
Comparative analysis and applications of classic multi-armed 

bandit algorithms and their variants 

Bo Fei 

Software College, Northeastern University, Shenyang, China 

20216764@stu.neu.edu.cn 

Abstract. The multi-armed bandit problem, a pivotal aspect of Reinforcement Learning (RL), 

presents a classic dilemma in sequential decision-making, balancing exploration with 

exploitation. Renowned bandit algorithms like Explore-Then-Commit, Epsilon-Greedy, 

SoftMax, Upper Confidence Bound (UCB), and Thompson Sampling have demonstrated 

efficacy in addressing this issue. Nevertheless, each algorithm exhibits unique strengths and 

weaknesses, necessitating a detailed comparative evaluation. This paper executes a series of 

implementations of various established bandit algorithms and their derivatives, aiming to assess 

their stability and efficacy. The study engages in empirical analysis utilizing a real dataset, 

generating charts and data for a thorough examination of the pros and cons associated with each 

algorithm. A significant aspect of the research focuses on the parameter sensitivity of these 

algorithms and the impact of parameter tuning on their performance. Findings reveal that the 

SoftMax algorithm's effectiveness is markedly influenced by the initial estimated mean reward 
value for each arm. Conversely, algorithms like Epsilon-Greedy and UCB exhibit enhanced 

performance with optimal parameter settings. Furthermore, the study explores the limitations 

inherent in classic bandit algorithms and introduces some innovative models and methodologies 

pertinent to the multi-armed bandit problem, along with their applications. 

Keywords: Reinforcement Learning, Multi-armed Bandit, Upper Confidence Bound, Epsilon-

Greedy Algorithm. 

1.  Introduction 

Artificial Intelligence's Reinforcement Learning (RL) paradigm bears a striking resemblance to natural 

learning processes in humans and other animals, diverging notably from conventional Machine Learning 
(ML) methodologies. RL algorithms, often inspired by biological learning systems [1], eschew the 
reliance on pre-labeled data typical of Supervised Learning. Instead, RL agents learn through interaction, 
taking actions and receiving feedback from the environment without explicit instruction on each move 
[2]. This process involves an agent impacting its environment, observing the resultant changes, and 
receiving rewards or penalties, gradually evolving a strategy to optimize outcomes [3-6]. 

A pivotal challenge in RL is the Exploration and Exploitation (EE) dilemma. In this context, agents 

often favor actions known to yield high rewards (exploitation) to maximize cumulative gains [7,8]. 
However, such a strategy might trap agents in suboptimal choices, neglecting untried or incompletely 
explored actions that could offer superior rewards. Consequently, an agent must balance exploiting 
known actions with exploring new possibilities [9]. Central to RL research is the Multi-Armed Bandit 
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(MAB) problem, embodying this balance between exploration and exploitation [10]. The MAB problem 
is a model of decision-making where the objective is to strike a balance between leveraging past 
successful actions and probing potentially more rewarding future actions. Facing a set of choices, the 
decision-maker selects one at each step, receiving an associated reward, the magnitude of which is 

unknown beforehand [11,12]. The aim is to maximize cumulative rewards over time, while minimizing 
the "regret" - the loss incurred by not choosing the optimal action. 

MAB algorithms have found diverse applications, including in recommendation systems, clinical 
trials, and financial investment [11-13]. New models and approaches continue to emerge, expanding 
into areas like Contextual, Linear, and Combinatorial Bandits. This paper commences with an 
examination of classic MAB algorithms - Explore-Then-Commit, Epsilon-Greedy, SoftMax, Upper 
Confidence Bound, and Thompson Sampling. It delves into the factors influencing their performance, 
compares them with their variants, and discusses new models and applications in the MAB domain [14]. 

