
Optimizing decision-making in uncertain environments 

through analysis of stochastic stationary Multi-Armed Bandit 

algorithms 

Ruibo Song 

School of Information Management and Engineering, Shanghai University of Finance 
and Economics, Shanghai, China 

2021110979@stu.sufe.edu.cn 

Abstract. Reinforcement learning traditionally plays a pivotal role in artificial intelligence and 

various practical applications, focusing on the interaction between an agent and its environment. 
Within this broad field, the multi-armed bandit (MAB) problem represents a specific subset, 

characterized by a sequential interaction between a learner and an environment where the agent’s 

actions do not alter the environment or reward distributions. MABs are prevalent in 

recommendation systems and advertising and are increasingly applied in sectors like agriculture 

and adaptive clinical trials. The stochastic stationary bandit problem, a fundamental category of 

MAB, is the primary focus of this article. Here, we delve into the implementation and analytical 

comparison of several key bandit algorithms—including Explore-then-Commit (ETC), Upper 

Confidence Bound (UCB), Thompson Sampling (TS), Epsilon-Greedy (ɛ-Greedy), SoftMax, and 

Conservative Lower Confidence Bound (CON-LCB)—across various datasets. These datasets 

vary in the number of options (arms), reward distributions, and specific parameters, offering a 

broad testing ground. Additionally, this work provides an overview of the diverse applications 

of bandit problems across different fields, highlighting their versatility and broad impact. 

Keywords: Multi-armed Bandits, Reinforcement learning, Machine learning, Artificial 

intelligence. 

1.  Introduction 

In contemporary computing architectures, Reinforcement Learning (RL) is recognized as a critical 
subfield of machine learning [1]. Distinct from traditional supervised and unsupervised learning 
approaches, which aim to uncover latent data structures or predict outcomes for new data, RL does not 
seek a singular "correct" answer. Instead, its goal is to optimize outcomes through trial and error, striving 

to secure the best possible rewards or strategies. This branch of machine learning holds significant 
potential and has seen diverse applications. For instance, in the realm of gaming, RL influences 
everything from traditional board game strategies, such as chess, to the development of modern video 
games. In robotics, it accelerates iteration and updates, enabling robots to adapt more effectively to their 
environments. RL also plays a role in enhancing recommendation systems and the functionality of 
conversational AI [2]. 
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The fundamental elements of reinforcement learning include agents, environments, actions, and 
rewards. The primary objective is to assist agents in discovering the most effective strategy to maximize 
cumulative rewards.  

The basic model of Reinforcement Learning (RL) can usually be described by a Markov Decision 

Process (MDP). Reinforcement learning problems can generally be represented by four-tuple <S, A, T>. 
S represents the set of all states s. A represents the set of all actions for every s in S. P represents the set 
of transition probability, which means that the probability of an agent transitioning from s to s' via action 
a, and its main expression is P (s, a, s') or P (s'| s, a). R represents the set of immediate reward, which 
means the immediate reward obtained by the agent in s is to move to s through action a, and its 
expression is R (s, a, s'). If we want to briefly represent this tuple, this can be simplified to <S, A, T>. T 
(s, a, s') represents the transition function which combines the transition probability and the immediate 
reward, and contains the probability and reward of s transferring to s’ through action a. Generally, 

reinforcement learning methods are mainly divided into two categories: Model-based Learning and 
Model-free Learning. Model-Based reinforcement learning methods involve building a model of an 

environment, trying to understand the transfer equation T of the environment. This model 𝑇̂ can be given 
in advance or learned through interaction with the environment. Using this model, agent can predict the 
consequences of their actions, plan and make decisions. Model-Free reinforcement learning methods do 
not directly build a model of the environment. Instead, they learn how to achieve their goals by 

interacting directly with their environment. Model-Free methods focus on learning a policy 𝜋(s, a) or 
value function V (s) or Q (s, a). As shown in Figure 1. 

 

Figure 1. Reinforcement Learning process (Photo/Picture credit: Original). 

Multi-armed Bandit problem is a type of reinforcement learning, but it is not a typical reinforcement 
learning problem because the agent and the environment do not interact [3]. It is a sequential learning 

process like reinforcement learning, but it is not Cannot change the distribution of rewards or the content 
of the environment. Its purpose is also very similar to RL, which is to maximize the cumulative reward, 
but in experiments this is more transformed into minimizing the cumulative regret. Compared with 
traditional reinforcement learning problems, its application is more subdivided and focused more on 
Various recommendation systems, such as movies, books, etc., have a certain impact on financial 
investment, agriculture, and clinical medical experiments.  

The main purpose of the MAB algorithm is to minimize the cumulative regret in the process by 
balancing the exploration and exploitation dilemma in long-term consequences. Nowadays, the MAB 

algorithm has made rapid progress, and they have different parameters. That is, the number of arms, the 
number of rounds, or the reward distribution have different performances. There are many types of MAB 
problems, the most basic of which is the stochastic stationary bandit problem. This article hopes to 
simulate the process of these algorithms in the stochastic stationary multi-armed bandit problem as much 
as possible by changing different data sets to complete comparative analysis. For algorithms with 
deterministic parameters, optimize their performance by adjusting and optimizing the parameters. This 
may help to find suitable MAB algorithms more quickly in future research in different directions, in 

order to provide certain reference in different fields. 
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2.  Relevant Theories 

2.1.  Definition and Development of Multi-armed Bandits 

2.1.1.  Conceptual Framework. The model of Multi-armed Bandits could be represented by 3-tuple <A, 
R, Q>. Since the multi-armed bandit problem does not interact with the environment, compared to the 
reinforcement learning problem, there is no need to record the environmental state S. |A| = k and A = 

{𝐚𝟏, … , 𝐚𝐤}, which represents the set of all actions. Because actions cannot have an impact on the 
environment, there is no need to define actions for each state, but it is necessary to focus on defining the 

round t. t ∈ N, N here represents horizon, a value that we can define before the experiment starts. Usually, 
this is the total number of actions the agent takes. Every time the agent takes an action, the value of t 

will be increased by 1. When t reaches N, the experiment stops. 𝐫𝐚,𝐭 ∈ R, which represents the actual 

reward obtained by acting a in round t. However, in general, for an action, that is, an arm, a deterministic 
reward is usually not obtained. This is usually based on to determine the distribution of rewards. For 
example, for clicks on advertising, in actual situations, the agent will collect two reward values 0 or 1 

from the action 𝐚𝐢. 𝐩𝐢 represents the probability of reward 1 and 1 - 𝐩𝐢 represents the probability of 

reward 0. Hence, E [𝐫𝐢] = 𝐩𝐢, E [𝐫𝐢] represents expected value of the reward from action. In literature, to 
explore the MAB problem, it is usually not measured directly by the actual rewards obtained, but by 

average expectations. Q is the set of average expectations of rewards in rounds t. Hence, 𝐐𝐭(𝐚) =
𝐄[𝐫𝐭|𝐚]. The existence of Q helps the design of the algorithm, because it can record the rewards we 
obtained for each arm before round t+1 to provide support for the decision-making at t+1. For the learner 
itself, the purpose is Maximize the total value of reward in N rounds. 

 𝑆𝑛 =  ∑ 𝑟𝑡    
𝑛
𝑡=1                                                        (1) 

In other words, for the MAB problem, the learner's goal can be transformed into minimizing 
cumulative regret R. Because the MAB problem does not interact with the environment, it can be used 
as the learner's goal in a more convenient way to analyze. Such a formula can make it easier to see the 
gap between the experimental process and the optimal situation, which facilitates subsequent research 

in order to put it into real application scenarios.  

