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Abstract. Proven to be useful in quantitative analysis of mRNA, scRNA-seq measures the indi-

vidual gene expression profile and helps with rare cell population identification. Successful 

scRNA-seq analysis would be useful to boost knowledge of cancer cells and tumorigenesis, thus 

improving the ability to identify biomarkers and detect individuals’ disease susceptibility. This 

work conducted dimensionality reduction using naive principal component analysis. Then, sev-

eral classification algorithms, including support vector machine, random forest, boosting, and 

neural networks, were examined with best hyperparameters determined by grid search. With the 

comparison of data dimensionality N=83 and N=127, each method generated the prediction ac-

curacy of the dataset, with the support vector machine achieving the highest testing accuracy of 

53.52%. The relatively high prediction accuracy enables better characterization of single gene 

expression profiles due to support vector machine’s ability to regularize high-dimensional data. 

Deeper architectures and usage of Bayesian optimization may further encourage efficient analy-

sis of larger datasets with better classification accuracy. 

Keywords: scRNA-seq, Dimensionality Reduction, Neural Network, Support-vector Machine, 

Ensemble Learning 

1.  Introduction 

Single cell RNA sequencing (scRNA-Seq) has been developed in recent years, marking great maturation 

of single-cell transcriptomics. Proven to be useful in detection and quantitative analysis of mRNA, 

scRNA-seq measures the individual gene expression profile and helps with rare cell population identi-

fication, for example, the identification of a malignant tumor cell [1]. scRNA-seq is being used in tracing 

heterogeneous cellular states to find cell linkage and possible developmental relationships in cell differ-

entiation [2]. Another application of scRNA-seq is the ability to recognize fundamental characteristics 

of gene expression profile, thus studying gene-regulatory networks that imply similarities and heteroge-

neity between cells [3]. 

ScRNA-seq boosts the development of bioinformatics data analysis. After the first scRNA-seq 

method was developed [4], further refinement regarding scRNA-seq quality control [5], scRNA-seq data 
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normalization [6], imputation algorithm of scRNA seq data [7] and techniques of dimensionality reduc-

tion were proven useful when analyzing scRNA-seq data. The successful analysis of scRNA-seq data 

helps with accurate cell type identification, characterization of hidden cell population, and identification 

of possible malignant cells that affect individuals’ disease susceptibility. As cancer is the most hetero-

geneous of all diseases, scRNA-seq analysis provides a way to dissect human tumor tissue at single-cell 

resolution and determine cell composition [8], thus providing effective tumor diagnosis. 

Some previous studies have developed architectures that lead to successful analysis of scRNA-seq 

data and encouraged better classification of cells. Lin, in the paper “Using neural networks for reducing 

the dimensions of single-cell RNA-Seq data” [9], chose prior biological data, like protein-protein inter-

actions and protein-DNA interactions as neural network architectures and used denoising autoencoders 

to do data pre-training. The study presented several neural network analyses that were useful to gene 

profile annotation and cell type-specific identification [9]. Another study conducted by Xu proposed a 

multi-scale clustering-based feature selection method for gene expression data [10]. The feature selec-

tion method captured informative genes among tumor populations and visualized the scRNA-seq data 

[10]. The algorithm was applied to lung adenocarcinoma data in the study, but further study may apply 

the framework to other genomic data to identify robust biomarkers and increase the understanding of 

tumorigenesis. 

For better classification of multi-scale scRNA-seq data, this study first conducts dimensionality re-

duction using principal component analysis (PCA), then examine several common machine learning 

algorithms, including Random Forest, Support Vector Machine, Boosting, and Neural Networks to build 

the classifier of highest accuracy of predicting and grouping cell type when analyzing a database of great 

amounts of scRNA-seq samples. 

2.  Methods 

The datasets used are from 104 separate scRNA-seq experiments that collect single cell profiles from 

different individuals, with various focus on cell types. A training set and a test set are provided, and 

there’s no overlap in the set of experiments used. 