2.  Relevant theories 

2.1.  Reinforcement learning model 

Reinforcement Learning is a machine learning approach aimed at learning how to make decisions by 
interacting with an environment to maximize or minimize a specific objective function. Unlike 
supervised and unsupervised learning, reinforcement learning doesn't require labeled datasets or explicit 
answers; instead, it learns through trial and error by interacting with the environment [15]. As shown in 
figure 1. 

In order to learn how to make the best decisions, a learning agent in reinforcement learning monitors 
the status of the environment, acts, and receives reward signals from it. Usually, Markov Decision 

Processes (MDPs) are used to formalize situations involving reinforcement learning. Key concepts in 
reinforcement learning include: 

State: Describes a specific situation or condition of the environment. In a given state, the agent can 
take different actions [16]. 

Action: The possible choices or actions the agent can make in a given situation. 
Reward: The environment's feedback signal, which indicates how excellent or poor the agent's action 

was, after it has been taken. Rewards may be zero, negative, or positive. 
Policy: The way or rule by which the agent selects actions based on the current state. Policies can be 

deterministic (deterministic policy) or stochastic (random policy). 
Value Function: Used to evaluate the long-term return for a specific state or state-action pair. Value 

functions help the agent determine which actions are better to take. 
Environment Model: A model used to simulate the dynamics of the environment. Some 

reinforcement learning algorithms require an environment model for learning, while others directly 
interact with the real environment.  

 

Figure 1. Reinforcement Learning Interaction Process (Photo/Picture credit: Original). 

2.2.  Stochastic multi-armed bandit problem 
In reinforcement learning, the Stochastic Multi-Armed Bandit Problem is a common model that 

addresses the trade-off between exploration and exploitation [17-20]. The MAB problem is a sequential 
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decision-making problem. This name originates from the slot machine in the casino. The gamer wants 

to get the highest reward by pulling different arms. Formally, there are 𝑘 arms labeled with 1 to 𝑘. The 

𝑎𝑟𝑚𝑖 is related to an unknown distribution 𝐹𝑖 and the expectation of the reward is μ𝑖. The agent will 

make decisions over 𝑛 rounds called horizon. At each time step, the agent will choose an 𝑎𝑟𝑚𝑖 and 
receive a reward 𝑋𝑡 based on the distribution. If the agent knows which arm has the largest expectation 
of the reward in advance, it just needs to choose this arm each round. However, because the distribution 

𝐹𝑖 is unknown, the agent must balance exploration for finding the best arm and exploitation for choosing 
the current best arm to get the highest reward. The cumulative expected regret serves as a measurement 

for the MAB algorithm's performance, which for any fixed round 𝑛 is defined as: 

 𝑅𝑛 = 𝑛 ⋅ 𝜇∗ − 𝐸[∑  𝑛
𝑡=1 𝑋𝑡]           (1) 

where μ∗ = 𝑚𝑎𝑥 μ𝑖 , 𝑖 =  1, … , 𝑘, denotes the expected reward of the best arm. 

3.  Method 

The paper focuses on the many bandit algorithms' processes as well as the examination and comparison 
of the various classic bandit algorithms' and their variants' performances across various horizons and 
parameters. 

3.1.  Classic Bandit Algorithms 

3.1.1.  Explore-Then-Commit. The Explore-Then-Commit is a classic bandit algorithm. To overcome 
the EE dilemma, the algorithm utilizes a relatively simple strategy just like the A/B test that divides the 

whole algorithm into two phases: the exploration phase and the exploitation phase. In the exploration 
phase, the algorithm will select each arm sequentially to explore each arm the same number of times 
and get the estimate of the average reward of each arm [21]. In the exploitation phase, the algorithm will 
only select the arm that has the highest estimate of the average reward so that the algorithm can make 
the cumulative regret as small as possible in this phase. The ETC policy is given in Table 1 below. 