 𝑅 = ∑ 𝑟𝑡
∗𝑛

𝑡=1 − ∑ 𝑟𝑡
𝑛
𝑡=1                                          (2) 

Here, 𝑟𝑡
∗ represents the actual reward of the largest possible arm in each round. In actual situations, 

the value of r is determined based on the distribution. In experiments, the situation will be more focused 
on the use of average expectations, which can provide overall support for the experimental results. Here, 

u* represents the average expectation of the best arm if we know. 𝜋 presents the policy. 𝐸[∑ 𝑟𝑡]𝑛
𝑡=1  

represents the expected cumulative reward of our policy. 

 𝑅(𝜋)  = 𝑛 ∗ 𝑢∗ − 𝐸[∑ 𝑟𝑡]𝑛
𝑡=1                                         (3) 

The most classic and direct case of the Multi-armed Bandit problem is the selection of slot machines 
in casinos. If a person has a capital F and the cost per use of each slot machine is c, then N in the MAB 

problem is 𝐹/𝑐 , and he wants to maximize his net income from the casino. In the traditional A/B testing 
method, people test all slot machines that can be invested in set rounds. If the test phase is longer, it will 
indeed have higher confidence for the winner, but it will also cost more money. That is, resources are 
wasted exploring unimportant options. After the exploration phase is over, the experiment will suddenly 
drop into the utilization phase. However, in more MAB algorithms, people have found more ways to 
balance the dilemma of exploration and utilization, which also promotes the development of MAB 

algorithms. 

2.1.2.  Evolution and Types of Multi-Armed Bandits. Due to the application of MAB in various modern 
directions, its iterations have gradually come into people's vision. To be more relevant from the 
perspective of practical application, people have also subdivided it into several important categories and 
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gradually divided it into these several directions for research. Accordingly, the MAB algorithm in the 
traditional sense has also adopted certain adjustments and changes on these issues. According to 
different natures, researchers divide conceptual MAB problems into the following types of problems, 
which add more restrictions or conditions than the content of the actual problems. 

The first is stochastic stationary Bandits, which is also the main content discussed in this article. 
Similarly, it is also the core content of the MAB problem. Basically, all algorithms are born based on 
this problem, and then under the conditions of other types of MAB to adjust and analyze. Its core is that 
the reward of each arm of r comes from their fixed reward distribution, which is linked to their actions, 
and will not change according to the increase of rounds, that is, the change of time, which represents the 
characteristics of stationary, and the reward obtained by each action is randomly obtained according to 
the distribution. According to this characteristic, the researcher can simplify the process of extracting 
the arm's reward. It no longer directly extracts the reward from the data set based on the arm's serial 

number but use storage distribution to simplify the reward acquisition process.  
The second category is Non-Stationary (Restless) Bandits, whose characteristics correspond to 

Stochastic Stationary Bandits. Similarly, the agent cannot affect the environment through actions, but 
the environment will gradually change as t increases, which is reflected in the randomness of the reward 
distribution. With the change of time, this requires the traditional stochastic stationary algorithm to 
introduce more considerations about the time round t. 

Next is Structured Bandits. The main feature of this type of problem is that it assumes that there is a 

clear structure existing in the reward distribution, which affects the entire problem process. Such an 
assumption can make the execution process of the algorithm have more suitable parameters, help the 
algorithm better predict the distribution of the entire reward, and optimize the purpose of the experiment, 
which is to minimize cumulative regret. Expressing it as a formula, there are two types of expressions: 
Linear Bandits and Global Structured Bandits. 

 𝑟𝑡  = 𝑎 ∗  𝜃 + 𝜂𝑡                                                 (4) 

𝑟𝑡 is a linear function here with respect to 𝜃. This is also the main definition of Linear structured 

Bandits. 𝜃 is the core of the problem of structured bandits. It is an unknown universal parameter that 
has an impact on all arms. a is a known parameter for all actions. It is similar to the weight of 

approximate Q learning and reflects the difference between different actions. 𝜂𝑡   is a noise variable, 
which has a known distribution and is used to reflect the uncertainty of the action. Another way to define 
it is Global Structured Bandits, or it is an expansion of Linear Bandits. The reward received by an action 
is not defined by a simple linear expression. Instead, use arbitrary function to represent.  

 𝑟𝑡 = 𝑓(θ; 𝑎)                                                           (5) 

Another type of MAB is Correlated Bandits, which assumes that the rewards of different arms are 
related to each other. This connection requires us to have more prior knowledge. At the same time, this 
assumption also allows researchers to better improve the algorithm performance. For example, in a 
recommendation system, when advertisements are placed, the target group is mostly book lovers, so the 
reward distribution between several advertisements about reading content may have a great correlation, 
for example, their average click-through rates will all be the same. is very high, or if the two 
advertisements are very close to each other when choosing where to place the ads, then their reward 

distributions may also be relatively similar. 
Regarding the expansion of MAB, another very popular and important category is Contextual 

Bandits. The difference in its definition is that before taking an action at each round, learner receive a 
“side information” or “context” about the current state of the environment. Under this circumstance, 
overtime, the goal is to learn the best action for each context. This allows the learner to obtain more 
information to improve his performance. Under this assumption, it will have better results for the 
performance of the experimental target. For example, in the recommendation system, it can make use 
of the user's age, hobbies and other characteristics. This is very similar to the characteristics of machine 

learning, but it is not to make predictions, but to make better strategies. 
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2.2.  Fundamental Concepts of Stochastic Stationary Bandits Problems 

2.2.1.  Cumulative Regrets and Its implications. Under the above concept, researchers need to clarify 

the definition of stochastic stationary bandits. Stochastic Stationary Bandits Problems have a set of 

available actions or arms A, and each action a ∈ 𝐀 is associated with a reward distribution 𝐏𝐚. In each 
round t = 1, 2, …, n, the learner chooses an action 𝐚𝐭 ∈ 𝐀 and receives a reward 𝐫𝐭 that is sample from 

𝐏𝐀𝐭
. Then, typically, there are some knowledge on the distributions (𝐏𝐚: a ∈ 𝐀) which is called the 

environment class. 
Since in the literature, researchers pay more attention to the average reward because it contains more 

information, the average reward for each arm should be defined like this. 

 𝑢𝑎 =  ∫ 𝑥 ∗ 𝑑𝑃𝑎(𝑥) 
∞

− ∞
                                             (6) 

 𝑢𝑎 = 𝐸[𝑋𝑡|𝐴𝑡 = 𝑎]                                               (7) 

 (6) is the mean value of a continuous mean reward whose distribution is 𝑃𝑎 . (7) is the conditional 
mean of reward learner receive in round t give that learner choose arm a in round t. 

(7) could be rewritten like this. 

 𝑢𝑎 =  ∑ 𝑃(𝑟𝑎 = 𝑥) ∗ 𝑥𝑥                                                       (8) 

To correctly define the cumulative regret of stochastic stationary bandits, best arm, that is the arm 
with the largest mean reward. 

 𝑎∗ =  𝑎𝑟𝑔 max
𝑎 ∈ 𝐴

𝑢𝑎                                               (9) 

Here, 𝑎∗  sometimes is denote by 𝑘∗ . It’s the index of the best arm. For example, it’s the 
advertisement version with the highest click-rate in advertising recommendation system. 

 𝑢∗ =  max
𝑎 ∈ 𝐴

𝑢𝑎                                                    (10) 

𝑢∗ is the largest mean reward of all arms. In the above example. It’s the largest click rate of all 
advertisement versions. In this way, the cumulative regret of stochastic stationary bandits can be defined 
as follows.  

𝑅𝑛(𝜋)  = 𝑛 ∗ 𝑢∗ − 𝐸[∑ 𝑟𝑡]𝑛
𝑡=1 𝑅𝑛(𝜋) is the expected regret of policy 𝜋 accumulated in n rounds. 

𝑛 ∗ 𝑢∗ is the expected cumulative reward researchers would have gotten if they knew which arm was 

the best. Then, the learner’s goal is to minimize 𝑅𝑛(𝜋). 

