16 adopts the classic structure of stacked 

convolutional layers and fully connected layers. MobileNetV2 reduces the number of parameters and 

computational complexity through depthwise separable convolutions. InceptionV3 introduces Inception 

modules that are stacked repeatedly to form a larger network, enhancing feature extraction capabilities. 

In this study, we utilized InceptionV3, VGG16, MobileNetV2 [10, 11, 12] as the base models to evaluate 

their performance on the classification task using the Chest X-Ray Images (Pneumonia) dataset. 

4.2.  Training Configuration 

The code in the article is written in Python 3.11 and Tensorflow 2.15. We performed classification tasks 

on both the training and testing datasets. Take the operations on MobileNetV2 as an example which is 

shown in Tables 1. For InceptionV3, we input the original data and augmented data (images are all 

229*229*3) into the InceptionV3 model, resulting in an output of 5*5*2048. After applying dropout, 

flattening, full connection operation, another dropout, and two additional full connection operations, 

each image is processed into a 1*256 tensor. For VGG16, the operations are similar to InceptionV3. For 

MobileNetV2, we incorporated a 2D global average pooling operation before the first dropout, which 

served as a structural regularization to prevent overfitting for the entire network. 

Table 1. MobileNetV2 

Layer Out Shape Param 

input_layer (None,224, 224,3) 0 

augmentation_layer (None, None, 3) 0 

mobilenetv2 (Functional) (None, 7, 7, 1280) 2257984 

global_average_pooling2d (None, 1280) 0 

 dropout_1 (Dropout) (None, 1280) 0 

 flatten (Flatten)  (None, 1280) 0 

 dense_1 (Dense)   (None, 512) 655872 

 dropout_2 (Dropout) (None, 512) 0 

dense_2 (Dense) (None, 256) 131328 

dense_3 (Dense) (None, 1) 257 

5.  Results 

5.1.  Evaluation Metrics and Evaluation Methods 

After the completion of training, all models were tested on the testing dataset. The performance of each 

model was evaluated using metrics such as accuracy, recall, precision, F1-Score, and the area under the 

ROC curve (AUC). All models showed convergence of the loss function during training, as exemplified 

by the InceptionV3 model without data augmentation in Figure 3. 
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Figure 3. Training Progress of InceptionV3 

Next, we will discuss the performance metrics used in the paper. As shown in Figure 4, there are 6 

confusion matrixes, which are in standardized format for evaluating image classification accuracy. The 

first row represents the confusion matrix without data augmentation, while the second row represents 

the confusion matrix with data augmentation. It can be observed that the diagonal elements of the 

confusion matrix with data augmentation have relatively darker colors, indicating a higher classification 

accuracy of the models with data augmentation. 

 

Figure 4. From left to right: InceptionV3, VGG16, MobileNetV2 models 

5.2.  Model Comparison and Analysis 

Table 2 below presents the parameter usage and performance scores of each model. We compared 

InceptionV3, VGG16, and MobileNetV2 in terms of F1-Score, average precision, average accuracy, and 

the area under the ROC curve before and after data augmentation. The results demonstrate that these 

metrics have improved after data augmentation, highlighting the superiority of data augmentation in 

enhancing model training accuracy. Specifically, the VGG16 - Augmentation model achieved the 

highest average accuracy of 96.8%. The MobileNetV2 model, after data augmentation, also reached an 

average accuracy of 94.2%. It is noteworthy that the MobileNetV2 model has the fewest parameters, 

only 1/9 of the parameters of the VGG16 - Augmentation model, indicating its higher model lightweight 

performance. 

Overall, through data augmentation, models such as InceptionV3, VGG16, and MobileNetV2 

showed improvements in F1-Score, average precision, average accuracy, and the area under the ROC 

curve. The VGG16 - Augmentation model achieved the highest average accuracy, while the 

MobileNetV2 - Augmentation model demonstrated relatively high average accuracy with the smallest 
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parameter count, highlighting its advantage in lightweight modeling. These results further validate the 

effectiveness and applicability of data augmentation in enhancing model accuracy. 

Table 2. Performance Comparison of the Three Models Before (After) Augmentation 

Model Param F1 - Score ROC - AUC Accuracy Precision 

InceptionV3 48,149,281 0.6957 0.5625 0.908725 0.919975 

VGG16 27,691,841 0.6957 0.5625 0.968283 0.979183 

MobileNetV2 3,045,441 0.7619 0.6875 0.942580 0.961615 

InceptionV3 with 

augmentation 
48,149,281 0.9412 0.9375 0.838780 0.834680 

VGG16 with 

augmentation 
27,691,841 0.8000 0.7500 0.936675 0.959550 

MobileNetV2 with 

augmentation 
3,045,441 0.8000 0.7500 0.913900 0.944314 

6.  Conclusions 

This study compared the results of three models and found that VGG16 - Augmentation achieved the 

highest accuracy in the task of detecting lung infections (96.8%). However, in real-time monitoring 

scenarios where we need to monitor a large amount of healthy lung data, the parameter size of VGG16 

- Augmentation would be excessively large, which is not conducive to efficient monitoring. On the other 

hand, MobileNetV2 - Augmentation, although having a moderate accuracy performance (94.2%), it only 

has 1/9 of the parameters of the VGG16 - Augmentation model, making it potentially more practical in 

real-time monitoring scenarios. 

Nevertheless, it is acknowledged that there is room for improvement in our work. Firstly, in terms of 

data volume, the chest X-ray image dataset does not cover all possible scenarios. Therefore, larger-scale 

datasets are needed to further validate our models. Secondly, exploring higher-performing network 

architectures or more powerful data augmentation techniques is necessary to improve the classification 

performance of the models in terms of accuracy. Additionally, combining predictions from multiple 

models through ensemble learning methods can further enhance classification accuracy. Thirdly, to 

validate the robustness of the models, training and testing the MobileNetV2 model on different datasets 

can be conducted to assess the reliability and stability of the model under different data distributions. 

Fourthly, while our models have adopted lightweight architectures such as MobileNetV2, further 

optimization of model size and computational complexity can be pursued to meet the demands of real-

time monitoring in clinical or remote healthcare settings. 

In conclusion, although we have achieved certain results, there is still room for further improvement 

in terms of data validation, accuracy, lightweightness, and robustness. Validation of the models can be 

done by utilizing larger-scale datasets and training/testing on different datasets, while deeper research 

in model design and optimization can enhance the application value of our proposed image classification 

techniques in clinical practice. 
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