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Abstract. In the digital realm, recommendation systems are pivotal in shaping user experiences 

on online platforms, tailoring content based on user feedback. A notable algorithm in this 

domain is the multi-armed bandit algorithm, with the Upper Confidence Bound (UCB) 

emerging as a classic and effective variant. This paper delves into an array of Upper 

Confidence Bound algorithm variations, encompassing UCB1, Asymptotically Optimal UCB, 

UCB-V, and UCB1Tuned. The research harnesses the MovieLens dataset to assess the 

performance of these algorithms, employing cumulative regret as the primary metric. For ℓ in 

UCB1 and c in UCB-V, both oversized and undersized parameters will result in negative 

outcomes. And UCB1Tuned outperforms the other three algorithms in this experiment, since it 

considers variance and adjusts parameters dynamically. The study demonstrates that setting a 

appropriate UCB index is crucial for enhancing the performance of the UCB algorithm in 

recommendation system. It holds significance for both improve recommendation system 

algorithms and enhance user experience. 

Keywords: Reinforcement learning application, Recommendation system, Multi-armed 

bandits, Upper Confidence Bound (UCB). 

1.  Introduction 

With the evolution of the Internet and communication technologies, recommendation systems have 

gained significant importance. Confronted with vast information, online platforms increasingly rely on 

these systems to tailor content to user preferences, thereby optimizing user experience. A key method in 

machine learning, the multi-armed bandit (MAB) algorithm, has seen extensive application across 

various domains including recommendation systems, information retrieval, healthcare, and finance [1]. 

At its core, the MAB algorithm addresses a sequential decision-making challenge under uncertainty, 

where a decision-maker selects from multiple options over a series of rounds to maximize total reward 

[2]. Among the various MAB algorithms, the Upper Confidence Bound (UCB) and Thompson 

Sampling (TS) are notable for their simplicity and proven asymptotic optimality in diverse fields. The 

UCB algorithm assigns values to each option based on prior data, overestimating the mean reward, and 

selecting the option with the highest index [3]. The TS algorithm, meanwhile, treats uncertainty 

probabilistically, continually updating its distribution model to balance exploration and exploitation [4]. 

The MAB algorithm has spawned several variations, each addressing different aspects of 

decision-making. The UCB-V algorithm factors in both mean and variance when estimating rewards [5], 

while the LinUCB algorithm, a contextual bandit variant, leverages user and item features to inform 
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decisions [6]. LinUCB establishes a linear relationship between known rewards and features, aiding in 

unknown reward estimation. A new iteration, the DivLinUCB algorithm, enhances recommendation 

diversity by favoring less frequently chosen options [7]. The DeepLinUCB algorithm integrates deep 

neural networks for non-linear context representation, bolstering both the model's representational 

power and the performance of recommendation systems [8]. Additionally, the D-UCB algorithm stands 

out for its near-optimal worst-case regret and lower memory requirements compared to other models 

[9]. 

However, there remains a research gap in the comparative study of classic MAB algorithms and their 

parameters. For instance, Thadikamalla S. and Joshi P. (2023) conducted a comprehensive assessment 

of four algorithms (Epsilon Greedy, UCB, Softmax, and Thompson Sampling) in adaptive traffic signal 

management, revealing the superior performance of the Epsilon Greedy algorithm in reducing average 

travel times and queue lengths [10]. Mambou E N. and Woungang I (2023) explored these algorithms in 

the context of online advertising, finding that the UCB method garnered the highest average cumulative 

reward, particularly when specific parameter settings were applied [11]. 

This study aims to explore various UCB algorithm variants, including UCB1, Asymptotically 

Optimal UCB, UCB-V, and UCB1Tuned, and to examine the parameter settings in UCB1 and UCB-V. 

It assesses the performance of different UCB algorithms in movie recommendation systems, seeking to 

enhance efficiency and effectiveness in online recommendation tasks. The paper is structured as follows: 

Section II lays the foundational preliminaries; Section III details the experimental setup, including data 

sources, methodology, and parameter settings; Section IV presents a comparative analysis of the 

experimental results; and Section V concludes with a summary of findings and directions for future 

research. 

2.  Preliminaries 

2.1.  Multi-armed Bandits  

A bandit problem is a sequential game between a learner and an environment [12]. The game is played 

over n rounds. In each round t = 1,2,3, … … n , the learner chooses an action  𝐴𝑡  from a set 

A ={ 𝐴1, 𝐴2, 𝐴3,……, 𝐴𝑘} of k possible actions, and then obtains a reward 𝑋𝑡. Actions are often 

called 'arms' and k-armed bandits means that the number of actions is k.  