2.2.2.  The Concept of Logarithm Regret. In this case, how to measure what a good algorithm is to first 
define the logarithm regret.  Before defining the logarithm regret, sub-linear regret should be defined 
clearly. 

 lim
𝑛→∞

𝑅𝑛

𝑛
 = 0                                                    (11) 

 𝑅𝑛 = 𝑜(𝑛)                                                            (12) 

This means that the algorithm chooses the best action almost all the time in the limit of horizon n 
going to infinity. The learner can usually do better than regret being just sub-linear under the algorithm.  

 𝑅𝑛 ≤ 𝐶 ∗ log 𝑛                                                           (13) 

 𝑅𝑛 = 𝑂(log 𝑛)                                                           (14) 

For better understanding of logarithmic regret of Stochastic Stationary Bandits Problems, the 
significance of regret as a logarithm to the number or frequency of suboptimal decisions plays a decisive 
role. To figure out this, regret decomposition should be defined. First, express the regret term in (11) in 
terms of the number of sub-optimal choices. 
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 𝑇𝑎  (𝑡) =  ∑ 𝕀𝑡
𝑖=1  [𝑎𝑖 = 𝑎]                                                 (15) 

For any a  ∈ 𝐴, let ∆𝑎=  𝑢∗ − 𝑢𝑎  define the sub-optimality gap of action a. It’s the difference 

between the mean reward of the best action and the mean of action a. For the best arm 𝑎∗, the sub-
optimality gap is 0, that is, ∆𝑎∗ = 0. Then, regret can be rewritten as below. 

 𝑅𝑛 =  ∑ ∆𝑎 ∗ 𝐸[𝑇𝑎  ( 𝑛 )]𝑎 𝜖 𝐴                                                (16) 

∆𝑎 is the regret incurred each time action a is taken. 𝐸[𝑇𝑎  ( 𝑛 )] is the mean number of times action 
a is taken in n rounds. Then, the goal of the learner is to minimize the weighted sum of expected action 

counts, where the weights are equal to the sub-optimality gaps. The learner should try to choose an arm 

with a larger ∆ proportionally fewer times. 𝑅𝑛  is logarithmic, that is 𝑅𝑛  = O (log n), if and only if 
𝐸[𝑇𝑎  ( 𝑛 )] = O (log n) for all sub-optimal arms a = 𝑎∗. 

 𝐸[𝑇𝑎  ( 𝑛 )] =  ∑ 𝑃 (𝑎𝑡
𝑛
𝑡=1 = 𝑎)                                (17) 

If ∑ 𝑃 (𝑎𝑡
𝑛
𝑡=1 = 𝑎) = O (log n), there should be (17) 

 𝑃( 𝑎𝑡 = 𝑎 ) ≅  
1

𝑡
                                                          (18) 

1

𝑡
 follows intuitively from ∫

1

𝑥
𝑑𝑥 = log (𝑥). Logarithmic regret is achieved if the probability that the 

algorithm makes a sub-optimal decision in round t decays as 
1

𝑡
. 

2.2.3.  Exploration-Exploitation Trade-off. According to the characteristics of MAB, the environment 
does not reveal the reward of the actions not selected by the learner, that is, the learner should gain 

information by repeatedly selecting all actions to exploit. When the learner selects a sub-optimal action, 
it loses from the cumulative reward. The learner should try to exploit the action that returned the largest 
reward so far. The important part of the MAB algorithm is the balance of these two parts, which is also 
an important feature that distinguishes them from the A/B testing method. How to accurately understand 
these two parts and reasonably optimize the structure and function of these two parts can achieve the 
goal of the learner. 

2.3.  Implementation of Different Algorithms 

2.3.1.  Explore-Then-Commit (ETC). The core of this algorithm is like A | B testing method. ETC 
algorithm is to explore by playing each arm a fixed number of times and then exploits by committing to 
the arm that appeared the best during exploration. And it could be assumed that the reward distribution 

for all arms is 1-subGaussian (𝛕 – sub-Gaussian with 𝛕 = 1). That is, for any 𝛕 ≥ 0, a random variable 
X being 1-subGaussian means that 

 𝑃(𝑋 ≥  𝜏)  ≤  𝑒−
𝜏2

2                                                 (19) 

Here, 𝑃(𝑋 ≥  𝜏) is the tail probability of X. 𝑒−
𝜏2

2  is the tail probability of a Gaussian random variable 

with mean = 0 and variance = 𝜏2 = 1 (Normal Distribution). As shown in Figure 2. 
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Figure 2. Comparison of Gaussian and 1-subGaussian (Photo/Picture credit: Original). 

If x is bounded in the interval [a, b], then x is 𝜏 – subGaussian with 𝜏 = 
𝑏 − 𝑎

2
. 

The ETC algorithm assume there are k arms. Let me: number of times each arm will be explored. 
Algorithm 1 ETC  
procedure ETC (N, m, k)  

Input m 
For each t = 1, 2, … choose action 

 𝐴𝑡 = {
(𝑡 𝑚𝑜𝑑 𝑘) + 1, 𝑖𝑓 𝑡 ≤ 𝑚 ∗ 𝑘 

arg max
𝑖

𝑢̂𝑖(𝑚 ∗ 𝑘), 𝑖𝑓 𝑡 ≥  𝑚 ∗ 𝑘                                 (20) 

(Where 𝑢̂𝑖 (t) = 
∑ 𝟙[𝐴𝑠 = 𝑖] 𝑋𝑠

𝑡
𝑠=𝑖

∑ 𝟙[𝐴𝑠 = 𝑖] 𝑡
𝑠=𝑖

). 

Store 𝑅𝑛. 
Continue. 
Return cumulative regret. 

Here ∑ 𝟙[𝐴𝑠 = 𝑖]𝑋𝑠
𝑡
𝑠=𝑖   represents total reward from i until round t.  ∑ 𝟙[𝐴𝑠 = 𝑖]𝑡

𝑠=𝑖  represents the 

number of times arm i is selected until round t, which equals to 𝑇𝑖(t) 
The exploration phase of ETC phase is choosing each arm in a round-robin fashion until all k arms 

are selected m times each. And the exploitation or commit phase is starting with round t = m * k + 1, 
the algorithm selects the arm with the largest average reward in the exploration phase for all future 
rounds. 

The regret in exploration phase is the formula below.  

 𝑅(𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛)  =  ∑ ∆𝑖  ∗  𝑚𝑘
𝑖 = 1                                            (21) 

In the commit phase, 

 𝑅(𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛)  =  (𝑛 − 𝑚 ∗  𝑘)  ∗  ∑ ∆𝑖  ∗  𝑃 (𝑢̂𝑖(𝑚 ∗  𝑘)  ≥  max
𝑗 ≠ 𝑖

𝑢̂𝑗(𝑚 ∗  𝑘)𝑘
𝑖 = 1 )    (22) 

𝑃 (𝑢̂𝑖(𝑚 ∗  𝑘)  ≥  max
𝑗 ≠ 𝑖

𝑢̂𝑗(𝑚 ∗  𝑘) is the probability of committing to arm i in all these n – m * k 

rounds. Let ∆1 = 0 (let arm 1to be the optimal arm) without loss of geniality. 

 𝑅(𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛)  =  (𝑛 − 𝑚 ∗  𝑘)  ∗  ∑ ∆𝑖  ∗  𝑃 (𝑢̂𝑖(𝑚 ∗  𝑘)  ≥  max
𝑗 ≠ 𝑖

𝑢̂𝑗(𝑚 ∗  𝑘)𝑘
𝑖 = 2 )    (23) 

Next, this could simply lead to the below formulation. 

 𝑅𝑛 ≤  𝑚 ∗ ∑ ∆𝑖
𝑘
𝑖 = 1 +  (𝑛 − 𝑚 ∗  𝑘)  ∗  ∑ ∆𝑖  ∗  𝑃 (𝑢̂𝑖(𝑚 ∗  𝑘)  ≥  𝑢̂1(𝑚 ∗  𝑘)𝑘

𝑖 = 2 )    (24) 

When the reward distributions are 1-subGaussian, there is. 

