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Abstract. With the rapid advancement of science and technology, the internet has become an 

integral part of daily life, revolutionizing how people access information and make decisions. In 

this context, algorithms play a pivotal role in helping individuals make informed choices tailored 

to their preferences across various domains. Utilizing the MovieLens dataset 

(https://grouplens.org/datasets/movielens/1m/), which contains a rich compilation of movie 

ratings and metadata, this study conducts a thorough analysis using Python to assess the 

performance of four distinct algorithms: Explore-then-Commit (ETC), Upper Confidence Bound 

(UCB), Thompson Sampling (TS), and Epsilon-Greedy. The comparison reveals that the ETC 

algorithm excels in applications such as online advertising recommendation and autonomous 

driving. The UCB algorithm proves more advantageous in financial analysis, where risk 

management is critical. The TS algorithm is particularly effective in short video recommendation 

systems, while the Epsilon-Greedy algorithm is well-suited for balancing exploration with 
reward. Overall, the results indicate that the TS algorithm outperforms the others in general 

efficacy. 

Keywords: ETC algorithm, UCB algorithm, TS algorithm, Epsilon-Greedy algorithm, multi-

armed bandit problem. 

1.  Introduction 

The internet has become a ubiquitous presence in modern life, serving as both a platform for 
entertainment, including online shopping, video streaming, and gaming, and a tool for technical tasks 
such as data processing, programming, and financial analysis. With the vast user base and extensive 
content, personalizing information for individual users has emerged as a critical challenge. Such 
challenges are categorized as multi-armed bandit problems [1]. There is a plethora of algorithms aimed 
at solving these problems, and significant advancements have been made by researchers. For instance, 
Regularized Thompson Sampling and the Greedy Algorithm have been effectively applied in multi-
armed bandit scenarios for dose-finding in clinical trials due to their superior selection performance [1]. 

Dakdouk Hiba and his team developed the Decreasing-Order-Fair-Greedy algorithm, enhancing 
performance in Internet of Things (IoT) networks, specifically in Long-Range (LoRa) networks, 
representing a significant improvement over the Adaptive Data Rate (ADR) algorithm [2]. Additionally, 
a dynamic combinatorial multi-armed bandit (DCMAB) learning approach was introduced for selecting 
multi-hop relays in underwater acoustic sensor networks, which efficiently addresses the challenge of 
learning inefficiency due to sparse information on newly-formed links and achieves minimal 
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propagation delay without prior channel information [2]. In the realm of 5G Massive MIMO, a 
combinatorial multi-armed bandit (CMAB) strategy was utilized to devise methods for user scheduling 
and spectrum allocation [3]. Similarly, in Mobile Crowd Sensing (MCS), the multi-armed bandit 
approach has been adopted for recruiting unknown workers based on credit and quality, leading to the 

development of a two-stage reward-based Multi-Armed Bandit and a unique credit identification 
algorithm, enhancing worker selection in reverse auctions [3]. 

Despite the proliferation of these applications, comparative studies of different algorithms' 
performance remain scarce, potentially leading to confusion among users about which algorithm best 
meets their needs. This paper addresses this gap by comparing the performance of five distinct 
algorithms, focusing particularly on their application contexts. Utilizing the Movie Lens dataset, this 
study examines the mean regret of each algorithm as an evaluation criterion for their performance, 
aiming to provide insights that could guide future research [4]. 

The Movie Lens dataset, essential for this analysis, comprises 18 different movie genres, each 
assigned a numeric code from 0 to 17. Ratings in this dataset are integers from 1 to 5, with 1 indicating 
the lowest rating. For the purpose of this study, each movie genre is treated as an "arm," and the 
corresponding rating as the "reward." This setup remains consistent throughout the paper. 

2.  Brief introduction to the algorithms 

2.1.  ETC algorithm 
Just as the name of this algorithm, it can be divided into two stages. The first one is Exploration Phase. 
In this stage, the algorithm will try to explore all the choices (arms) to collect the reward of each arm. 
Usually, the algorithm will choose the arms randomly or follow a certain strategy such as uniform 

distribution [5]. The aim of this phase is to acknowledge the potential reward of each arm as more as 
possible, in order to make wiser decisions in the coming phase. The second stage is Commit Phase. After 
the Exploration Phase, the algorithm will choose a “best” arm, which is often determined by the mean 
reward or other statistical quantity according to the information collected before. It is important to point 
out that once the “best” arm is selected, the algorithm will always choose this arm in the following 
choices instead of exploring other arms. 

Though ETC algorithm is simple and intuitive, it has some limitations. For example, if the 
Exploration Phase is not long enough or distribution of the rewards changes too fast, the algorithm may 

not find the “best” arm. Moreover, during the Commit Phase, the algorithm will fail to adapt when the 
rewards of other arms change as it no longer makes explorations. 

2.2.  UCB algorithm 
The main idea of UCB algorithm is to estimate each arm’s value and then, choose the arm with the 
highest upper confidence bound. The operational principle of UCB algorithm consists two parts: the 

mean reward obtained of all the past operations and a term associated with the level of exploration [6]. 
In specific, this term is usually calculated based on the horizon of the operation and the logarithm of the 
amount of the total operations. In this case, the value not only takes the historical performance of the 
bandit into consideration, but also makes aware of the uncertainty of the bandit. 