The learner’s goal is to select actions that maximize the cumulative reward across n rounds, denoted 

as ∑ 𝑋𝑡
𝑛
𝑡=1 . Since the reward 𝑋𝑡 is random and its distribution is unclear at first, it’s important to find 

equilibrium between exploration and exploitation. Exploration refers to receive information about the 

reward distributions by trying out different arms. Exploitation involves leveraging the acquired 

information to select the arms that are likely to get higher rewards in the future rounds.  

The objective could also be stated as the minimize of regret. Regret is the reward lost by taking 

sub-optimal decisions. Cumulative regret of an algorithm over n rounds could be defined by: 

Rn = n × μ∗ − E [∑ Xt
n
t=1 ]                              (1)    

Where n × μ∗ represents the expected cumulative reward of the optimal action 𝐴∗, and E [∑ Xt n
t=1 ] 

represents the expected cumulative reward of the algorithm. 

2.2.  UCB 

The UCB (Upper Confidence Bound) algorithm is an exploration-exploitation algorithm used to solve 

the Multi-armed Bandits problem. For every round, UCB algorithm assigns a value called UCB index 

to each arm, based on the data observed so far that is an overestimate of its mean reward, and then 

choose the arm with the highest index. The UCB index of each arm updates at every trial and 

approximates the true expected reward gradually to optimize arms' choice. As more data is collected, 

the growth rate of regret slows down and the regret curve shows a logarithmic behavior. 
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2.3.  UCB1 

UCB1 is a representative algorithm of UCB policies. In round t, the UCB index of arm i is defined as. 

𝑈𝐶𝐵𝑖(𝑡) = �̂�𝑖(𝑡) + √
ℓ 𝑙𝑛𝑡

𝑇𝑖(𝑛)
                               (2) 

Where �̂�𝑖(𝑡) is symbolized as the average reward of arm i from round 1 to round t, n is the total 

number of rounds, and 𝑇𝑖(𝑡) is the number of selections for arm i. ℓ ∈ ℝ+ is a multiplicative factor that 

affects the UCB index computation, often assigned a value of ℓ = 2. The second term √
ℓ 𝑙𝑛𝑡

𝑇𝑖(𝑡)
 is called 

exploration bonus. 

Each arm should be selected once at the beginning to Initialize UCB index. As show in Table 1, 

because the UCB index increases as 𝑇𝑖(𝑛) decreases, even if  �̂�𝑖(𝑡) is small, an arm with a small 

number of samples is more likely to be selected. When there are more samples from arm i, the UCB 

index will get closer to the true average reward 𝜇𝑖. Thus, the UCB algorithm could identify the best arm 

more accurately and be less likely to select a sub-optimal arm.  

Aueur proved the upper limit of UCB1 regret: Ο(
m ln(n)

Δmin
), where 𝛥𝑚𝑖𝑛 = min

𝑎𝑖∈𝐴\{𝑎∗}
𝜇∗ − 𝜇𝑎𝑖

. 

Table 1. Algorithm 1: UCB 

Algorithm 1: UCB1 

Input: Rounds 𝑛, arms 𝑘, multiplicative factor ℓ 

Initialize:  𝑇𝑖(𝑛) =1 and �̂�𝑖(𝑡)=0, 𝑖 = 1,2, … … , 𝑘  
1： For 𝑡 = 1,2, … … , 𝑛 do 

2：     for 𝑖 = 1,2, … … , 𝑘 do 

3：        𝑈𝐶𝐵𝑖(𝑡) ← �̂�𝑖(𝑡) + √
ℓ 𝑙𝑛𝑡

𝑇𝑖(𝑛)
 

4：     end for 

5：      Select arm 𝑗 = argmax (UCB𝑖(𝑡)) 

6：      Pull arm 𝑗 , get reward r𝑗(𝑡) 

7：      Update:  

8：         𝑇𝑗(𝑡) ← 𝑇𝑗(𝑡) + 1 

9：         �̂�𝑗(𝑡) ← 
1

𝑇𝑗(𝑡)
× ( r𝑗(𝑡) +  𝑇𝑗(𝑡) × �̂�𝑗(𝑡))  

10： end for 

2.4.  Asymptotically Optimal UCB 

Comparing to the UCB1, the UCB index of Asymptotically Optimal UCB is modified as. 

UCBi(t) = μ̂i(t) + √
2lnf(t)

Ti(t)
                                (3) 

Where f(t) = 1 + tln2(t). 

The regret of Asymptotically Optimal UCB is Ο(
2 ln(n)

Δmin
) . It has been proven that the regret 

ofAsymptotically Optima UCB is smaller than that of UCB1 when ℓ = 2. The enhancement results 

from marginally reducing the confidence interval.  