Table 1. ETC policy 

Algorithm 1 Explore-Then-Commit Algorithm 

Input: 𝑚: Number of times each arm will be explored 

1: for  𝒕 =  𝟏, 𝟐, 𝟑, … , 𝑻  do 

2:      if  𝒕 ≤ 𝒎𝒌  then 

3:           Choose 𝒂𝒓𝒎𝒊 where 𝒊 = (𝒕 𝒎𝒐𝒅 𝒌) + 𝟏 

4:           Choose the reward 𝑿𝒕 and update 𝝁̂𝒊 

5:      else 

6:           Choose 𝒂𝒓𝒎𝒊 where 𝒊 = 𝒂𝒓𝒈𝒎𝒂𝒙𝒊(𝝁̂𝒊) 

7:      end if 

8: end for 

 

k stands for the number of arms. 𝜇̂𝑖 embodies the average reward of 𝑎𝑟𝑚𝑖 given in the exploration 

phase as an estimate of the real average reward of 𝑎𝑟𝑚𝑖. 
The main feature of the ETC algorithm is shown in the pseudocode. The algorithm will explore each 

arm for 𝑚 times and then immediately start the exploitation phase [22]. Though this policy is easy to 
understand and implement, the transition from exploration to exploitation is too abrupt. To balance the 
exploration and exploitation more reasonably, the following algorithms are introduced. 

3.1.2.  SoftMax. The SoftMax algorithm refers to the Boltzmann distribution in the physics field so the 
SoftMax is also called the Boltzmann Exploration. To solve the EE dilemma, the algorithm determines 

which arm to choose in each round by first calculating a weight or probability for each arm, and then 
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selecting the arm whose probability is the highest. The probability for the algorithm to select an arm 
follows the following formula: 

 𝑃(𝑗) =
𝑒

𝜇̂𝑗/𝜏

∑  𝑘
𝑖=1 𝑒 𝜇̂𝑖/𝜏                (2) 

In this formula, 𝜏 is a hyperparameter whose physical meaning is temperature. Theoretically, the 

bigger the 𝜏 is, the more times the algorithm will explore. Conversely, the more times the algorithm will 
exploit. As shown in Table 2. 

Table 2. SoftMax algorithm 

Algorithm 2 SoftMax Algorithm 

Input: 𝑘 

1: Initialize estimates of reward of each arm μ̂
𝑖
 

2: for  𝑡 =  1,2,3, … , 𝑇  do 

3:      Update probability of each arm 𝑃(𝑗) =
𝑒

μ̂𝑗/τ

∑ 𝑒 μ̂𝑖/τ𝑘
𝑖=1

, 𝑗 =  1,2,3, … , 𝑘 

4:      Choose 𝑎𝑟𝑚𝑖 where 𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑃) 

5:      Observe the reward 𝑋𝑡 
6: end for 

 

An obvious problem with the SoftMax algorithm is that the hyperparameter τ is a constant so it 

cannot dynamically adjust the τ to strike a balance between exploitation and exploration. To improve 
the performance, the Annealing SoftMax algorithm is introduced [23]. The difference between the 
original SoftMax algorithm and the Annealing SoftMax algorithm is that the hyperparameter τ will be 

determined by a monotonically decreasing function 𝑓(𝑡), which means the algorithm will trend towards 

more select the 𝑎𝑟𝑚𝑗  whose has the largest μ̂ with the increasing number of rounds. 

3.1.3.  Epsilon-Greedy. The Epsilon-Greedy algorithm’s solution to combat the EE dilemma is that it 

introduces a hyperparameter ϵ ∈ (0,1) to control the extent of the exploration. At the beginning of each 
round, the algorithm will generate a random number between 0 to 1. Then the algorithm will compare 

this random number with ϵ . If ϵ  is bigger, the algorithm will do exploration by selecting an arm 

randomly. Conversely, it will do exploitation by selecting the arm whose μ̂ is the biggest. As shown in 
Table 3. 

