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Abstract. In the era of advancing technology, unmanned inspection robots have become 

indispensable for their efficiency, precision, and safety. Key to their autonomous operation is 

Simultaneous Localization and Mapping (SLAM) technology, which allows robots to navigate 

and create maps of unknown environments in real-time. This article explores the integration of 

SLAM with artificial intelligence, highlighting its role in robotic navigation, localization, and 

obstacle avoidance. Specifically, we delve into SLAM's principles, its implementation with 

LiDAR technology, and its application in autonomous robot localization. Furthermore, we 

introduce a collaborative mapping algorithm based on ORB-SLAM3, enhancing map 

construction efficiency and real-time performance. Through our exploration, we illustrate the 

transformative potential of SLAM technology, paving the way for safer and more efficient 

robotic inspection systems across various industries. 

Keywords: SLAM technology, Unmanned inspection robots, Autonomous navigation, LiDAR 
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1.  Introduction 

With the continuous advancement of technology, the wave of intelligence and automation is sweeping 

across various industries. In this era, unmanned inspection robots have emerged as the new favorite in 

the field of inspection, thanks to their efficient, precise, and safe characteristics. [1] The advent of 

unmanned inspection robots has brought revolutionary changes to inspection work. Leveraging their 

efficient, precise, and safe features, they play a significant role in various sectors such as electricity, 

petrochemicals, and manufacturing. Within the technical system of unmanned inspection robots, 
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positioning and navigation technology are the key to achieving autonomous operation. Simultaneous 

Localization and Mapping (SLAM) technology, in particular, is an important innovation in the 

positioning and navigation technology of unmanned inspection robots. Today, let us unveil the 

mysterious veil of SLAM [2] technology and explore its applications and advantages in unmanned 

inspection robots. In this article, we delve into the intricacies of SLAM technology, its integration with 

artificial intelligence, and how it facilitates robotic navigation and localization in environments where 

the terrain is unknown. We will discuss its role in enabling robots to create maps of their surroundings 

in real-time, while simultaneously determining their own position within those maps. Through this 

exploration, we aim to shed light on the [3] transformative potential of integrating artificial intelligence 

with SLAM technology, paving the way for safer, more efficient, and more autonomous robotic 

inspection systems across industries. 

2.  Related work 

2.1.  Simultaneous Localization And Mapping（SLAM) 

SLAM, short for Simultaneous Localization And Mapping, was first proposed by Hugh Durrant-Whyte 

and John J.Leonard in 1988. SLAM is more of a concept than an algorithm. It is defined to solve the 

problem of "starting from an unknown location in an unknown environment, the robot locates its own 

position and posture through repeated observed map features (such as corners, columns, etc.) in the 

process of movement, and then incrementally builds a map according to its own position. To achieve 

simultaneous positioning and map construction of the purpose of the "problem method." The principle 

of SLAM technology is to use cameras, [3-4] liDAR or sensors such as vision sensors, inertial 

measurement units, to collect environmental information, and then use algorithms to fuse this 

information to determine the location of the robot in an unknown environment and build a map of the 

environment. Therefore, the SLAM problem can be formalized as a Bayesian filtering problem, where 

the robot's state and map features are modeled as probability distributions. Common SLAM algorithms 

include methods based on [5] Extended Kalman filter (EKF-SLAM), particle filter, and graph 

optimization. These algorithms use different mathematical tools to solve SLAM problems, the specific 

choice depends on the application scenario and the availability of computing resources. SLAM 

technology is critical to the ability of a robot or other agent to move and interact, because it represents 

the basis for that ability: knowing where it is, knowing what its surroundings are like, and then knowing 

how to act autonomously next. 

The entire visual SLAM process consists of the following steps: 

1. Read the sensor information. The main purpose of visual SLAM is to read and preprocess camera 

image information. 

2. Visual Odometry (VO). The task of the visual odometer is to estimate the motion of the camera 

between adjacent map images and what the local map looks like. [6] VO is also known as the preceding 

segment. 

3. Back-end Optimization. The back end receives the camera position and attitude measured by the 

visual odometer at different times and the information of the loop detection, and optimizes them to get 

a globally consistent trajectory and map. Since it is connected after VO, it is also called the back end. 

4. Check the Loop Closing. Loop detection determines whether the robot has reached the previous 

position. If a loop is detected, it provides the information to the back end for processing. 

5. Mapping. Based on the estimated trajectory, he builds a map corresponding to the mission 

requirements. 