 𝑃(𝑢̂𝑖(𝑚 ∗  𝑘)   ≥  𝑢̂1(𝑚 ∗  𝑘))  ≤  𝑒−
𝑚 ∗ ∆𝑖

2

4                       (25) 
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So, this lead to (23). 

 𝑅𝑛  ≤  𝑚 ∗ ∑ ∆𝑖
𝑘
𝑖 = 2 + (𝑛 − 𝑚 ∗  𝑘)  ∗  ∑ ∆𝑖  ∗  𝑒−

𝑚 ∗ ∆𝑖
2

4  𝑘
𝑖 = 2              (26) 

(23) illustrates the trade-off between exploration and exploitation. 

If the researcher chooses the large m. The second term (𝑛 − 𝑚 ∗  𝑘)  ∗  ∑ ∆𝑖  ∗  𝑒−
𝑚 ∗ ∆𝑖

2

4  𝑘
𝑖 = 2 is going 

to be very small. But the first term 𝑚 ∗ ∑ ∆𝑖
𝑘
𝑖 = 1  will be large. Hence, how to choose m decides regret. 

First, assume that k = 2, then ∆1 = 0, ∆2 = ∆. With this simplification, (23) becomes the formulation 
below since n – m * k <.n. 

 𝑅𝑛  ≤  𝑚 ∗ ∆  + ∆  ∗  𝑒𝑙𝑜𝑔 (− 
𝑚 ∗ ∆2

4
)
                              (27) 

 𝑒𝑙𝑜𝑔 (− 
𝑚 ∗ ∆2

4
)
 ≤  1 if 

𝑚 ∗ ∆2

4
 ≥ log n, which means that researcher can make second term less than ∆ 

which is the regret incurred by each sub-optimal choice.  

 𝑚 =  ⌈
4 ∗ 𝑙𝑜𝑔 𝑛

∆2 ⌉                                                           (28) 

With this choice, it could lead to (26) 

 𝑅𝑛  ≤  
4 ∗  𝑙𝑜𝑔 𝑛

∆
 +  2 ∗  ∆                                                  (29) 

With ∆ > 0, 𝑅𝑛 = O (log n). 
While the researcher use more than 2 arms (k is arbitrary), m need to change its expression. This 

need to have (27). 

 𝑚 =  ⌈
4 ∗ 𝑙𝑜𝑔 𝑛

min
𝑖 ≠ 1

∆𝑖
2 ⌉                                                        (30) 

Which gives a regret of (28). 

 𝑅𝑛  ≤̃   ⌈
4 ∗ 𝑙𝑜𝑔 𝑛

min
𝑗 ≠ 1

∆𝑗
2 ⌉  ∗  ∑ ∆𝑖

𝑘
𝑖 = 2  +  𝜂                                           (31) 

𝜂 is small terms that do not depend on n. (25) requires knowledge of ∆ and n. To make m data 
independent, that is, algorithm keeps exploring until the observed data meets certain conditions.  

 |𝑢1̂(2 ∗ 𝑚) − 𝑢2̂(2 ∗ 𝑚)| ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑐𝑎𝑛𝑏𝑒𝑎𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑜𝑓𝑚)          (32) 

With this approach, it was shown that it is possible to achieve 𝑅𝑛  ≅  
4 ∗ 𝑙𝑜𝑔 𝑛

∆
. 

2.3.2.  Upper-Confidence-Bound (UCB). The point where the ETC algorithm can be improved is that 
researchers need the advance knowledge of the sub-optimality gaps and there is an abrupt transition 

from exploration phase to exploitation phase. 
The main idea of the UCB algorithm is based on the principle of optimism under uncertainty. It is, 

in each round, assign a value to each arm (called the UCB index of that arm) based on the data observed 
so far that is an overestimate of its mean reward (with high probability), and then choose the arm with 
largest value 1 index. 

 𝑈𝐶𝐵𝑖  ( 𝑡 − 1 ) =  𝑢̂𝑖( 𝑖 − 1 ) + 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑜𝑛𝑢𝑠              (33) 

𝑈𝐶𝐵𝑖  ( 𝑡 − 1 ) is the UCB index of arm I in round i – 1, and 𝑢̂𝑖( 𝑖 − 1 ) is the average reward from 

arm I till round t – 1. 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑜𝑛𝑢𝑠 is a decreasing function of 𝑇𝑖  ( 𝑡 − 1 ). 𝑇𝑖  ( 𝑡 − 1 ) is the 
number of samples obtained from arm I so far. So, the fewer samples we have for an arm, the larger will 
be its exploration bonus. Being optimistic about the unknown support exploration of different choices, 
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particularly those that have not been selected many times. The exploration bonus should be large enough 
to ensure exploration but not so large that sub-optimal arms are explored unnecessarily. 

 𝑢̂ =  
∑ 𝑋𝑡

𝑛
𝑡=1

𝑛
                                                            (34) 

 𝑃 (𝑢̂ + √
2 log(

1

𝛿
)

𝑛
> 𝑢) ≥ 1 −  𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛿 ∈ (0,1)                         (35) 

𝑢̂  is the empirical average over n samples, and √
2 log(

1

𝛿
)

𝑛
 is the term added to the average to 

overestimate the mean, and u is the true value of the mean. So, if researcher choose 𝑢̂ + √
2 log(

1

𝛿
)

𝑛
. 

As the UCB index for an arm that has been selected n times, then this index will be an overestimate 

of the true mean of that arm with a probability of at least 1 −  𝛿 ( 𝛿 should be chosen “small enough”, 

in this scenario, it could be 𝛿 =  
1

𝑛2 ) as learner exploration bonus for an arm that has been selected n 

times.   
Algorithm 2.1 UCB. 

procedure UCB (n, k, 𝛿). 

Input k and 𝛿. 
For each t = 1, 2, … choose action. 

 𝐴𝑡 = arg 𝑚𝑎𝑥 max
𝑖

𝑈𝐶𝐵𝑖  (𝑡 − 1, 𝛿). 

Observe reward 𝑋𝑡 and update the UCB indices. 

Where the UCB index is defined as 𝑈𝐶𝐵𝑖( 𝑡 − 1, 𝛿) =  𝑢̂𝑖( 𝑖 − 1 ) + √
2 log(

1

𝛿
)

𝑇𝑖  ( 𝑡−1 ) 
, 

If 𝑇𝑖( 𝑡 − 1 ) = 0, then 𝑈𝐶𝐵𝑖 = ∞  (This ensures that each arm is selected at least once in the 
beginning) 

Store 𝑅𝑛. 
Continue. 
Return cumulative regret. 
The upper bars are the UCB indices. The more samples learner has for an arm, the tighter will be its 

confidence intervals. Over time, researcher expect the best arm 𝑖∗ to be selected many times, so that 

𝑇𝑖∗( 𝑡 − 1 ) → ∞ and 𝑢̂𝑖∗  → 𝑢𝑖∗ . In other word, the UCB index of the best arm will be approximately 

equal to its true mean 𝑢𝑖∗ . For all arms, we expect to have 𝑈𝐶𝐵𝑖( 𝑡 − 1, 𝛿)  ≥  𝑢𝑖 with high probability. 
The mean reward of the best arm is larger than even the optimistic estimate of the mean reward of all 
arms. 