Table 3. Epsilon-Greedy algorithm 

Algorithm 3 Epsilon-Greedy Algorithm 

Input: 𝑘 and ϵ ∈ (0,1) 

1: for  𝑡 =  1,2,3, … , 𝑇  do 

2:      Generate a random number 𝑞 ∈ (0,1) 

3:      if  𝑞 ≤ ϵ  then 

4:           Choose 𝑎𝑟𝑚𝑖 randomly 
5:           Observe the reward 𝑋𝑡 and update μ̂

𝑖
 

6:      else 

7:           Choose 𝑎𝑟𝑚𝑖 where 𝒊 = 𝒂𝒓𝒈𝒎𝒂𝒙𝒊(𝝁̂𝒊) 
8:      end if 

9: end for 
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Like the problem faced by the SoftMax algorithm, the original Epsilon-Greedy algorithm also cannot 

tune the ϵ automatically to reduce dispensable times for exploration. Therefore, the annealing method is 

used in the Epsilon-Greedy algorithm. Here are some common annealing functions 𝑓(𝑡) to determine ϵ. 

 

𝑓(𝑡) = 𝑡−𝑎 , 𝑎 > 0
𝑓(𝑡) = log (𝑡)/𝑡

𝑓(𝑡) = log (𝑡)−𝑎 , 𝑎 > 0
                   (3) 

3.1.4.  Upper Confidence Bound. The above algorithms, particularly ETC and Epsilon-Greedy, select 
an arm blindly and randomly without any guidelines when they take an action in the exploration phase. 
However, the Upper Confidence Bound algorithm (UCB) overcomes this pitfall. This algorithm 
introduces a statistical concept called confidence bound, which is utilized to judge the confidence level 

of the distribution of a random variable. If a random variable has a large confidence bound, it means this 
variable has much high uncertainty and it has the biggest potential to become the best action. The UCB 
algorithm uses the UCB index to decide which arm should be chosen. The UCB index is defined by the 
following formula. 

 𝑈𝐶𝐵𝑖(𝑡 − 1) = 𝜇̂𝑖(𝑡 − 1) +  Exploration Bonus              (4) 

The UCB index is determined by two terms, the average reward from 𝑎𝑟𝑚𝑖 till round 𝑡 − 1 and an 
exploration bonus that is a decreasing function of the number of times an arm is chosen. The algorithm 
will select the arm with the biggest UCB index in each round. Consequently, a key component of the 
UCB algorithm is the function of exploration bonus selection. As shown in Table 4. 

Table 4. Bound algorithm 

Algorithm 4 UCB Algorithm 

Input: 𝑘 and 𝛿 

1: for  𝑡 =  1,2,3, … , 𝑇  do 
2:      Choose 𝑎𝑟𝑚𝑖 where 𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝑈𝐶𝐵𝑖(𝑡 − 1, 𝛿) 

3:      Observe the reward 𝑋𝑡 and update 𝑈𝐶𝐵𝑖(𝑡, 𝛿) 
4: end for 

 

The Algorithm 4 calculates the UCB index based on the following formula: 

 𝑈𝐶𝐵𝑖(𝑡 − 1, 𝛿) = {

∞  if 𝑇𝑖(𝑡 − 1) = 0

𝜇̂𝑖(𝑡 − 1) +
𝐵

2
√

2log (1/𝛿)

𝑇𝑖 (𝑡−1)
 otherwise. 

                      (5) 

Where 𝐵 is the difference between the maximum possible reward value and the minimum possible 

reward value. δ is the error probability that usually is related to horizon 𝑛 and equals to 1/𝑛2. 𝑇𝑖(𝑡) is a 

counter that means the number of times of the 𝑎𝑟𝑚𝑖 has been chosen till round 𝑡. The algorithm can be 

called UCB (δ) because this algorithm needs δ to define the exploration bonus. 
There are some variants of the UCB algorithm, such as Asymptotically optimal UCB and MOSS. 

