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Abstract. This article introduces the importance of machine learning in real-world applications 

and explores the rise of MLOps (Machine Learning Operations) and its importance for solving 

challenges such as model deployment and performance monitoring. By reviewing the evolution 

of MLOps and its relationship to traditional software development methods, the paper proposes 

ways to integrate the system into machine learning to solve the problems faced by existing 

MLOps and improve productivity. This paper focuses on the importance of automated model 

training, and the method to ensure the transparency and repeatability of the training process 

through version control system. In addition, the challenges of integrating machine learning 

components into traditional CI/CD pipelines are discussed, and solutions such as versioning 

environments and containerization are proposed. Finally, the paper emphasizes the importance 

of continuous monitoring and feedback loops after model deployment to maintain model 

performance and reliability. Using case studies and best practices from Netflix, the article 

presents key strategies and lessons learned for successful implementation of MLOps practices, 

providing valuable references for other organizations to build and optimize their own MLOps 

practices. 

Keywords: Machine learning, MLOps, Automated deployment, CI/CD pipeline, Supervisory 

control. 

1.  Introduction 

Machine learning has revolutionized the way people use and interact with data, driving business 

efficiency, fundamentally changing the advertising landscape, and revolutionizing healthcare 

technology. Over the past decade, machine learning (ML) has become an essential part of countless 

applications and services in a variety of fields. Thanks to the rapid development of machine learning, 

there have been profound changes in many fields, from health care to autonomous driving. However, 

the increasing importance of machine learning in practical applications also brings new challenges and 

problems, especially when it comes to moving models from a laboratory environment to a production 

environment. Traditional software development and operations methods often fail to meet the specific 

needs of machine learning models in production, resulting in challenges such as the complexity of model 
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deployment, difficulties in performance monitoring, and the absence of continuous integration and 

continuous deployment [1](CI/CD) processes. 

To address these issues, attention is being paid to an emerging field called Machine Learning System 

Operations (MLOps). MLOps is a relatively new term that has gradually gained traction over the past 

few years. It closely links computer systems and machine learning and considers new challenges in 

machine learning from the perspective of traditional systems research. [2]MLOps is not just a tool or 

process, it is a philosophy and methodology that aims to achieve continuous delivery and reliable 

operation of machine learning models. Against this background, this article will explore ways to 

automate model training and deployment by integrating systems with machine learning. First, we will 

review the challenges and problems in existing MLOps, and then lead to the topic of this article, which 

is how the integration of systems with machine learning can solve these challenges and improve 

productivity. 

2.  Related Work 

2.1.  Review on the development of MLOps 

In the past, different software development process models and development methods have appeared in 

the field of software engineering. Prominent examples include the waterfall model and the Agile 

Manifesto. These approaches have a similar goal of delivering a production-ready software product. In 

2008/2009, a concept called "DevOps" [3] emerged to reduce problems in software development. 

DevOps is not just a pure approach, but represents a paradigm for solving social and technical problems 

in organizations engaged in software development. It aims to close the gap between development and 

operations and emphasizes collaboration, communication, and knowledge sharing. It ensures automation 

through continuous integration, continuous delivery, and continuous deployment (CI/CD) for fast, 

frequent, and reliable releases. [4] In addition, it is designed to ensure continuous testing, quality 

assurance, continuous monitoring, logging, and feedback loops. 

The evolution of DevOps to MLOps[5] is a process of extensibility that includes the adaptation of 

traditional software development processes and the introduction of new technologies. In this process, 

organizations need to combine the principles of DevOps with the unique requirements of machine 

learning, redesigning and extending existing continuous integration, continuous delivery, and 

continuous deployment pipelines to accommodate the development, training, and deployment processes 

of machine learning models. [6]At the same time, specific tools and techniques for machine learning 

need to be introduced, such as model warehouses for model versioning, trial tracking systems for 

automated experiment management, and specific tools for model monitoring and logging. This evolution 

allows MLOps to better meet the needs of machine learning projects and enable efficient development, 

deployment, and management of models. 

2.2.  Traditional system integration deployment 

The traditional concept of system integration refers to the integration of computer systems, including 

the integration of computer hardware platform, network system, system software, tool software and 

application software, and the corresponding consultation, service and technical support around these 

systems. It is based on computer related technology reserves, with reliable products as tools, to achieve 

a specific combination of computer system functions of the engineering behavior. The content of system 

integration includes integration of technology environment, integration of data environment and 

integration of application program.  

In order to connect these heterogeneous systems and port applications from one system to another, 

existing proprietary systems must adapt to standard interfaces and transition to open systems. What users 

want is interoperability between multi-vendor platforms. Therefore, the work of system integration is 

very important in the construction of information system projects. It integrates all kinds of resources 

organically and efficiently through hardware platform, network communication platform, database 

platform, tool platform and application software platform to form a complete workbench. However, the 
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quality of system integration has a great impact on system development and maintenance. The basic 

principles to be followed in technology include: openness, structure, advancement and mainstreaming. 