The performance of the UCB algorithm is dependent on the confidence level 𝛿. Recall that for all 

arms i, P (𝑈𝐶𝐵𝑖  ≤  𝑢𝑖)  ≤  𝛿 at any round. So, 𝛿 controls the probability of the UCB index of an arm 

failing to be above the true mean of that arm at a given round. So, choosing 𝛿 ≪ 
1

𝑛
 will ensure that the 

probability of UCB index failing at least once in n rounds is close to 0. A typical choice would be 𝛿 =

 
1

𝑛
. With this choice, it could be 𝑈𝐶𝐵𝑖  =  𝑢̂𝑖(𝑡 −  1)  + √

4𝑙𝑜𝑔 𝑛

𝑇𝑖( 𝑡−1 )
. This is sometimes referred to as 

UCB1. With 𝛿 =  
1

𝑛
, the cumulative regret of the UCB algorithm satisfies (32). 

 𝑅𝑛  ≤  3 ∗  ∑ ∆𝑖
𝑘
𝑖 = 1  + ∑

16 ∗ 𝑙𝑜𝑔 𝑛

∆𝑖
𝑖: ∆𝑖 > 0                                      (36) 
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R = O (log n). 3 ∗ ∑ ∆𝑖
𝑘
𝑖 = 1  does not grow with horizon, typically negligible compared to the second 

term.  

Asymptotically Optimal UCB is a form of UCB algorithm. UCB1 requires the knowledge of horizon 
n (algorithms that do not require the knowledge of n are called anytime algorithms). The exploration 
bonus in UCB1 does not grow with t, so there is no built-in mechanism to choose an arm that has not 
been selected for a long time. 

Algorithm 2.2 Asymptotically Optimal UCB. 

procedure Asymptotically Optimal UCB(in the limit of n→ ∞). 
Input k. 
Choose each arm once. 
For each t = t+1, … choose action. 

 𝐴𝑡 = arg 𝑚𝑎𝑥 max
𝑖

(𝑢̂𝑖(𝑡 −  1) +  √
2𝑙𝑜𝑔 (𝑓(𝑡))

𝑇𝑖 ( 𝑡−1 )
). 

Where f(t) = 1 + t * 𝑙𝑜𝑔2(𝑡). 

Observe reward 𝑋𝑡 and update the UCB indices. 

Store 𝑅𝑛 
Continue. 
Return cumulative regret. 

So, the exploration bonus is modified as √
2𝑙𝑜𝑔 (1+ 𝑙𝑜𝑔2(𝑡))

𝑇𝑖 ( 𝑡−1 )
. This UCB index is updated at every round 

for all arms. Exploration bonus increases for arms not selected and decreases for the selected arm. It 
does not require knowledge of n. So, it is an anytime algorithm. The regret of the asymptotically optimal 
UCB algorithm satisfies (34). 

 lim
𝑛 →∞

𝑠𝑢𝑝 
𝑅𝑛

𝑙𝑜𝑔 𝑛
 ≤  ∑

2

∆𝑖
𝑖: ∆𝑖 > 0                                      (37) 

Put differently, for large n, it could be (34). 

 𝑅𝑛  ≤  ∑
2 ∗ 𝑙𝑜𝑔 𝑛

∆𝑖
𝑖: ∆𝑖 > 0                                                     (38) 

Here, 𝑅𝑛 = O (log n). There is a matching lower bound on regret. For any algorithm, there should be 

lim
𝑛 → 

𝑖𝑛𝑓 
𝑅𝑛

𝑙𝑜𝑔 𝑛
 ≥  ∑

2

∆𝑖
𝑖: ∆𝑖

, which means learner has to select a sub-optimal arm I at least 
2 𝑙𝑜𝑔 𝑛

∆𝑖
2  times. 

This shows that the algorithm discussed above is indeed asymptotically optimal. (no algorithm can 

perform better in the limit of 𝑛 →  ∞. 

2.3.3.  Thompson Sampling (TS)). Thompson Sampling algorithm is an algorithm combining the idea of 

Bayesian Learning approach. Bayesian Learning’s idea is that the uncertainty in the environment is 
represented by a prior probability distribution reflecting the belief on the environment. Sequential 
Bayesian Learning means that in the sequential decision-making framework, learner can update the prior 
distribution on the environment based on the data observed in each step and make the next decision 
using the new distribution. The new distribution computed after data is obtained is called the posterior. 
In Thompson Sampling algorithm start with a prior distribution on the mean reward of each arm, then 

pull an arm based on the current distribution of mean rewards and get new data. Then, update the current 
distribution using new data to obtain a new posterior distribution and go back to the previous step. There 
are different ways of making a decision based on the current distribution. TS is based on randomizing 
in this step. A key difference with other algorithms is that exploration comes from randomization. The 
advantage of TS algorithm is shown to be close-to-optimal in a wide range of settings. And it often 
exhibits superior performance in experiments and practical settings compared to UCB and its variants. 
One disadvantage is that TS can have larger variance in its performance from one experiment to the next. 

Algorithm 3 TS. 

procedure TS. 
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Input prior cumulative distribution function 𝐹1(1), … , 𝐹𝑘(1) for the mean rewards of arms 1, …, k. 
For each t = 1, 2, … choose action. 

 Sample 𝜃𝑖(𝑡) ~ 𝐹𝑖(𝑡) independently for each arm i. 

(Generate a random value that comes from the distribution 𝐹𝑖(𝑡) to represent the mean reward of arm 
i for that round) 

 Choose 𝐴𝑡  =  𝑎𝑟𝑔 max
𝑖

𝜃𝑖(𝑡)                                       (39) 

Observe 𝑋𝑡 and update the distribution of the arm selected. (𝐹𝑖(𝑡 + 1)  =  𝐹𝑖(𝑡) for all i ≠ 𝐴𝑡 𝐹𝐴𝑡
(𝑡 +

1)  =  𝑈𝑃𝐷𝐴𝑇𝐸(𝐹𝐴𝑡
(𝑡)). 

Store 𝑅𝑛. 
Continue. 
Return cumulative regret. 
For the arm selected in round t, the CDF of its mean reward is “Bayesian-Updated” using the data 

𝑋𝑡 In most implementations of this algorithm, researcher use Gaussian UPDATE: 

       𝑈𝑃𝐷𝐴𝑇𝐸(𝐹𝑖(𝑡), 𝐴𝑡 , 𝑋𝑡)  =  𝐶𝐷𝐹(𝑁(𝑢̂𝑖(𝑡),
1

𝑇𝑖(𝑡)
)                       (40) 

This means that learner “current belief” about the mean reward of arm I is represented by a Gaussian 

distribution with mean = 𝑢̂𝑖(𝑡): average reward received from arm I until round t. variance = 
1

𝑇𝑖 (𝑡)
. 

Variance decreases as 𝑇𝑖(𝑡) increases. If the reward distributions are 𝜏 − 𝑠𝑢𝑏𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛, UPDATE 

could be 𝐶𝐷𝐹(𝑁(𝑢̂𝑖(𝑡),
𝜏2

𝑇𝑖 (𝑡)
). If the prior is selected so that all arms are initially picked once, and he 

UPDATE function is as give in 𝐶𝐷𝐹(𝑁(𝑢̂𝑖(𝑡),
𝜏2

𝑇𝑖(𝑡)
), then the regret of the TS algorithm on Gaussian 

Bandits is lim
𝑛→∞

𝑅𝑛

𝑙𝑜𝑔 𝑛
 =  ∑

2

∆𝑖
𝑖: ∆𝑖 > 0 , which means TS achieves asymptotically optimal regret. Gaussian 

Bandits means reward distributions of all arms are Gaussian (distributed as 𝑋𝑖  ~ 𝑁(𝑢𝑖,
𝜏2

𝑇𝑖(𝑡)
). 

2.3.4.  Epsilon-Greedy Algorithm. The epsilon-greedy algorithm is a simple yet effective strategy for 

balancing exploration and exploitation in the Multi-Armed Bandit (MAB) problem. This approach 
dictates that, with a small probability ϵ, a learner (algorithm) will explore by selecting an arm at random. 
Conversely, with a probability 1 − ϵ, the learner will exploit by choosing the arm that currently has the 
highest estimated reward. This blend of random exploration and greedy exploitation allows the 
algorithm to both discover new potentially rewarding actions and to capitalize on known information to 
maximize rewards. 