For the Asymptotically optimal UCB algorithm, the 1/δ is changed to an increasing function 𝑓(𝑡). Here 
are common functions: 

 𝑓(𝑡) = 𝑡                (6) 

 𝑓(𝑡) = 1 + 𝑡 ⋅ log2  (𝑡)               (7) 

Compared with the UCB (δ) whose exploration bonus remains the same for the arms that are not 
selected and goes down for the selected arm, the UCB index for the Asymptotically optimal UCB is 
updated at every round for all arms. The exploration bonus increases for arms not selected and decreases 

for the selected arms. This policy represents the balance between exploration and exploitation. And this 
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algorithm does not need to know the horizon 𝑛 but only utilizes 𝑡 , which means it is an anytime 
algorithm. 

The primary innovation in the MOSS algorithm is that 𝑛 and 𝑘 are taken into account when selecting 
the confidence level, in addition to the number of plays for each arm. The MOSS algorithm selects an 
arm in the round t following this formula: 

 arm𝑖 = argmax𝑖  𝜇̂𝑖(𝑡 − 1) + √
4

𝑇𝑖(𝑡−1)
log+ (

𝑛

𝑘⋅𝑇𝑖 (𝑡−1)
)             (8) 

where 𝑙𝑜𝑔+(𝑥) = log max{ 1, 𝑥}. 

3.1.5.  Thompson Sampling. Bayesian inference forms the foundation of Thompson Sampling's core 
concept. The algorithm chooses an arm in a round based on not some values used to measure the average 
reward of each arm and the potential to become the best arm but the Cumulative Distribution Function 

(CDF) of each arm’s reward. After choosing an arm, the algorithm will update the CDFs for future 
selection. In this research, the Gaussian Distribution is used to present the “current belief” of the mean 

reward of 𝑎𝑟𝑚𝑖 which is denoted by 𝐹𝑖(𝑡). As shown in Table 5. 

 𝐹𝑖(𝑡) ∼ 𝒩 (𝜇̂𝑖 ,
𝐵2/4

𝑇𝑖 (𝑡)
)                 (9) 

Table 5. Thompson Sampling 

Algorithm 5 Thompson Sampling 

Input: Prior CDFs: 𝐹1(1), 𝐹2(1), 𝐹3(1), … , 𝐹𝑘(1) 

1: for  𝑡 =  1,2,3, … , 𝑇  do 

2:      Sample 𝜃𝑖(𝑡) ∼ 𝐹𝑖(𝑡) independently 

3:      Choose 𝑎𝑟𝑚𝑖 where 𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝜃𝑖(𝑡) 

4:      Observe the reward 𝑋𝑖 and update 𝐹𝑖(𝑡) 
5: end for 

 

The Thompson Sampling algorithm uses sample sampling and posterior distribution updates to strike 
a balance between exploitation and exploration. The algorithm chooses an arm based on the result of 
sampling each arm. Therefore, every arm has a chance to be explored because of the uncertainty. The 
distribution of each arm's mean reward will become increasingly concentrated as the number of rounds 
increases. The algorithm is therefore more likely to be exploited. 

4.  Results and Discussion 

4.1.  Experiment Setup 

4.1.1.  Dataset Description. This research uses a public dataset MovieLens 1M Dataset to test the 
performance of the above algorithms. This data collection 6,040 MovieLens users who signed up in 
2000 have rated approximately 3,900 movies anonymously, totaling 1,000,209 ratings in these files. 
This dataset is composed of three parts, users, movies, and ratings. The users part includes some users’ 
information such as gender, age, and occupation. The movies part contains movies’ titles and 18 genres. 

The ratings part is the rating users give for movies an integer from 1 to 5. 

4.1.2.  Problem Definition. In this paper, each movie genre is an arm, and user ratings are considered as 
the reward received when a movie from a genre is rated by a user. Maximizing the cumulative reward 
or minimizing the cumulative regret is the aim of the experiment. I choose to use cumulative regret to 
measure the performance of algorithms. 
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4.1.3.  Data Preprocessing. To use the dataset in the experiment, some data preprocessing is necessary. 
Best Arm: The best arm and the largest mean reward of all arms should be known if conducting a 

quantitative experiment. Therefore, the average ratings of each film genre are counted in advance and 
the knowledge of the best arm is gained. 

