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Abstract. The interactive colorization allows users to add a desired color to any location in a 

grayscale image to obtain the desired color image. While transformers can capture larger 
receptive fields compared to convolutional neural networks, their computational complexity in 

image colorization is too high. As a solution, this paper introduces a novel image colorization 

framework for processing image colorization assignments. In our framework, the dual local self-

attention mechanism model is formulated as a solution for reducing the computational 

complexity associated with global self-attention mechanisms, where the improvement is to 

combine shift window local self-attention and feature space local self-attention. Both local 

spatial connections and distant relations are captured to enhance the local quality for the 

reconstruction. Prior to computing feature space local self-attention, a brightness similarity 

metric is introduced to cluster the interested area to different local regions. Aiming for real-time 

inference, the DUpsampling is adopted for signal reconstruction. Specifically, the lightweight 

convolutional layer is employed before the DUpsampling to mitigate artifacts. Our experimental 

results on multiple datasets demonstrate that our proposed method outperforms existing 

interactive colorization methods while having lower model parameters and computational 

complexity than other Transformer-based models. 

Keywords: Interactive Image Colorization, Vision Transformer, Local Self-Attention. 

1.  Introduction 

Interactive image colorization is the process of adding specific colors at any location in a grayscale 
image to obtain the desired colored image. Grayscale image colorization has found widespread 
applications in some vision fields, such as medical imaging, cultural heritage preservation, art creation, 
and video games. Grayscale images are processed to be more realistic and colorful, which is beneficial 
to improving the performance of downstream computer vision tasks. Traditional colorization methods 

[1-3] rely on statistical features or mathematical models with higher interpretability, but the results are 
not ideal. These mathematical models have difficulty processing complex texture and semantic 
information, so their application on high-resolution images is poor. 

Colorization methods based on deep learning learn color change patterns from large-scale color 
images and can reduce or even eliminate manual intervention. These methods can be further categorized 
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based on whether they require user input of initial colors, resulting in fully automatic image colorization 
and interactive image colorization. 

This paper focuses on interactive image colorization, which, compared to fully automatic 
colorization, allows users to input initial color points. This integration of model-based approaches with 

human expertise and artistic intuition enhances the quality and freedom of colorization, thereby assisting 
professionals in executing more precise and creative colorization. In existing research methods [4-9], to 
expand the model's receptive field and propagate color cues to distant regions awaiting colorization, a 
common approach involves the design of heavily stacked Convolutional Neural Networks (CNNs). The 
color information of large semantic areas is only propagated in deep CNNs, and the transitional 
connections of color in spatial areas are often ignored. Therefore, ensuring global color consistency has 
become a difficulty in image colorization, and color changes in complex image scenes often suffer from 
inconsistent changes. To expand the receptive field of the model and propagate the dependence of color 

cues to distant areas to be colored, the stacked convolutional neural network (CNN) was abandoned. 
This article adopts the Transformer architecture that can perform long-distance dependencies. network. 
By adopting the visual transformer (ViT) architecture [10] to solve this problem, the global receptive 
field dependence of the self-attention layer is exploited to selectively propagate color cues to distant 
spatial regions. 

However, the Transformer architecture has high computational complexity in image processing and 
requires a large amount of computing resources and training time. At the same time, the Transformer 

architecture is highly sensitive to the sample size of the data set. Therefore, this paper introduces a local 
window self-attention mechanism on top of the ViT architecture to reduce model complexity. Spatial 
connections between individual local image patches are established. The introduction of the local 
window self-attention mechanism is mainly to pay attention to the spatial correlation between image 
blocks and increase the smoothness of colors between image blocks. 

For the constraints of inter-block correlation, image blocks are divided into multiple clusters, and 
self-attention within each cluster is calculated. Furthermore, to capture the correlation of features 

between blocks, this paper draws on the mathematical models used in traditional image colorization 
methods and introduces brightness similarity as a criterion for clustering. Thus, connections between 
spatially distant but still related image patches are established. In order to improve the upsampling effect, 
we improved the output channel strategy in the layered vision transformer stage to retain more channel 
information. At the same time, a local stabilization layer is designed before upsampling to reduce 
artifacts. In the experimental validation section, the interpretability and feasibility of the model are 
verified and explained. The flowchart of the proposed method is shown in figure 1.  

 

Figure 1. Flowchart of the proposed method. 

Our contributions are as follows: 
1) To address the problem of the high computational complexity of Vision Transformer in 

colorization, a hierarchical transformer module based on dual local self-attention is proposed. 
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2) To preserve as much local window information as possible within the hierarchical transformer, 
improvements are made to the block merging module to increase the color smoothness of the upsampled 
results. 