Algorithm 4 Epsilon-Greedy.  
Procedure ϵ-greedy. 

Input: Probability ϵ (0 < ϵ < 1), initial estimates of arm rewards 𝑄1(1), … , 𝑄𝑘(1) for all arms 1, …, 
k. 

For each t = 1, 2, … choose action. 

With probability ϵ, choose an arm 𝐴𝑡 at random (Exploration). 

With probability 1 - ϵ, choose an arm 𝐴𝑡 = argmax
𝑖

𝑄𝑖(𝑡) (Exploitation). 

Observe reward 𝑅𝑡 from the chosen arm 𝐴𝑡. 

Update the estimate of the chosen arm’s reward: 𝑄𝐴𝑡
(𝑡 + 1)  =  𝑄𝐴𝑡

(𝑡)  +  𝛼 ∗  (𝑅𝑡  −

 𝑄𝐴𝑡
(𝑡)), 𝑤ℎ𝑒𝑟𝑒 𝛼 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒. 

Store 𝑅𝑛 
Continue. 
Return cumulative regret. 
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The epsilon-greedy algorithm's core mechanism is its simple rule for choosing between exploration 
and exploitation. The parameter ϵ is crucial, as a higher ϵ means more exploration (which can be useful 
in non-stationary environments or those with sparse rewards), while a lower ϵ leans towards exploitation, 
making the algorithm behave more greedily with respect to the information it has accumulated. One of 

the key advantages of the epsilon-greedy algorithm is its simplicity and ease of implementation. It 
requires minimal computational resources and can be easily adapted to various settings. However, one 
disadvantage is that the static nature of ϵ does not allow for adaptive behavior; the algorithm does not 
naturally become more exploitative as it learns more about the environment, unless additional 
mechanisms are introduced to adjust ϵ over time. 

To enhance this process further, adopting strategies to adjust the learning rate (α) can optimize the 
algorithm's adaptability to environmental changes and performance, facilitating more efficient learning. 
The strategy of decreasing learning rates is predicated on the observation that, over time, the algorithm 

accumulates experience and progressively gains a better understanding of the environment. 
Consequently, reliance on new information can be gradually reduced. By implementing a decreasing 
learning rate, the algorithm can quickly adapt to changes in the environment during the early stages, 
while focusing on stabilizing and optimizing the current strategy later on, minimizing the impact of 

random noise. Introduce a time-varying learning rate 𝛼𝑡  =  
1

𝑡 𝛽, where t denotes the current time step, 

and β is a parameter between 0 and 1 controlling the speed of the learning rate decrease. With each step 
of the algorithm, this decreasing learning rate is used to update the estimated values for each arm, 
striking a balance between exploration and exploitation. 

An advanced method for adjusting learning rates dynamically adjusts α based on the algorithm's real-

time performance. This strategy allows the algorithm to adjust its learning steps flexibly based on its 
current progress and feedback from the environment, optimizing long-term performance. Set a 
performance benchmark, such as the rate of increase in cumulative rewards or the average reward over 
a specific time window. If the algorithm's performance is observed to not meet expected improvements 
over several consecutive steps, indicating a learning plateau or overfitting, the learning rate α is 
automatically reduced. This adaptive adjustment mechanism helps the algorithm maintain an 
appropriate response to new information while facing uncertainty and environmental changes, reducing 

oversensitivity to random fluctuations. 
By employing these advanced learning rate adjustment strategies, the epsilon-greedy algorithm 

becomes more flexible and effective in dynamic environments, thus improving its performance in the 
Multi-Armed Bandit problem. Decreasing learning rates and feedback-based learning rate adjustments 
provide the algorithm with additional means to finely tune the balance between exploration and 
exploitation strategies at different stages, adapting to complex and changing environmental conditions. 

2.3.5.  Exponential-Weight algorithm (EXP3). The EXP3 algorithm, standing for Exponential-weight 

algorithm for Exploration and Exploitation, is designed primarily for adversarial bandits but can also be 
applied to stochastic stationary problems. When utilized in such environments, it randomly selects arms 
based on a probability distribution that is updated using a SoftMax function on the estimated rewards, 
ensuring exploration across the arms.  

Each arm has a weight which determines its probability of being selected. A mixture of the weights 

and a uniform distribution, modulated by the exploration parameter γ, determines the selection 
probabilities for the arms. After an arm is selected and the reward observed, the estimated reward is 
computed by dividing the observed reward by the selection probability. The weights are updated using 
an exponential function of the estimated reward, with γ controlling the update rate. The exploration 
parameter γ in EXP3 is akin to ϵ in epsilon-greedy, as it dictates the balance between exploration and 
exploitation. In EXP3, unlike epsilon-greedy, the exploration is inherent in the probability distribution 
due to the exponential update of weights, which allows for a smooth transition between exploration and 

exploitation based on observed rewards. 
Algorithm 3 EXP3. 
procedure EXP3. 
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Input: Number of arms k, learning rate γ, sequence length n. 

Initialize: Weights 𝑤𝑖(1)  =  1 for all arms I = 1, …, k. 
For each t = 1, 2, … 

Calculate the probability of selecting each arm: 𝑃𝑖(𝑡)  =  
𝑤𝑖 (𝑡)

∑ 𝑤𝑗 (𝑡)𝑘
𝑗 = 1

. 

Normalize probabilities to include exploration factor: 𝑅̃𝐴𝑡
(𝑡)  =  

𝑅𝑡

𝑃̃𝐴𝑡 (𝑡)
. 

Update weights: 𝑤𝐴𝑡
(𝑡 + 1)  =  𝑤𝐴𝑡

(𝑡)  ∗  𝑒𝑥𝑝(
𝛾 ∗ 𝑅̃𝐴𝑡

𝑘
). 

For all i ≠ 𝐴𝑡, 𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡). 
Store 𝑅𝑛. 
Continue. 

Return cumulative regret. 
EXP3's methodology allows it to be less susceptible to exploitation by an adaptive adversary or to 

the non-stationarity in reward distributions, making it a suitable algorithm for stochastic stationary 
bandit problems where exploration is a priority. Its regret bounds suggest that while it may not be 
asymptotically optimal like some UCB variants, it maintains robust performance without prior 
knowledge of the reward distribution's nature, thus providing a compelling alternative in a broad range 
of applications. 

3.  Algorithms Analysis and Application Research 

3.1.  Analysis of Different Algorithms and Parameterization 

3.1.1.  Comparative Analysis of Different Algorithms. In this part, I will test the performance of these 

five algorithms under the same horizon in the Stochastic Stationary Bandits problem. Because according 
to the definition of the MAB problem above, if you want to compare the results by changing the 
experimental parameters, you must not only by changing the parameters of the algorithm itself, it is also 
necessary to test their performance under a variety of different horizon, that is, under different horizon 
and reward distributions. The first is to observe the changes and performance of cumulative regret of 

different algorithms in the same data Movie lens set under different horizons. As shown in Figure 3.   
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Figure 3. Cumulative regret comparison of five algorithms (Photo/Picture credit: Original). 

By setting the number of experiments to 100 and designing a random number of seeds for each 
experiment, I tested five mainstream stochastic stationary bandits problem algorithms such as ETC, 

UCB, TS, epsilon-greedy, and EXP3 at n = 10000 and 50000. , 100000, 200000, 500000, 1000000, a 
graph of their average cumulative regret over time, and an error bar is set to observe their standard 
deviation, which can reflect the randomness of the algorithm under a given n situation and stability. 