Probability of each rating of each movie genre: In the dataset, each movie has more than one genre. 
The rating of a movie is an integer from 1 to 5. To enhance the running speed of the program, the 
probability of each score for each film genre is counted and calculated in advance. When the algorithms 
choose an arm, they will get a reward based on these data. 

4.2.  Comparison and Analysis of Experimental Results 

4.2.1.  ETC. For the ETC algorithm, the experiments are conducted to compare the performance in 
different horizons and different degrees of exploration.  

 

 

 

Figure 2. The cumulative regrets with different 
horizons of the ETC algorithm (Photo/Picture 
credit: Original). 

 
Figure 3. The Comparison of the ETC algorithm 
with different degrees of exploration (Photo/ 

Picture credit: Original). 

Figure 2 shows the performance of the ETC algorithm in different horizons with a 10% degree of 
exploration. There is an inflection point of each curve near the 10000th round which is the transition 
point from exploration to exploitation. With the increase of the horizon, the cumulative regret increases 
slowly because of the sufficiency of exploration. Figure 3 reflects the importance of the balance of 
exploration and exploitation. A proper degree of exploration can make the performance better. 

4.2.2.  SoftMax and Annealing SoftMax. The SoftMax algorithm is sensitive to the initial value of the 
average reward of each arm. Figure 4 shows the performance of the SoftMax become more and more 
better with the increase of the estimates. The performance is relatively better when the estimates are 
equal to 4 and the algorithm is initialized based on prior knowledge. 
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Figure 4. The cumulative regrets of the SoftMax algorithm with different initial values of the average 

reward of each arm (Photo/Picture credit: Original). 

 

Figure 5. The cumulative regrets of SoftMax algorithm with different τ (Photo/Picture credit: Original). 

Unlike the previous analysis, in this situation, the change in 𝜏 does not have an obvious impact on 
the performance of the SoftMax algorithm from Figure 5. 

4.2.3.  Epsilon Greedy and Annealing Epsilon Greedy. The choice of ϵ has a strong impact on the 

performance of the Epsilon Greedy algorithm from the observation of Figure 6. The algorithm's 

performance will suffer if ϵ is excessively high or little, as it won't be thoroughly explored or well 
exploited.  

The annealing function 𝑓(𝑡) the experiment chosen is the formula (3). The annealing Epsilon Greedy 
algorithm outperforms the normal one, as shown in Figure 7, with the best performance occurring when 
𝑎 equals to 0.35.  
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Figure 6. The comparison of the performance of 

the Epsilon Greedy algorithm with different ϵ  

(Photo/ Picture credit: Original). 

 
Figure 7. The comparison of the performance of 
Annealing Epsilon Greedy algorithm with 

different coefficient 𝑎   (Photo/Picture credit: 

Original). 

4.2.4.  Upper Confidence Bound and Variants. The formula of the UCB index in this experiment is. 

 𝑈𝐶𝐵𝑖(𝑡 − 1) = 𝜇̂𝑖(𝑡 − 1) +
𝐵

2
√

𝑙log 𝑛

𝑇𝑖 (𝑡−1)
             (10) 

Where the 𝑙 represent the balance between exploration and exploitation. The larger is the 𝑙 value the 

more will the algorithm explore, while with smaller 𝑙 it will more aggressively exploit. Through the 

observation of Figure 8, with the increase of 𝑙, the cumulative regret increases obviously.  

 

Figure 8. The comparison of the performance of UCB algorithm and its variants with error bars 

(Photo/Picture credit: Original). 

Compared with the standard UCB algorithm, the asymptotically optimal UCB algorithm (first of the 
second line) and MOSS algorithm (second of the second line) have larger error bars. Compared to the 
UCB algorithm and the asymptotically optimal UCB algorithm, the MOSS algorithm performs better. 