3) Brightness similarity is introduced as a feature clustering metric for the clustering of critical 

information. The model's ability to extract local features is enhanced while saving parameters. 

2.  Related work 

2.1.  Colorization 

Traditional image colorization methods usually rely on manual rules, mathematical models, or statistical 
methods for image colorization. These can be divided into two categories: color diffusion-based and 
color transfer-based. 

In the field of color diffusion, Levin et al. [1] believe that pixels with similar brightness should have 
similar color information after colorizing. A weighting method is used to minimize the color difference 
between each pixel and its neighboring pixels, thereby inferring the color information of neighboring 
pixels. In the field of color transfer, Welsh et al. [2] first input a color image that is similar to a grayscale 

image, and then use regional similarity as the basis for pixel matching. This method transfers color 
information from a color image to a grayscale image to achieve color transfer. Although traditional 
methods have the advantage of strong interpretability. However, their diffusion functions are difficult 
to handle complex texture and semantic information, making them difficult to be suitable for large-scale 
and high-resolution images. Deshpande et al. [4] solved the task of image colorization using a 
convolutional neural network (CNN) architecture. A relatively simple CNN network is adopted, while 
the histogram is incorporated into the mean squared error L2 loss function. This method demonstrates 

the effectiveness of CNN architectures in solving image colorization without the need for reference 
images or manual interaction. Qin et al. [6] discussed an image colorization method using coding. This 
method is more efficient, saves memory, and achieves natural shading effects. 

Automatic image colorization lacks the flexibility of human-computer interaction. The point 
interactive colorization model colors the image by specifying colors at different point positions. Because 
the range of points indicating spatial location is limited to 2x2 to 7x7 pixels, covering only a small 
portion of the entire image, reasonable results can be obtained with minimal user interaction. Zhang et 
al. [7] introduced a framework based on user-guided image colorization. Convolutional neural networks 

(CNN) are used to map sparsely cued grayscale images into real color images with real-time availability. 
In the study by Su et al. [8], instance-aware shading is used to solve the shading of multiple image 
objects. Object detection is used to identify individual objects in an image and color them accordingly. 
The model of Su et al. is not a point interactive colorization model, but an unconditional model. However, 
its model structure and objective function are the same as the model of Zhang et al., and it can be easily 
extended to the interactive model. Yin et al. [9] introduced Side Window Filtering (SWF). Window 
edges or corners are used to align to pixels rather than to the center of the image. This approach improves 

the edge preservation of color. Yun et al. [11] introduced the ViT framework for point interactive image 
colorization, but it was limited by the Transformer architecture, which had problems such as large 
number of parameters and high computational cost. Lee et al. [12] propose a novel A-ColViT 
architecture to adaptively prune the layers of vision transformer for every input sample. This method 
flexibly allocates computational resources of input samples, effectively achieving actual acceleration. 

2.2.  Swin Transformer 

Transformer [13] is a network architecture based on the self-attention mechanism, originally designed 
for the field of natural language processing (NLP). Known as the Vision Transformer (ViT) model, it 
has demonstrated significant advantages in tasks such as image classification. In ViT, the image is 
divided into blocks of a series of "patches", while a linear embedding layer is used to convert the patches 
into vector representations, and then these patches are fed as input elements to the encoder. The multi-
head self-attention (MSA) module is used to calculate the relationship between different patches. 
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However, images have higher pixel resolution, which makes training of MSA of patches require a higher 
sample size. 

To solve the problem of a large number of parameters, Liu et al. [14] introduced the Swin model, 
and the hierarchical Transformer model of the shift window was adopted. The image is divided into 

multiple local windows, each local window contains multiple patches, and self-attention operations are 
performed within the same window. At the same time, move operations are applied to windows, and 
partial overlap of adjacent windows is established to enhance inter-block connections. Overall, Swin 
draws inspiration from the design of convolutional networks and uses a hierarchical structure to process 
information at different scales. Since the patch is also associated with other patches in the local window, 
and has a higher correlation with patches in different windows. Therefore eliminating the connections 
between different patches will not significantly harm the performance of the model. Moreover, the 
computational complexity of local window self-attention is much lower than the global self-attention 

mechanism. 
Assuming an image comprises ℎ × 𝑤  patches and is divided into 𝑀 × 𝑀 windows, the computational 

complexities of the global Multi-Head Self-Attention (MSA) module and the Swin-MSA module can 
be expressed as follows, respectively [14]: 

 𝛰(𝑀𝑆𝐴) = 4ℎ𝑤𝐶2 + 2(ℎ𝑤)2𝐶 (1) 