For these five algorithms, the parameters set respectively are ETC: m*k = 10%n, UCB: l = 4, epsilon-

greedy: 𝜖= 0.1, EXP3:  𝛾 =  √
𝑘∗log 𝑘

𝑛
, The TS algorithm follows the initialization process defined for 

normal algorithms, and in addition to these five algorithms, UCB asymptotically is added for comparison. 
When the size of n is small, that is, when n=10000, 50000, the epsilon-greedy algorithm, ETC 

algorithm and TS algorithm perform better. When the number of n is 10000, the epsilon-greedy 
algorithm has an average cumulative regret. has the best performance, and the average cumulative regret 
of the ETC algorithm is also slightly smaller than that of the TS algorithm. The implementation methods 
of the two are also relatively simple, but it can be found that the randomness of the results of the epsilon 
greedy and ETC algorithms in this case is relatively large, and the variance Relatively high and when n 

= 50000, the TS algorithm is significantly better than several other algorithms. Therefore, when the 
number of n is small, you can give priority to the use of these three algorithms. Regarding the ranking 
of UCB, UCB asymptotically and EXP3 There is no change in these two cases of n. Since EXP3 is 
usually set as an algorithm in a special adversal environment, it does not perform well in this case, but 
it can also be seen from when n is small. It turns out that the UCB asymptotically algorithm is basically 
slightly better than the ordinary UCB1 algorithm. 

As the number of n gradually increases to 100,000, the advantages of the TS algorithm gradually 

emerge. Its stability and average cumulative regret are both excellent. The advantages of the UCB 
algorithm can also be seen, especially UCB asymptotically. They gradually surpass the ETC algorithm 
and epsilon. -greedy algorithm, its advantages are mainly reflected in that the implementation method 
and operation speed are significantly better than the TS algorithm, and the stability is also similar to it. 
Currently, the average cumulative regret of the epsilon-greedy algorithm and the ETC algorithm are 
relatively close, but the values of both are the performance has risen to a state where the performance is 
not good enough, and the standard deviation of the two is also larger than other algorithms. 

When the number of n increases to more than 200,000, we can clearly see the differences between 
several algorithms, because their error bars overlap less and less. It is worth mentioning that although 
the EXP3 algorithm still has disadvantages in this case, due to its The characteristics of logarithm regret, 
when the number of n is large enough, the average cumulative regret has good performance. The TS and 
UCB algorithms still maintain a low average cumulative regret, and there is a convergence process 
similar to the ETC algorithm, indicating that they gradually The best arm was found and repeatedly 
selected through its own strategy. The average cumulative regret of the ETC algorithm and the epsilon-
greedy algorithm did not perform well enough. However, the standard deviation of the ETC algorithm 

almost disappeared, indicating that the experimental results were almost stable. 
Therefore, it can be concluded that without considering the time complexity and implementation 

difficulty of the algorithm, in the horizontal setting, the TS algorithm performs well enough in the 
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stochastic bandits problem. The performance of the UCB algorithm is generally good. It is worth 
mentioning that its time complexity and implementation difficulty are better than those of the TS 
algorithm. When n is small, the ETC algorithm and the epsilon-greedy algorithm are worth trying, but 
there is also the problem of large standard deviation. EXP3 does not perform well enough when n is 

small, but as n increases, it can also reflect the characteristics of logarithm regret like TS UCB and other 
algorithms. Maybe it can perform better in specific environments. 

3.1.2.  Parameter Analysis and Optimization 

 

 

 

Figure 4. Cumulative regret comparison of ETC algorithms for different parameters (Photo/Picture 

credit: Original). 

As shown in Figure 4.Regarding the ETC algorithm, it can clearly see the difference between the 
exploration and utilization stages in the experiment. Its purpose is to conduct random sampling in the 

exploration stage and continuously select the arm with the highest average value in the exploration stage 
in the utilization stage. The researcher is given In the case of horizon, the parameter that can be changed 
is m, and m*k is the length of the exploration phase. Therefore, the difficult problem is how to choose 
the length of the exploration phase under different horizon conditions. When setting n = 10000, 50000, 
100000, 200000, 500000, 1000000, try to test m * k = 10%n, m * k = 5%n, m * k = 1%n, m * k = 20 
%n, m * k = 50% performance of the ETC algorithm, the number of experiments is also 100. 
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When the scale of the horizon is small, the short exploration phase will cause it to not necessarily 
find the best arm in the utilization phase, and the standard deviation of the cumulative regret will be 
larger, indicating that the results are more random. This kind of In this case, although a more appropriate 
exploration phase length may not necessarily find the best arm or stabilize the experimental results, it 

can complete the appropriate and the optimization strategy for m mentioned above does not have a good 
effect. The longer The exploration phase will cause the accumulated regret to be too large, so it is 
necessary to establish the length of the exploration phase through experiments with different parameters. 
In the end, the accumulated regret, as the scale of the horizon increases, it can be seen that a relatively 
small exploration phase length can also be good To find the best arm and stabilize the experimental 
results, although there is still randomness in the minimum exploration phase length, it can achieve good 
performance, but the cumulative regret of the longer exploration phase is still too large, which can be 
used to make use of the previously mentioned The optimization strategy selects parameters, which can 

not only ensure that the cumulative regret is small, but also reduce the standard deviation. 

 

Figure 5. Cumulative regret comparison of UCB algorithms for different parameters (Photo/Picture 

credit: Original). 

As shown in Figure 5.Regarding the UCB algorithm, the set parameters change to l = 1, 2, 4, 8 and 

UCB asymptotically, still using the n and data set mentioned above. When n = 50000, it can be seen that 
the UCB algorithm embodies the characteristics of logarithm regret. Within this range of n, the 
performance ranking of the UCB algorithm does not change significantly according to the parameters. 
Although it can be seen that UCB asymptotically is not significantly better than the UCB1 algorithm 
under the set parameters, but as n increases, It can be seen that UCB asymptotically is gradually 
approaching the situation of l = 2. When n=100000, the error bars of the two even intersect. Perhaps 
when n increases enough, UCB asymptotically can reflect the optimal situation. 
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Figure 6. Cumulative regret comparison of epsilon-greedy algorithms for different parameters 

(Photo/Picture credit: Original). 

 
As shown in Figure 6.For the epsilon-greedy algorithm, the parameters set are epsilon = 0.1, 0.2, 

0.05 and epsilon decreases exponentially with time, and epsilon decreases reciprocally. When n is 
relatively small, there is no obvious cumulative regret gap under several parameter settings, and the 

error bars are also relatively large. For fixed epsilon, for this data set, epsilon = The performance of 0.05 
will be slightly better than the other two, but if the value of epsilon is larger, it can be seen that the error 
bar is smaller, indicating that the experimental results are more stable. This may be because there are 
more opportunities to take advantage of instead of random selection.  

As n increases, it can be seen that the parameter performance of epsilon as t decreases will be more 
advantageous, especially in the case of n = 500000. The two descent algorithms have superior 
performance. When n is small, as The average accumulated regret of the parameters of exponential 
decline will be better, and the stability of the parameters of reciprocal decline is relatively different. 

However, when n = 1000000, the performance of reciprocal decline is better than that of exponential 
decline. As shown in Figure 7. 
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Figure 7. Cumulative regret comparison of EXP3 algorithms for different parameters (Photo/Picture 

credit: Original). 

 

For the EXP3 algorithm, the set parameters are gamma = √
𝑘∗log 𝑘

𝑛
, gamma =√

𝑘∗log 𝑘

0.1∗𝑛
 and gamma = 

√
𝑘∗log 𝑘

2∗ 𝑛
. It can be seen that before n = 200000, Although there is not much difference in performance 

between the three parameter settings, gamma =√
𝑘∗log 𝑘

0.1∗𝑛
 has certain advantages in those horizons. 

However, as n continues to increase, it is found that the performance of gamma = √
𝑘∗log 𝑘

𝑛
 gradually 

becomes the best. In the case of n=1000000, it can be clearly seen that its average cumulative regret 
exceeds other parameter settings. 