2.2.  LIDAR 

Implementing SLAM requires two types of techniques. One type of technology is sensor signal 

processing (including front-end processing), which depends largely on the sensor used. Another type of 

technology is pose optimization (including back-end processing), which is sensor-independent. 

Therefore, although SLAM is an algorithm technology, the basis for the application of SLAM is a sensor 
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with excellent performance (LiDAR or image sensor). Depending on the sensor choice, there are 

currently two schools of technology: visual V-SLAM and liDAR SLAM [7]. Multi-line LiDAR can 

acquire multiple scanning lines at the same time, which improves the efficiency and accuracy of data 

acquisition. [8]2D LiDAR and [9]3D LiDAR: 2D LiDAR can only acquire two-dimensional information 

about the environment, such as distance and Angle, and is commonly used for plane navigation and 

obstacle avoidance. 3D Lidar can obtain three-dimensional information about the environment, 

including height, for building three-dimensional maps and conducting three-dimensional navigation. 

The multi-line LiDAR 3D SLAM technology can theoretically build a 3D point cloud map of a 

million square meters of large scenes, and the perceived environmental information features are rich, 

and the positioning and matching are stable, which is suitable for most scenes. Why theoretical? Because 

the premise is that the sensor is good enough to generate a dense point cloud. 

 

Figure 1. Transmission architecture of Lidar implemented by sdk protocol 

Therefore, in the Figure 1,in the realization of robot self-positioning and navigation, according to the 

sensor configuration given by the laser God intelligence, the 16-line 3D [10]Lidar uses the leading core 

signal processing ASIC chip and advanced multiple echo detection technology and data calibration 

technology, and the point cloud output can reach 320,000 points/second, which is the leading point cloud 

performance in the entire industry. With this level of composition, the outdoor measurement accuracy 

can reach ±3cm and the indoor measurement accuracy can reach ±2cm. 

2.3.  Robot autonomous localization 

SLAM technology can realize autonomous localization and navigation of inspection robots by 

integrating sensor data and map information. The robot uses lidar, vision sensors and other devices to 

collect data to estimate its position and update the map in real time. The robot can accurately navigate 

in the unknown environment and complete the inspection task. In the visual navigation and positioning 

system for autonomous positioning of robots, the navigation method of installing vehicle cameras in 

robots based on local vision is widely used at home and abroad. In this navigation mode, control 

equipment and sensing devices are loaded on the robot body, and [11] high-level decisions such as image 

recognition and path planning are completed by the on-board control computer. 

 

Figure 2. Multi-modal path architecture of robot autonomous navigation and positioning 

In Figure 2, move_base function package realizes optimal path planning in robot navigation, and 

amcl realizes robot positioning in two-dimensional map. In order to realize the robot's global optimal 
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path planning and real-time obstacle avoidance path planning, move_base needs to subscribe to depth 

sensor information (sensor_msgs/LaserScan or sensor_msgs/PointCloud) and Odometry information 

published by the robot, At the same time, the complete TF coordinate transformation is also an important 

basis for path planning. The final output of the navigation frame is the control robot's velocity instruction 

(geometry_msgs/Twist) [12], which requires the robot control node to have the ability to analyze the 

center line velocity and angular velocity of the control instruction, and control the robot to complete the 

corresponding motion. 

Through SLAM technology, the robot can detect and avoid obstacles more accurately, thus 

improving the safety and efficiency of inspection.SLAM technology associates the robot's perception 

data with map information through data association technology to realize the perception and 

understanding of the environment. The robot can perform positioning and attitude estimation by 

matching sensor data with map features. This allows the robot to accurately sense changes in the 

environment and provide reliable navigation and inspection data. SLAM technology is relevant here 

because it allows the robot to update the map based on real-time perception data and combine the 

perception data with map information through data association technology. Through SLAM technology, 

robots can better understand the environment and improve the accuracy and reliability of navigation and 

inspection. 

3.  Methodology 

Completing complex tasks in large-scale complex scenes is a challenging task for robots, especially the 

need to build dense point cloud maps to provide more effective information, and the need for efficient 

composition. However, the traditional multi-robot SLAM algorithm often has some problems such as 

high computational complexity, low efficiency and poor real-time performance when constructing 

global maps. To address these challenges, a multi-robot collaborative map building algorithm based on 

ORB-SLAM3is proposed. Through the collaborative method, the algorithm significantly improves the 

efficiency of map construction, while maintaining high real-time and positioning accuracy, showing a 

good development prospect. 