Lai and Robbins certificated that there is a matching lower bound on regret for any standard UCB 

algorithm when n approaches infinity. The upper bound on regret for Asymptotically Optimal UCB 

matches this lower bound, which means that this algorithm performs better than other algorithm in the 

limit as n goes to infinity. 
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2.5.  UCB-V 

The UCB index of UCB-V is indicated as. 

UCBi(t) = X i̅ + √
2Vi(t)F(t)

Ti(t)
+  c

3F(t)

Ti(t)
                           (4) 

Where Vi(t) is the empirical variance estimate of arm i from round 1 to round t, and could be 

calculated using equation: 

Vi(s) = (
1

s
∑ Xi,γ

2s
γ=1 ) − X̅i,s

2                               (5) 

F(t), so-called exploration function, it grows or stays constant as t increases. A common selection for 

it is F(t) = ln(t). c is a positive tunable parameter. 

UCB-V algorithm takes variances into consideration. When the sub-optimal arm's variance is 

significantly smaller than the reward distribution range, using variance estimation allows for a more 

precise evaluation of the expected rewards. This enables the algorithm to discover the sub-optimal arms 

faster and minimize the number of selections. 

Research has shown that if the exploration function is selected appropriately, the expected regret of 

the UCB-V algorithm may outperform other algorithms in certain scenarios. The regret of the UCB-V 

algorithm is concentrated within a certain range and may exhibit a bimodal distribution, with one peak 

corresponds to a lower regret and the other peak corresponds to a higher regret. 

2.6.  UCB1-Tuned 

The UCB index of UCB1-Tuned is defined in equation: 

UCBi(t) = X i̅ + √
2ln(t)

Ti(t)
min {

1

4
, Vi(Ti(t))}                    (6) 

Where Vi(s) = (
1

s
∑ Xi,γ

2s
γ=1 ) − X̅i,s

2 + √
2ln(t)

s
 . 

UCB1-Tuned incorporates a new term in the calculation of UCB index that considers the minimum 

value between the observed variance Vi(Ti(t))  and the theoretical upper bound of the Bernoulli 

distribution variance (i.e., 1/4). This approach ensures that the algorithm considers a conservative 

estimate of the variance [13]. There is also an addition term √
2ln(t)

s
 in variance calculation. It is a 

confidence interval width to ensure that the true variance is likely to be within the estimated variance 

plus this term. 

Auer, Cesa-Bianchi, and Fischer inferred that the UCB1-Tuned algorithm typically outperforms the 

UCB1 algorithm in minimizing cumulative regret. 

3.  Experimental setup 

3.1.  Dataset  

The experiment is conducted on the MovieLens 1M dataset, which is a stable benchmark dataset of 

movie recommendation. There are 1,000,209 ratings provided by 6040 users for 3900 movies on the 

online movie recommendation platform [14]. User IDs, movie IDs, ratings, genres, movie titles, user 

demographics, and timestamps are all included in each dataset piece. There are 18 unique movie 

genres. Ratings range from 1 to 5 stars and it can only be integers.  

3.2.  Methodology  

In this experiment, conceptualizing movie genres as "arms" and user ratings as "rewards". There are 

18 unique Movie IDs, so the number of arms is 18. A five-star rating system is used, so the reward in 

each round could be 1 to 5. Before running the algorithm, calculate the average rating of movies in 
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each genre as the actual average rating for that genre. Cumulative regret is chosen as the evaluation 

metric. The cumulative regret is defined as: Rn = n × μ∗ −  ∑ Xt
n
t=1  ,where μ∗ is the largest average 

rating among movie genres, and the corresponding movie genre is the actual optimal arm. ∑ Xt
n
t=1  is 

the actual cumulative reward obtained by running the algorithm. The number of rounds in each 

experiment is set as n=20000. This research sets up 30 experiments in total, with data being shuffled in 

each experiment. Finally calculate the average regret of 30 experiments. 

The research in this paper will cover the following aspects: 

For UCB1 algorithm, varying the multiplicative factor ℓ to investigate its impact on algorithm 

performance. And evaluating how well the UCB1 performs with varying numbers of arms when ℓ is set 

to 2. 

For UCB-V algorithm, setting distinct values of tunable parameter c to compare the performance of 

the algorithm. The exploration function F(t) is defined as ln(t) in this experiment. 

Comparing the performance of four algorithms: UCB1, Asymptotically Optimal UCB, UCB-V, and 

UCB-1Tuned. For the Asymptotically Optimal UCB, setting f(t) = 1 + tln2(t). 