The UCB algorithm successfully achieved a balance between exploration and exploitation, which 
effectively avoids excessive exploration or exploitation. Moreover, it doesn’t need prior modeling of the 
environment, so it can be used in circumstances with high uncertainty. Due to its advantages, this 

algorithm is used in many areas. The logistics planning with an exploration and exploitation structure 
uses a novel two-stage dynamic pricing model: A multi-armed bandit problem used UCB algorithm to 
make price optimizations in order to address the issue of dynamic pricing, which needs to both maximize 
revenue and learn the demand function.6 

Proceedings of  the 6th International  Conference on Computing and Data Science 
DOI:  10.54254/2755-2721/68/20241407 

204 



2.3.  TS algorithm 
The process of TS algorithm is a bit more complex. Firstly, establish a probability distribution model 
for each possible arm, typically using Beta Distribution. In the initial stage, if there is no prior knowledge, 
these distributions can be set as uniform distributions. Then, the algorithm begins the iterative process 

[7]. In each iteration, the algorithm generates a random sample value for the Beta Distribution of each 
arm. This random value can be seen as an estimate of the potential value of the option. Next, the 
algorithm selects the option with the maximum random sample value for execution. After executing the 
arm, the Beta Distribution of the corresponding arm based on the observed reward will be updated. If a 
reward is obtained, increase the probability of success (the value of α). If losses are incurred, increase 
the probability of failure (the value of β). By continuously updating the Beta Distribution and resampling, 
the algorithm can gradually approach the true value of each arm and find a middle ground between 
exploration and exploitation. 

Due to the characteristics of Beta Distribution, when a certain arm has a good historical performance, 
its random sample value is more likely to be larger, thus being selected more frequently. Meanwhile, 
due to the presence of randomness, the algorithm also has the opportunity to explore other options to 
avoid falling into local optima [8].  

It is noted that the TS method is used to a collection of search and optimization "bandits" in Multi-
armed bandits, Thomson sampling, and unsupervised machine learning in phylogenetic graph search in 
order to favor fruitful search strategies [9]. Without any prior understanding of the attributes of the 

phylogenetic datasets, this technique functions as a type of unsupervised machine learning.7 The 
superiority of TS algorithm is also proved in Bandit algorithms: A comprehensive review and their 
dynamic selection from a portfolio for multicriteria top-k recommendation. They argue that TS 
algorithm makes better selections than the original EXP3 method when it comes for Multiple-play 
Gorthaur.8. 

2.4.  Epsilon-Greedy algorithm 

The core idea of Epsilon-Greedy algorithm is to set a probability Epsilon, and at each time step or 
decision point, the algorithm explores with the probability of Epsilon and exploit with a 1-Epsilon 
probability. Specifically, when the algorithm decides to explore, it ignores the current estimates and 
rewards and randomly selects an action [10]. 

This randomness helps to discover excellent actions that may not be noticed, as it neither misses 
opportunities to discover better actions due to being too conservative, nor frequently attempts ineffective 

actions due to being too risky. 

3.  System analysis on each algorithm 

3.1.  ETC algorithm 

To make the results have more credibility, this passage choose the horizon as n=100,000 and set the 
length m*k of the exploration phase as 10% of n, which means m*k=10,000. The cumulative regret run 
by ETC algorithm is recorded as the criteria to judge the performance of the algorithm. To avoid extreme 
situations, this process is repeated 10 times, reshuffling the data each time before the experiment is run. 
The result is as shown in figure 1. 
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Figure 1. 18-armed bandit (Photo/Picture credit: Original). 

Then, with the same setting, the process is repeated for 100 times and plot the average regret together 
with error bars indicating one standard deviation above and below the mean as shown in figure 2. 

 

Figure 2. Average regrets with error bars (100 runs) (Photo/Picture credit: Original). 

The two plots above illustrate that the cumulative regret of ETC algorithm will become larger but 
finally get stable as the horizon gets larger. 

3.2.  UCB algorithm 

To ensure the comparability of different algorithms in the following part of this passage, the horizon is 
set as n=100,000, which is the same as ETC algorithm. The UCB index for arm i at round t-1 is set as 
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 where B is the difference between the maximum possible 
reward value and the minimum possible reward value. As in the Movie Lens dataset where rewards can 
be in the interval 1-5, B should be set as 4. As in the previous ETC algorithm, run ten experiments and 
record the cumulative regret of the UCB algorithm at each round t=1, 2, ..., n in all experiments. The 
result is as shown in figure 3. 
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Figure 3. 18-armed bandit (Photo/Picture credit: Original). 

Also, the result that the experiment is repeated for 100 times and also with error bars indicating one 

standard deviation above and below the mean is as shown in figure 4. 

 

Figure 4. Average regrets with error bars (100 runs) (Photo/Picture credit: Original). 

The two plots indicate that the cumulative regret of UCB algorithm will continuously get larger 

without stop while the horizon gets larger. 