4.2.5.  Thompson Sampling and Comparison. An understandable comparison of several multi-armed 
bandit algorithms may be seen in Figure 9. The ETC algorithm and the SoftMax algorithm do not have 
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relatively good performance so they are not involved in the figure. In the figure 10, algorithms all have 

a 𝑂(𝑙𝑜𝑔 𝑛) cumulative regrets. The Thompson Sampling has the best performance.  

 

Figure 9. The comparison of the performance of different multi-armed bandit algorithms (Photo/Picture 

credit: Original). 

 

Figure 10. The comparison of the performance of different multi-armed bandit algorithms with error 

bars (Photo/Picture credit: Original). 

Through the comparison of the width of the error bars of different algorithms, the Epsilon Greedy 
algorithm explores and exploits more randomly than other algorithms. The standard UCB algorithm is 
relatively stable. The MOSS algorithm and the Thompson Sampling algorithm have good performance 
among these algorithms. 

4.3.  Limitations of Classic Bandit Algorithms 

Although classic bandit algorithms show strong performance in many scenarios, they still encounter 
several challenges and limitations when confronted with real-world complex environments: 

Ignoring Contextual Information: Classical bandit algorithms do not take into account contextual 
information that may be present at each action point. This means that they do not take advantage of 
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additional information associated with each action point. Consequently, they may underperform in 
situations where context plays a crucial role. 

Inapplicability to Dynamic Environments: Classic bandit algorithms often suppose that the 
environment is stationary, which means the distribution of the reward of each arm does not change. 

However, in the real world, the environment is dynamic. The distribution is impacted by time, actions, 
and contextual information. 

Missing action combinations: In some scenarios, the bandit algorithm needs to select a portfolio of 
actions to maximize the reward every round. The classic algorithm usually chooses one action per round. 
This limitation may restrict their ability to exploit potential synergies between different actions, resulting 
in suboptimal outcomes. 

4.4.  New Models and Approaches 

To tackle the above problems with the classic bandit algorithm and fit the complex requirements in the 
real world, many researchers propose a lot of new models and approaches. These ideas aim to enhance 
the decision-making accuracy, adaptability, and efficiency in various applications based on the classic 
bandit algorithms. Here are some significant examples. 

4.4.1.  Contextual Bandits. In the real world, the contextual information cannot be ignored. Focusing on 

the experiments in this paper, the dataset has lots of contextual information such as users’ gender, age, 
and occupation. In a recommendation system, the assignment has been redesigned to suggest movies to 
users based on their past ratings. Such information affects the decision making of the agent to some 
extent. The Contextual Bandits focuses on such tasks. The agent considers the contextual information 
to adjust the policy when it makes a decision. 

4.4.2.  Combinatorial Bandits. Combinatorial bandits are an extension of the classic multi-armed bandit 
problem. The agent can select more than one action at once in place of just one at a time. In combinatorial 
bandits, actions are composed of combinations of individual choices. In each round, the player selects a 
combination of actions and observes the rewards associated with those choices, aiming to maximize 
cumulative reward. 

4.5.  Applications 

4.5.1.  Recommendation System In recent years, the Contextual Bandits model has been widely utilized 
in recommendation systems. In 2010, Li et al proposed the LinUCB algorithm to solve the news 

homepage recommendation problem. The LinUCB algorithm is initially proposed for linear return 
models. It achieves an efficient upper bound confidence algorithm by efficiently computing confidence 
intervals for the parameters. The LinUCB algorithm specifically looks at the scenario of a linear model 
first, such as one in which the expected reward and the characteristics have a linear connection. In this 
case, by applying ridge regression to the training data, the values of the parameters can be estimated and 
the corresponding upper bound confidence can be calculated. And Xu et al primarily utilized a 
contextual bandit algorithm to capture users' interest preferences over time. 