2.3.  Automation benefits of machine learning systems 

MLOps is an ML engineering culture and practice that seeks to unify ML System development (Dev) 

and ML System Operations [7](Ops). Practicing MLOps means advocating automation and monitoring 

in all steps of ML system building, including integration, testing, release, deployment, and infrastructure 

management. 

Machine learning systems differ from other software systems in the following ways: 

- Development: Machine learning is experimental in nature. You should try different features, 

algorithms, modeling techniques, and parameter configurations to find the best fit for the problem as 

soon as possible. The challenge is keeping track of what works and what doesn't, and maintaining 

repeatability while maximizing code reusability.  

Testing: Testing machine learning systems is more complex than testing other software systems. In 

addition to typical unit and integration testing, you need data validation, trained model quality 

assessment, and model validation. 

Deployment: In an ML system, deployment is not as simple as deploying an offline trained ML model 

as a predictive service. ML systems may require you to deploy multi-step pipelines to automatically 

retrain and deploy models.  

Through continuous monitoring and feedback mechanisms, MLOps emphasizes constant attention 

to model performance and data changes to optimize model stability and accuracy. However, the lack of 

software engineering experience of machine learning team members, as well as the complexity of model 

deployment and sensitivity to data changes, also pose certain challenges to the practice of MLOps that 

require further research and resolution. 

3.  Methodology 

3.1.  Automation in Model Training 

Automating the model training process is essential to simplify development and ensure repeatability. 

First, automation can dramatically reduce human intervention, improve efficiency, and save time and 

resources. By using version control systems and automated workflows, teams can track and manage all 

changes during model training, including data sets, parameter Settings, and algorithm selection. In real-

world deployments, large neural networks (DNNS) face challenges due to their huge demands on 

resources. [8]Traditional DNNS may face hardware limitations, insufficient computing resources, and 

latency in actual deployments, especially in environments where edge devices or resources are limited. 

This can be achieved by pruning, quantization, low rank approximation and other techniques. Therefore, 

the compressed neural network can not only reduce the deployment cost and delay, but also expand the 

application range of the model in different devices and scenarios, and promote the process of DNN 

productization. 

 

Figure 1. OTOv2 framework based on DNN automated deployment 

Pruning is one of the most common DNN compression methods, which aims to reduce redundant 

structures, slim down DNN models while maintaining model performance. However, existing pruning 
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methods often point to specific models, specific tasks, and require AI engineers to invest a lot of 

engineering and time effort to apply these methods to their own tasks. Therefore, the compressed neural 

network can not only reduce the deployment cost and delay, but also expand the application range of 

the model in different devices and scenarios, and promote the process of DNN productization.This 

tracking and management mechanism not only facilitates collaboration and communication among team 

members, but also ensures the consistent performance of the model in different environments, improving 

the reliability and maintainability of the model.  

3.2.  Integration with CI/CD Pipelines 

DevSecOps is a cultural approach in which every team and person working on an application considers 

security throughout its life cycle. It ensures that security is implemented at every stage of the application 

software development life cycle (SDLC) by embedding the required security checks into CI/CD[9] 

automation using appropriate tools. But in actual deployments, with vulnerabilities emerging faster than 

ever before, integrating Dynamic Application security testing (DAST) into continuous 

integration/continuous deployment (CI/CD) pipelines is a game-changer, helping you consider security 

at an early stage, find and address security vulnerabilities as early as possible. Rather than wait until 

they seriously affect users before taking action. 

 

Figure 2. DevSecOps CI/CD pipeline architecture 

CI/CD is a way to frequently deliver applications to customers by introducing automation in the 

application development phase. CI/CD's core concepts are continuous integration, continuous delivery, 

and continuous deployment. 

Specifically (Figure 2), CI/CD enables continuous automation and continuous monitoring throughout 

the entire life cycle of the application, from the integration and testing phase to delivery and deployment. 

By using containerization, machine learning workflows can be packaged into containers and deployed 

in different environments, simplifying the process of deployment and management, and improving 

portability and reliability.  

3.3.  Model Deployment and Monitoring 

In a large cluster, even routine operations can become variable, including operating system upgrades, 

security patch application, software package management, and custom configuration of kubelet or 

containerd. During O&M[10] operations, if the node status is inconsistent due to errors, that is, the 

configurations of some nodes are inconsistent with the expectations, or even multiple versions of nodes 

exist at the same time, the next O&M operation will fail and unexpected behaviors of the same service 

copies may occur on some nodes, resulting in service stability risks. 
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Figure 3. Kubernetes (K8s) automated deployment environment architecture 

Large AI models are typically deployed on cloud-native environments such as Kubernetes 

(K8s)figure 3. With the popularity and maturity of cloud-native technologies, more and more enterprises 

and developers are choosing Kubernetes as the infrastructure to deploy and manage AI large model 

services based on the following points: 

1. Resource management and Scheduling: [11]Kubernetes provides flexible and efficient resource 

management and dynamic scheduling capabilities, which are critical for large-scale machine learning 

models that rely on high-performance computing resources, especially Gpus. 