3.3.  TS algorithm 
For this algorithm, the horizon is still n=100,000. The difference is that the algorithm is initialized by 
choosing each arm once. In other words, for the first k rounds, arm1, arm2, ... , arm k are chosen 
respectively. Then, the distributions Fi(t), i=1, ..., k for the belief on the mean rewards of arms are 

updated as follows: 
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i t is the average reward of arm i until round t, B is the same as above for the UCB algorithm, Ti(t) 

is the number of samples received from arm i until round t, and N (μ, sigema2) stands for the Gaussian 
distribution with mean miu and variance sigema. 

With this setting, 10 experiments are run and the result is as shown in figure 5. 
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Figure 5. 18-armed bandit (Photo/Picture credit: Original). 

Then again, 100 experiments are run and plot the average regret together with error bars indicating 

one standard deviation above and below the mean as shown in figure 6. 

 

Figure 6. Average regrets with error bars (100 runs) (Photo/Picture credit: Original). 

As the error bars are relatively too small compared with the values of the cumulative regret, they 
can’t be seen clearly. So part of the plot is chosen and enlarged, making error bars clearer to be seen as 
shown in figure 7. 

 

Figure 7. Average regrets with error bars (100 runs) (Photo/Picture credit: Original). 
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3.4.  Epsilon-Greedy algorithm 
Except that the value of horizon is still n=100,000, in this particular algorithm, the value of Epsilon is 
firstly set as 0.1. Due to its speciality and simplicity, this passage only run one experiment as shown in 
figure 8. 

 

Figure 8. Average regrets(n=100000) (Photo/Picture credit: Original). 

Then, this passage adds the annealing Epsilon-Greedy algorithm, which means the value of Epsilon 
is no longer a constant. With other settings remain the same, the result is as shown in figure 9. 

 

Figure 9. Average regrets(n=100000) (Photo/Picture credit: Original). 

3.5.  Comparison among algorithms 
To make sure the reliability, in this part, all horizons of algorithms are set to 1,000,000 while other 
settings remain the same. The result based on Python is as shown in figure 10. 
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Figure 10. Comparison of Solvers (Photo/Picture credit: Original). 

From this plot, it is obvious that ETC algorithm has the largest cumulative regret no matter how large 

the horizon is, which in other words means that ETC algorithm has the worst performance among the 4 
algorithms mentioned before. Then comes UCB algorithm, whose cumulative regret is much smaller 
than ETC algorithm, but still quite large compared with other two algorithms, making it the second 
worst algorithm. As the performances of TS algorithm and Epsilon-Greedy algorithm can’t be seen 
clearly in Picture 10 above, a experiment is run without the ETC algorithm and Softmax algorithm, 
which is a whole new algorithm not mentioned in this passage for it has little applications in real world 
life. The result of the new experiment is as shown in figure 11. 

 

Figure 11. Comparison of Solvers (Photo/Picture credit: Original). 

From this plot, it can be seen clearly that TS algorithm (the red line) has the least cumulative regret 
among multiple algorithms, indicating that it has the best performance. 

It is noteworthy that Picture 10 also mentions some other algorithms such Softmax algorithm and 

MOSS algorithm, and the sub algorithm of UCB algorithm (asymptotically UCB algorithm) is also taken 
into consideration. By adding these algorithms, this passage hopes to provide a diversified comparison 
between algorithms instead of merely focusing on the main ones. This also means that some algorithms 
have yet to be proposed when facing new bandit problems. The suggested Seq meta-algorithm offers 
the same theoretical guarantees as the MAB policy used in adapting bandit algorithms for settings with 
sequentially available arms, but it was demonstrated to provide better performance when compared to 
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several classical MAB policies in RM and BAI problems using real-world data.9 Moreover, some 
existing algorithms need special improvement to better adapt to the real-world situation. A novel version 
of INF, known as the Implicitly Normalized Forecaster with clipping (INF-clip), was proposed in 
Implicitly normalized forecaster with clipping for linear and non-linear heavy-tailed multi-armed 

bandits for MAB problems with heavy-tailed reward distributions.10 

4.  Conclusion 

This study delves into the multi-armed bandit problem and reveals significant performance disparities 
among different algorithms under identical conditions. Through experiments conducted in Python and 
illustrated by the accompanying plots, it is evident that the Thompson Sampling algorithm outperforms 

others, exhibiting the least cumulative regret, while the Explore-then-Commit algorithm shows the 
poorest performance, with its cumulative regret substantially exceeding that of its counterparts. This 
analysis addresses a gap in comparative studies of multiple algorithms, providing valuable insights for 
organizations uncertain about selecting the most effective algorithm. The visual representations 
facilitate a clearer understanding of each algorithm's performance, aiding decision-makers in choosing 
the most suitable option. Furthermore, this work establishes a framework for subsequent research into 
additional algorithms for solving multi-armed bandit problems. However, this study is constrained by 

its reliance on a single dataset and the examination of only four principal algorithms. Future research 
should expand the dataset range to enhance the robustness of these comparisons. Moreover, inclusion 
of more specialized sub-algorithms, such as the asymptotically optimal UCB algorithm, is crucial to 
ensure a comprehensive evaluation of available strategies. 
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