3.2.  Application in Diverse Fields 

3.2.1.  Recommendation Systems and Personalization. Regarding recommendation systems and 
personalization, it is one of the most widely used areas of MAB problems. Regarding recommendation 
systems and personalization, it is one of the most widely used areas of MAB problems. Current research 
on it mainly focuses on the recommendation of various streaming media. According to statistics, the top 

10 are movies, news, synthetic, songs, products, genetics, ads, artists, jokes and POIs. Among the above 
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algorithms, UCB and TS algorithms are more popular algorithms in this regard [3], which can also be 
seen through experimental results. 

3.2.2.  It is also more suitable to directly use the Stochastic Stationary Bandits problem algorithm than 

other problems. Research on such problems has also promoted various MAB Iteration and optimization 
of algorithms in problems. In new online platforms like ALEKS and TikTok, the MAB-A model and 
algorithms such as ULCB and KL-ULCB, which adjust exploration levels based on user feedback, 
effectively address the issue of user abandonment due to insufficient content engagement and 
significantly enhance the system's regret performance [4]. The challenge of mining user preferences is 
compounded by the large number of users and sparse interactions, and existing algorithms often 

overlook rich implicit feedback such as clicks and add-to-cart actions. Under these conditions, an 
algorithm named Dynamic Clustering-based Contextual Combinatorial Multi-Armed Bandit (DC (3) 
MAB) has been identified, which can improve performance [5]. In recommendation systems, there is a 
type of quantum greedy algorithm utilizing a quantum maximization approach, while the second is a 
simpler method that replaces the argmax operation in the ε-greedy algorithm with an amplitude encoding 
technique as a quantum subroutine. The results demonstrate that the performance of the quantum greedy 
algorithms in identifying the best arm is comparable to that of classical algorithms [6]. Regarding the 

impact of latent biases on rewards, suitable for recommendation systems that require the exclusion of 
factors such as race, a new model has been developed to optimize this strategy [7]. The CMAB model 
allows selecting multiple arms per round. The new AUCB algorithm, integrating UCB and auction 
theory, addresses arms' strategic behaviors and misinformation, ensuring authenticity and efficiency. 
The e-AUCB algorithm accommodates varying arm availability, with simulations confirming its 
significant performance [8].   

3.2.3.  Agriculture Decision-making. In agriculture, Multi-Armed Bandit (MAB) models are applied 

primarily to optimize decision-making and resource allocation. They assist in determining the best crop 
planting strategies by evaluating various crop types and varieties to maximize yield or minimize risk, 
managing irrigation by allocating water resources efficiently across different fields, controlling pests 
and diseases by choosing effective treatment methods at optimal times, and fine-tuning the use and 
application of fertilizers and pesticides to balance environmental sustainability with economic benefits. 
Through these applications, MAB models significantly enhance agricultural productivity and help 

farmers adapt to environmental changes and market risks, moving towards precision and smart 
agriculture. 

A decision support system has been developed to diagnose post-harvest diseases in apples, leveraging 
multiple conversational rounds to gather user feedback. This system employs a contextual multi-armed 
bandit approach to dynamically adapt its image selection mechanism based on the feedback. 
Comparative studies with baseline strategies have shown that the exploration and exploitation principle 
greatly enhance the effectiveness of the image selection process [9]. Reinforcement learning (RL), 

particularly through multi-armed bandits (MAB), effectively tackles sequential decision-making in 
uncertain environments, crucial in fields like crop management decision support systems (DSS). MAB 
demonstrates RL's potential in dynamic and context-sensitive decision-making required for agricultural 
operations. Although its application in agriculture is emerging, there is significant potential for MAB to 
revolutionize crop management DSS by enhancing decision-making processes in the face of 
uncertainties. This underscores the need for collaborative research between the RL and agronomy 
communities to fully harness MAB's capabilities in agriculture [10]. 

3.2.4.  Financial Investment Models. In the field of finance, multi-armed bandit (MAB) problems are 
applied to optimize the balance between expected returns and associated risks, particularly through the 
use of Conditional Value at Risk (CVaR). A novel set of distribution-oblivious algorithms has been 
developed to efficiently select financial portfolios within a fixed budget without needing prior 
knowledge of the reward distributions. These algorithms are complemented by a newly devised 
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estimator for CVaR that can handle unbounded or heavy-tailed distributions, and a proven concentration 
inequality. Comparative analysis with standard non-oblivious algorithms demonstrates that the new 
approaches perform robustly, confirming the practical viability of applying MAB methods to enhance 
risk management in financial decision-making [11]. 

Thompson Sampling is adapted to handle rewards from symmetric alpha-stable distributions, a type 
of heavy-tailed probability distribution common in finance and economics for modeling phenomena like 
stock prices and human behavior. An efficient framework for posterior inference has been developed, 
leading to two Thompson Sampling algorithms specifically tailored for these distributions. Finite-time 
regret bounds have been proven for both algorithms, and experimental results demonstrate their superior 
performance in handling heavy-tailed distributions. This approach facilitates sequential Bayesian 
inference and enhances decision-making in financial and complex systems characterized by heavy-tailed 
features [12]. 

3.2.5.  Clinical Trial Methodologies. In clinical trials, the approach to the multi-armed bandit problem 
incorporates safety risk constraints where each arm represents a different trial strategy with unknown 
safety risks and rewards. The goal is to maximize rewards while adhering to safety standards, defined 
by a set threshold for mean risk per round, ensuring continuous patient safety rather than cumulative 

evaluation. The strategy involves doubly optimistic indices for both safety and rewards, leading to tight 
gap-dependent logarithmic regret bounds and minimizing unsafe arm plays to logarithmically many 
times. Simulation studies confirm the effectiveness of these strategies in maintaining stringent safety 
measures in clinical trials [13]. 

Clinical trials utilizing multiple treatments often employ randomization to assess treatment efficacies, 
which can lead to suboptimal outcomes as participants may not receive the most suitable treatments. 
Reinforcement-learning methods, specifically multi-arm bandits, offer a dynamic way to learn and adapt 
treatment assignments during trials. The contextual-bandit algorithm optimizes treatment decisions 

based on clinical outcomes and patient characteristics, enhancing the precision of treatment assignments. 
In simulations using data from the International Stroke Trial, this method significantly outperformed 
both random assignment and a context-free multi-arm bandit approach, demonstrating substantial 
improvements in assigning the most appropriate treatments to participants [14]. 

4.  Challenges 

Despite the effectiveness of Multi-Armed Bandit (MAB) algorithms in optimizing decision-making in 
uncertain environments, they face several practical challenges. These include the complexity of tuning 
parameters, adapting to dynamically changing environments, computational resource constraints, 
scalability issues with many options, ethical considerations and bias mitigation, and the intricacies of 
multi-objective optimization. Overcoming these challenges necessitates ongoing algorithmic innovation, 
improved parameter optimization techniques, and tailored solutions for specific application domains. 
The stochastic stationary problem is only one of the most basic categories of MAB problems. If it is to 

be connected to practical applications such as recommendation systems or to the classification of other 
MAB problems, researchers still need to make more iterative updates and explore it. 

5.  Conclusions 

This study presents a detailed examination of stochastic stationary multi-armed bandit algorithms, 
analyzing their deployment and relative efficacy across varied datasets characterized by different 

attributes. Through meticulous evaluation of algorithms such as Explore-then-Commit, Upper 
Confidence Bound, Thompson Sampling, epsilon-greedy, and EXP3, this research delineates the 
performance contours of these methodologies under assorted conditions, thereby deepening insights into 
their practical utility in domains including recommendation systems and clinical trials. The results 
emphasize the criticality of selecting appropriate algorithms based on specific environmental factors and 
underscore the necessity for continued research to tackle issues like dynamic settings, scalability, and 
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computational demands. Such efforts are essential to refine these decision-making tools for effective 
real-world application. 
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