2.1.  PCA 

Several dimension reduction techniques are explored, such as Principal Component Analysis (PCA), 

kernel PCA and Linear Discriminant Analysis (LDA). Specifically, PCA is used to identify the features 

with the highest variance, and LDA aims to maximize the separation of existing features. PCA is the 

most common dimension reduction method, but it needs the principal components to have linear struc-

tures and to be orthogonal. As a side note, this study also makes the utilization of kernel PCA to capture 

the nonlinear structure, but it leads to worse results. In other words, naive PCA is enough to capture the 

hidden data structure. To reach a variance of 0.99, the study chooses 127 as the number of the compo-

nents (83 components to reach a variance of 0.95). 

2.2.  SVM 

After the dimension reduction by PCA, the data is used to train the classifiers. Since the data is not 

linearly separable, we used Support Vector Machine for classification and the Gaussian radial basis 

function as the kernel function. And the penalty factors and scale factors are optimized by Grid Search 

with 10-fold cross-validation.  

2.3.  Random forest 

As an alternative strategy, we combined the data after dimensionality reduction with a Random Forest 

classifier, given its acknowledged good performance on high dimensional data. To achieve the highest 

accuracy, this study used grid search for 50 points on multiple hyperparameters. The optimal parameters 

are max_depth = 7 and random_state = 3. 
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2.4.  Boosting 

We also built a multi-class Adaboost decision tree to see if boosting can improve prediction accuracy 

on this multi-class gene expression profile data. This study used the data after dimensionality reduction 

with a decision-tree based adaptive boosting classifier. To achieve the highest accuracy, we used k-fold 

cross validation to determine the max depth of 23 as the decision tree classifier. As the PCA analysis 

inferred, the study tried both data dimensionality N=83 and N=127. In addition, when examining adap-

tive boosting, the study used both discrete and real boosting algorithms to compare the results. Gener-

ally, discrete SAMME Adaboost adapts based on predicted class labels, and real SAMME.R Adaboost 

adapts based on predicted class probabilities.  

2.5.  Neural network 

In addition to those traditional methods, guided by the previous work by Lin et al. [9], we also tried 

another technique which uses neural networks as the classifier. As illustrated by Figure 1, our neural 

network is fully connected and consists of only one hidden layer with 796 nodes, which is based on the 

architecture explored by previous research. The input layer takes in the features of a cell after dimen-

sionality reduction (we found out that N=83 works better than more components), while the output layer 

outputs a vector of length 46 (the number of classes / labels in the dataset), which is an unnormalized 

probability distribution of the correct cell type the study wants to predict, and then use a SoftMax func-

tion to choose the cell type with highest probability. 

 

Figure 1. NN Architecture 

To obtain the best performance, this study manually tuned the hyperparameters with references to rec-

ommendations mentioned in previous work. Without further optimizations, the best parameters found 

are listed here: 

learning_rate=0.02, momentum=0.1, decay=0.0001, batch_size = 10, epochs = 70, valida-

tion_split=0.3, activation function for hidden layer: tanh(x) 

Packages used:  Sklearn, Pandas, Tensorflow.Keras, NumPy, Matplotlib, etc. 
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3.  Results 

Table 1. Testing accuracy summary of different methods (unoptimized) 

Dimensionality 

Reduction 

Number of 

Components 

Classifier Accuracy 

None N/A SVM 49.22% 

None N/A GNB 42.66% 

PCA 127 SVM 53.52% 

PCA 83 SVM 50.30% 

SVD 127 SVM 22.45% 

LDA 127 SVM 28.20% 

PCA 127 GNB 26.72% 

PCA 127 SGD 22.38% 

PCA 83 RF 45.57% 

PCA 150 Naive MLP 36.67% 

PCA 83 MLP 38.95% 

PCA 127 KNN 45.45% 

PCA 127 NN 42.63% 

PCA 127 AdaBoost 43.57% 

The results of important methods are discussed below. 

3.1.  SVM 

The parameters of the RBF kernel SVM are chosen from: log10(C)∈[−3,3]  log10(γ)∈[−3,3]. 

By Grid Search Cross Validation, parameters of C = 0.1 and γ = 0.01 are successful. The training 

accuracy quickly converges to 90.57%. And the final test accuracy of RBF SVM is 53.52% for N = 

127(50.3% for N = 83). 