3.1.  ORB-SLAM3 

Visual SLAM is a SLAM system based on visual sensors. Compared with laser sensors, visual sensors 

have the advantages of low cost, preserving environmental semantic information, and can be combined 

with deep learning. ORB-SLAM series algorithms are the most widely concerned and applied algorithms 

in visual SLAM. The ORB-SLAM3 is a visual, visual + INS, hybrid mapping SLAM system that can 

operate with pinhole or fisheye models on monocular, binocular, and RGB-D cameras. In large/small 

scenes, indoor/outdoor, ORB-SLAM3 can be robust real-time operation, is widely used in commercial 

products.Multiple submap systems greatly improve system recall, and ORBSLAM3 is more robust when 

visual information is lacking or even lost. When the target is lost, a submap is rebuilt and merged with 

the previous inactive map during the loop closing process. Therefore, ORB-SLAM3 is the first system 

that can reuse the information obtained by all the algorithms in the history, which means that previous 

co-view keyframes can also be used together (both the co-view keyframes of active and inactive maps 

in the Atlas). 

In order to obtain a higher recall rate, for each new active key frame, the system queries several 

similar key frames in Atlas in the DBoW2 database. In order to achieve 100% accuracy, each candidate 

keyframe is geometrically validated in several steps. The basic operation of all geometry validation steps 

is to check whether there are ORB feature points in the image window whose descriptors match the 

ORB descriptors of the mapping points, and to use the Hamming distance threshold between them. 
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Figure 4. Procedure diagram for constructing and locating the ORB-SLAM3 multimodal map 

3.2.  Robotic autonomous positioning results 

In pure vision, the multi-map system adds robustness to fast motion by creating a new map when 

tracking is lost, which is later merged with the global map. This can be seen in the sequences V103 

monocular and V203 Binocular 11, ORB-SLAM2 cannot solve these problems, and our system 

successfully solves these problems in most implementations. Precisely because of its faster feature 

initialization, binocular vision is more robust than monocular vision and has the added advantage of 

estimating true proportions. However, a huge leap in robustness was achieved with our novel Visual 

Inertial SLAM system, in both monocular and binocular configurations. Binocular inertial systems have 

a very small advantage, especially in the most challenging V203 sequences. We can conclude that 

inertial integration not only improves accuracy and reduces median ATE error compared to purely visual 

solutions, but also gives the system excellent robustness and more stable performance. 

3.3.  Result discussion 

Therefore, an open-source library for visual-inertial and multi-session SLAM, supporting monocular, 

stereo, RGB-D, pinhole, and fisheye cameras, has been developed. Apart from the integrated libraries 

themselves, our primary contributions include rapid and accurate initialization techniques for inertial 

measurement units and multi-session map merging functionalities. These functionalities rely on a novel 

position recognition technique with improved recall rates, rendering ORB-SLAM3 highly suitable for 

long-term and large-scale SLAM applications. 

The experimental results demonstrate that ORB-SLAM3 is the first system capable of effectively 

utilizing short-term, medium-term, long-term, and multi-map data associations in visual and visual-

inertial systems, achieving precision levels beyond what existing systems can achieve. On the other hand, 

matching feature descriptors successfully addresses long-term multi-map data associations but seems 

less robust than using Lucas-Kanade tracking. 

4.   Conclusion 

SLAM has been a hot research topic in the field of intelligent vehicles for the past three decades. The 

first principle study of this method was initially focused on the autonomous control of mobile robots. 

SLAM applications have been used for a wide range of topics such as augmented reality 

(AR)visualization, computer vision modeling, and self-driving cars. In recent years, SLAM has been 

used as an intelligent technology for building 3D maps of environments using sensor fusion algorithms. 

In robotics, map building in SLAM usually refers to building a map that is geometrically consistent with 

the environment. This method has the largest redundancy of information, which is a great challenge for 
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data storage. At the same time, it takes a lot of trouble for robots to extract useful data from it, so direct 

representation method is rarely used in practical applications. 

In conclusion, we have introduced the pivotal role of SLAM technology in the advancement of 

robotic inspection systems. Leveraging SLAM's capabilities, robots can navigate, localize, and create 

maps of unknown environments autonomously. We have discussed the integration of SLAM with 

LiDAR technology, enabling precise environment mapping crucial for obstacle avoidance. Additionally, 

we presented a collaborative mapping algorithm based on ORB-SLAM3, enhancing map construction 

efficiency and real-time performance. Our findings demonstrate the transformative potential of SLAM 

technology, promising safer, more efficient, and more autonomous robotic inspection systems across 

industries. Through continued research and development, SLAM technology is poised to revolutionize 

robotic applications, driving further advancements in automation and intelligence. 
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