2. Elastic scaling: According to the changes in the demand of the model service, K8s can 

automatically expand and shrink the number of Pods, so as to better use resources and ensure the high 

availability of services. 

3. Containerized deployment: Packaging the model and its runtime environment through container 

technologies such as Docker, so that the model can be quickly and consistently deployed in any 

Kubernetes-enabled cluster. 

4. Service orchestration: K8s provides a complete set of service discovery, load balancing, and 

service governance mechanisms to help build complex microservice architectures, especially for AI 

applications where multiple services may be required to work together. 

5. Model version management and update: With K8s rolling update, canary release and other 

functions, model versions can be smoothly upgraded or rolled back to reduce operation and maintenance 

risks. 

Cloud-native architectures and Kubernetes have become one of the standard choices for large-scale 

AI deployment and management, especially when dealing with large-scale, high-performance 

demanding scenarios. From model training to inference services, K8s provides powerful support. 

4.  Case Studies and Best Practices 

At Netflix, there are hundreds of thousands of workflows and millions of jobs running on multiple layers 

of the big data platform every day. Given the broad scope and intricate complexity inherent in such 

distributed large-scale systems, diagnosing and fixing job failures can create a considerable operational 

burden, even if the failed jobs represent only a small percentage of the total workload. To handle errors 

efficiently, Netflix has had great success using machine learning to improve the user experience, 

recommend content, optimize video coding, and make content distribution more efficient. Their MLOps 

practice is one of the keys to their success. 

First, the classification of Netflix's rules-based classifier, which uses machine learning services to 

predict retry success probability and retry cost, and select the best candidate configuration as a 

recommendation; Netflix's autofix system integrates rules-based classifiers with machine learning 

services to optimize retry success probability and retry cost, automatically selecting and applying the 

best configuration for error resolution. Its key advantages lie in its integrated intelligence, combining 

deterministic classification from rules-based classifiers with ML-powered recommendations, full 

automation of the repair process, and multi-objective optimization considering both performance and 
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cost efficiency.Automatic repair generates recommendations by considering performance (that is, the 

probability of retry success) and calculating cost efficiency (that is, the monetary cost of running a job) 

to avoid blindly recommending a configuration that consumes too many resources. For example, for 

memory configuration errors, it searches for multiple parameters related to memory usage for job 

execution and recommends a combination of linear combinations that minimize the probability of failure 

and computational costs. 

4.1.  Netflix has accumulated many best practices and lessons learned in the practice of MLOps.  

These include: 

1. Automation and Continuous integration: Netflix emphasizes automation and continuous 

integration, leveraging the CI/CD pipeline to automate model training, evaluation, and deployment. This 

automated process increases efficiency, reduces human error, and ensures rapid iteration and updating 

of models. 

2. Containerized deployment: Netflix containerizes models and applications and leverages 

Kubernetes for deployment and management. Through containerization, they are able to achieve rapid 

deployment, elastic scaling, and high availability of models, while ensuring consistency and portability 

of the environment. 

3. Real-time monitoring and feedback: Netflix has established a real-time monitoring and feedback 

mechanism to detect and resolve problems in a timely manner by monitoring model performance, user 

feedback, and system logs. This continuous monitoring and feedback loop helps to improve model 

stability and reliability, and to adjust models and services in a timely manner. 

4. Refined experiment management: Netflix values experiment management and version control to 

ensure that each model has clear traceability and repeatability. They utilize advanced experiment 

management tools and processes to manage model versions, parameters, and results for effective 

comparison and selection. 

Through these best practices and lessons learned, Netflix has not only overcome common challenges 

in MLOps, but also improved the efficiency and quality of workflows, laying a strong foundation for 

innovation and success. The successful application of these strategies provides a valuable reference for 

other organizations to build and optimize their own MLOps practices. 

5.  Conclusion 

The content of the article reveals the challenges faced by machine learning in practical applications and 

introduces the importance of MLOps as a solution. By automating model training and deployment and 

integrating into traditional CI/CD pipelines, the complexity and challenges of deploying machine 

learning models in production environments can be effectively addressed. In addition, the paper 

emphasizes the importance of continuous monitoring and feedback loops in maintaining model 

performance and reliability. These methods and tools provide effective solutions for the development, 

deployment, and management of machine learning models, thus accelerating the model development 

cycle and improving the quality and performance of the models. 

Looking ahead, as machine learning technologies continue to evolve and the range of applications 

expands, we can expect more innovation and progress. Machine learning not only plays an important 

role in improving business efficiency, promoting innovation in the advertising industry, and improving 

medical technology, but also brings great potential and benefits to human society. By applying machine 

learning technology more widely, we can enable smarter and more efficient decisions and services, 

contributing to the sustainable development of society. The development of artificial intelligence will 

bring more convenience and well-being to mankind, and we should continue to be committed to 

promoting the innovation of machine learning technology to better meet human needs and achieve social 

progress and development. 
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