3.2.  Random forest 

The results found is that using N=83 after dimensionality reduction worked better than other numbers 

of components, with a testing accuracy of 45.57%. 
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3.3.  Boosting 

 

Figure 2. Test error development (N=127) 

 

Figure 3. Test error development (N=83) 

For N=127, After all boosting iteration, the test accuracy of the real boosting algorithm was 43.57%, 

and the test accuracy of the discrete boosting algorithm was 41.99% (Figure 2). For N=83, After all 

boosting iteration, the test accuracy of the real boosting algorithm was 42.94%, and the  test accuracy 

of the discrete boosting algorithm was 40.35% (Figure 3). For both N=127 and N=83, the real boosting 

algorithm achieved a better prediction accuracy than the discrete boosting algorithm. N=127 worked 

better than N=83 for the adaptive boosting.  

3.4.  Neural network 

When choosing the optimal hyperparameters, the training accuracy can reach above 85% within 70 

epochs (Figure 4). And when the study uses the trained model to predict the cell types in the test dataset, 

the accuracy is 42.63%. For the data dimension, N=83 gives a 5% higher accuracy than N=127. 
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Figure 4. Training accuracy of the NN method. 

4.  Conclusion 

While scRNA-seq analysis was seen as useful in single gene expression profile, there’s more to work 

on. As biological data generally contains many cells with high dimensionality, new methods need to be 

developed in order to predict and group the single cell data for further study efficiently and accurately. 

In this paper, the set of possible cell types in test data is a subset of the training data to ensure the 

classifier predicts on gene expression profiles. After conducting principal component analysis and de-

termining the suitable data dimensionality, we developed and tested solutions based on several base-line 

methods and combining methods, finding that the support vector machine worked best of all algorithms 

being tested, having the test accuracy of 53.52%. 

Possible reasons for support vector machine’s outstanding performance is due to its ability to regu-

larize high-dimensional data, while our dataset is of high dimensionality with tens of thousands of gene 

profiles. Using SVM for data after dimensionality reduction wouldn’t lead to overfitting. Random Forest 

is also a promising method for high dimensional data, and it’s the second best method after tuning hy-

perparameters with grid search. Both SVM and Random Forests have the potential for further improve-

ment (e.g., use Bayesian Optimization to learn the best parameters). The Neural Network method turned 

out to be a bit less effective compared to the previous work which used similar architecture, and such 

difference in accuracies might be caused by unoptimized parameters and different ways of calculating 

testing accuracy. The performances of other methods we attempted also matched our expectations.  

In addition to the testing accuracy, it’s also important to see which labels are most commonly mis-

classified by each method. To this end, we created the following confusion matrices, where the squares 

with brighter colors indicate larger numbers of hits (ideally the diagonal squares should be the only ones 

with bright colors). As illustrated by Figure 5-8, the study found that the most common errors are rela-

tively consistent across different methods (in each figure, the y-axis is the true label, and the x-axis is 

the predicted label).  Several commonly misclassified cell types across all methods include hematopoi-

etic stem cell, liver, medullary thymic epithelial cell, and embryonic stem cell; and it turned out that 

these cells are not closely related biologically, and the reasons behind remains to be discovered. 
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Figure 5. Confusion Matrix (SVM). 

 

Figure 6. Confusion Matrix (NN). 
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Figure 7. Confusion Matrix (Boosting). 

 

Figure 8. Confusion Matrix (Random Forest). 

Although the resulting accuracy is encouraging, there are more that can be explored. New methods, 

including the extreme gradient boosting for feature selection and the usage of Bayesian optimization on 

hyperparameters, may be implemented to find the balance between bias and variance. The study expe-

rienced misclassified labels that didn’t share sufficient similarities, so future research can train a separate 

method to identify commonalities between cell types, and thus consider type similarities into the defi-

nition of “accuracy”. The study may test deeper architectures (neural works with more layers) and com-

bine support vector machines with adaptive boosting for efficient implementation of algorithms. Future 

research with improved algorithms would allow the efficient analysis of larger datasets.  
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