4.5.2.  Clinical Trail. This research [6] focuses on designing an Adaptive Clinical Trial (ACT) for 
animal experiments investigating cancer therapy effectiveness. The goal is to allocate treatments based 
on tumor volume data to improve outcomes while minimizing exposure to ineffective treatments. The 
study uses a contextual bandit approach, where treatments are selected based on prior data collected 
after completing groups of animals. By implementing the GP BESA strategy, the ACT showed improved 

longevity in mice compared to basic treatment strategies, demonstrating the effectiveness of adaptive 
treatment allocation in optimizing tumor growth outcomes. In order to solve the challenge of 
determining and giving a patient a suitable starting dose, Bastani et al modeled the issue as a multi-
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armed bandit problem with high-dimensional variables. They then suggested a creative and effective 
multi-armed bandit approach that was based on the LASSO estimator. 

The research proposes a contextual bandit algorithm that dynamically optimizes treatment selection 
during the trial by considering patient characteristics. The algorithm is evaluated using real clinical trial 

data from the International Stroke Trial and is compared to random assignment and a context-free multi-
arm bandit approach. The results indicate that the contextual-bandit approach outperforms the other 
methods, providing substantial gains in assigning the most suitable treatments to participants. 

4.5.3.  Financial Investment. To create a pool of candidate portfolios, the study suggests a two-stage 
investment technique that combines the LinUCB algorithm to generate a portfolio update rule based on 

a particular utility function with a supervised adaptive decision tree approach. The goal of the research 
is to strike a balance between exploration and exploitation when choosing a portfolio, taking into account 
investors' erratic tastes for various assets. 

The research focuses on online portfolio selection problems in both full-feedback and bandit-
feedback settings. The study introduces algorithms with sublinear regret upper bounds and analyzes 
regret lower bounds for these settings. The algorithms combine the multiplicative weight update method 
(MWU) or multi-armed bandit algorithms (MAB) with online convex optimization (OCO) techniques. 

5.  Conclusion 

This work compares the effectiveness of many traditional stochastic multi-armed bandit algorithms and 
discusses several new multi-armed bandit issue models and their usage.   

In the experiment part, different classic stochastic multi-armed bandit algorithms are implemented. 
The ETC algorithm is a simple algorithm that is easy to understand and implement. However, it needs 

to know the horizon and it is hard to determine the degree of exploration. The SoftMax algorithm refers 
to a physical idea but it is sensitive to the initialization. The Epsilon Greedy algorithm has a relatively 

good balance of exploration and exploitation by adjusting the value of ϵ and the idea of annealing further 
improves its performance. The UCB algorithm and its variants concentrate on the choice of the formula 
to calculate the UCB index. Different designs for calculating the UCB index impact the performance 
and the MOSS algorithm has better performance. Thompson Sampling is based on the Bayesian 
inference balancing exploration and exploitation and shows the best performance among all algorithms. 

In the discussion part, contextual bandits and combinatorial bandit algorithms are introduced. They 
can adapt to the real world and more complex environments better. Some contextual are considered and 
combinations of arms are given when the algorithm takes an action. There are lots of applications of 

multi-armed bandit algorithms. In recommendation systems, a variant of the UCB algorithm with the 
idea of contextual bandits called the LinUCB algorithm is introduced to solve the problem of news 
homepage recommendation. The multi-armed bandit algorithms are also used in the medical field to 
conduct clinical trials. They are also used by financial experts to select good financial portfolios. 

This study provides valuable insights into multi-armed bandit algorithms, aiding both academia and 
industry. By comparing classic approaches and introducing new models, it equips practitioners with 
actionable knowledge for decision-making in diverse domains. Future research may focus on refining 

algorithms for scalability and adaptability. Interdisciplinary collaborations can drive innovation, 
enhancing the applicability of these algorithms in dynamic environments. Overall, this work lays the 
foundation for continued advancements in sequential decision-making methodologies, with wide-
ranging implications for various sectors. 
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