4.  Results and analysis 

Experimental results are shown in Figure 1 to 7. 

Figure 1. presents the performance comparison of different ℓ values for the UCB1 algorithm. It 

shows that if ℓ is too large or too small, the average cumulative regret will be high. The cumulative 

regret curves show logarithmic behavior when ℓ ≥ 0.5, which indicates that the growth rate slows down 

over time and gradually converging towards the optimal choice. While the curves present linear 

behavior when ℓ < 0.5, which means that the algorithm still selects the sub-optimal arms many times.  

Referring to Figure 2. and Figure 3., the error bars are relatively small when ℓ ≥ 2. This illustrates 

that the algorithm performs stably in several experiments. However, the error bars are quite large when 

ℓ < 2, and it increases with the decrease of ℓ. This demonstrates that the algorithm is unstable. It may 

perform well in one experiment, but it could also be poor.  

Overall, the value of ℓ could not be too large or too small. In this experiment, the UCB1 algorithm 

performs the best when ℓ = 2, since it is stable and has the lowest average cumulative regret.  

Figure 4. shows the performance comparison of various k(arms). It could be observed that with the 

decrease of k, the average cumulative regret decreases. Generally, the algorithm would be easier and 

faster to find the optimal arm when k is smaller. 

From Figure 5. and Figure 6., they evident that the impact of c on the UCBV algorithm is similar to 

that of ℓ on the UCB1 algorithm. The value of c should be chosen neither too large nor too small to 

maintain a trade-off between exploration and exploitation, so as to reduce cumulative regret and 

volatility. Among the parameters c tested in this experiment, the UCB-V algorithm outperform others 

when c is set to 1. 

Figure 7. presents the average cumulative regrets and error bars of four algorithms: UCB1, UCB, 

Asymptotically Optimal UCB, UCB-V, UCB1Tuned. In this experiment, UCB-V c=2 shows the highest 

cumulative return, while Asymptotically Optimal UCB is in third place. UCB1 ℓ = 2 and UCB1Tuned 

are in the second and first positions.  
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Figure 1. Average Cumulative Regrets Comparison for UCB1 with Different ℓ Values (Photo/Picture 

credit: Original). 

 

Figure 2. Error Bars Comparison for UCB1 when ℓ = [ 1, 2, 4, 8] (Photo/Picture credit: Original). 

 
Figure 3. Error Bars Comparison for UCB1 when ℓ = [0.0625, 0.125, 0.25, 0.5] (Photo/Picture credit: 

Original). 

Proceedings of  the 6th International  Conference on Computing and Data Science 
DOI:  10.54254/2755-2721/68/20241402 

50 



 
Figure 4. Average Cumulative Regrets Comparison for UCB1 with Different k (arms) (Photo/Picture 

credit: Original). 

 
Figure 5. Average Cumulative Regrets Comparison for UCB-V with Different ℓ  Values 

(Photo/Picture credit: Original). 

 
Figure 6. Error Bars Comparison for UCB-V with Different ℓ  Values (Photo/Picture credit: 

Original). 
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Figure 7. Comparison of UCB and its variants algorithms (Photo/Picture credit: Original). 

5.  Conclusion 

This study presents a comparative analysis of various variants of the Upper Confidence Bound  

algorithm within the context of movie recommendation systems. It focuses on the impact of specific 

parameters, particularly ℓ in UCB1 and c in UCB-V, on algorithmic performance. A key finding is that 

these parameters considerably influence effectiveness: higher parameter values lead to greater 

exploration due to an increased exploration bonus, potentially causing inefficient reward utilization 

during the extensive search for the optimal arm. Conversely, lower parameter values prompt more 

aggressive exploitation, risking repeated selection of sub-optimal arms and resulting in lower rewards. 

The experiments demonstrate that UCB1-Tuned outshines other variants in minimizing cumulative 

regret. This superior performance stems from its incorporation of variance and dynamic adjustment of 

the exploration factor for precise arm selection. However, the UCB-V algorithm demands careful 

calibration of the tunable parameter c, as it directly affects performance. These insights underscore the 

significance of optimizing algorithm parameters to enhance performance in recommendation systems. 

Given the large user base these systems cater to, managing reward variance is crucial for improving user 

experience; thus, the exploration bonus should not be set too narrowly. The study acknowledges its 

limitations, notably the exclusion of contextual bandit algorithms and the diversity of recommended 

content. Future research could investigate alternative UCB algorithm variations and examine the impact 

of parameter settings on performance. Such advancements will contribute to the ongoing refinement of 

recommendation algorithms, ultimately enriching user experiences. 
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