 𝑂(𝑆-𝑀𝑆𝐴) = 4ℎ𝑤𝐶2 + 2𝑀2ℎ𝑤𝐶 (2) 

where ℎ and 𝑤 represent the height and width of the image (in patches) respectively. 𝐶 represents the 
number of channels per patch. The computational complexity of the former increases quadratically with 

patches number hw, and the latter is linear when 𝑀 is kept fixed. Global self-attention computation 

becomes unaffordable for large ℎ𝑤 values, whereas window-based self-attention is more scalable. 
Although the local self-attention mechanism significantly improves computational efficiency, it has 

shortcomings in capturing long-distance dependencies between image patches. To address the 
limitations of spatially local self-attention, many researchers will study the long-range dependence of 
patches in space, aiming to establish connections between different regions. Kitaev [15] and others adopt 
hash encoding of feature space to label patches, using a hash function to map each patch to storage space, 
achieving efficient parallel processing and improved training efficiency. Tay [16] introduced sequence 

sorting and chunking models and used the Sinkhorn algorithm to divide the input sequence into multiple 
chunks. A sorting network is used to sort the elements within each block. Roy [17] used an online K-
means clustering algorithm to cluster patches and applied a self-attention mechanism to the clustering 
process to effectively learn image spatial sequence information. Based on Roy's work, Yu [18] further 
improved the clustering algorithm into a hierarchical balanced clustering method, combined it with 
spatial local attention, and proposed the BOAT model. Gain [19] et al. noted that imbalanced feature 
representation biases the learning model in favor of major features. It works to improve diverse-range 

dependency modeling in an effort to reduce contextual ambiguity and color leakage that promotes the 
production of more plausible coloring by modifying the mean squared error backpropagation algorithm. 

In actual shading scenes, there are often regions that are not adjacent in space but are related in color. 
The local window of image space and the local window of feature space have different concerns and 
different uses. figure 2 illustrates three methods for partitioning local self-attention windows: standard 
Window Self-Attention (WSA), Shifted Window Self-Attention (SWSA), and Feature Window Self-
Attention (FWSA). These partitioning methods each have their own focus areas and overlapping aspects, 

contributing to the enlargement of receptive fields for individual patches. 
Both Swin and BOAT models have the potential to improve model accuracy and generalization while 

reducing the computational cost of the Transformer. These models have shown excellent performance 
in image classification, object detection, and semantic segmentation applications. However, so far, there 
are no researchers applied it to interactive image colorization tasks. 
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(a) Windows Self-Attention 
(WSA) 

(b) Shifted Windows Self-
Attention (SWSA) 

(c) Feature Windows Self-
Attention (FWSA) 

Figure 2. Three ways to divide local self-attention windows  

2.3.  Pixel brightness similarity 

Levin et al. [1] were pioneers in the field of image colorization and introduced the concept that pixels 
with similar grayscale values should also have more similar colors. They established a weight function 
for pixel t and its neighboring pixel c as follows: 

 𝜔𝑡𝑐 ∝ 𝑒−(𝑁(𝑡)−𝑁(𝑐))
2

2𝜎𝑡
2⁄  (3) 

where, 𝑁(∙) represents the pixel neighborhood, 𝜎𝑡
2 is the brightness variance of the neighborhood pixels 

centered around pixel 𝑡, and the weight function satisfies the equation ∑ 𝜔𝑡𝑐 = 1𝑐∈𝑁(𝑡) . If 𝜔𝑡𝑐 is smaller, 

it indicates a greater color difference between pixels 𝑡 and 𝑐; otherwise, the colors of the two points are 
closer. Levin et al.'s method has been proven to produce excellent colorization results and laid the 

foundation for subsequent traditional image colorization methods [20-23]. They, along with other 
researchers, share a similar perspective and have introduced more complex mathematical tools to 
enhance colorization quality, such as variational methods and partial differential equations. 

3.  Proposed Method 

3.1.  Overall structure of the proposed method 

Figure 3 illustrates the overall architecture of our model in this paper. We begin by preparing a grayscale 

image, denoted as 𝐼𝑔 ∈ ℝ𝐻×𝑊×1and a color hint image , denoted as 𝐼ℎ𝑖𝑛𝑡 ∈ ℝ𝐻×𝑊×3 The color hint 

image is created by adding several colored pixel blocks to the original image, following the standard 
size of 2×2 pixels as set by Zhang [7]. Next, their color spaces are converted from RGB to Lab, where 
L represents the luminance value, and a and b are the two chroma channels. Since the grayscale image 

contains only luminance information and lacks chroma information, its size remains 𝐼𝑔 ∈ ℝ𝐻×𝑊×1. For 

the color hint image, the luminance information is retained from 𝐼𝑔 at corresponding positions, while 

the chroma information is represented using the a and b channels. In the ab channels, all non-hinted 
regions are filled with zeros, resulting in the chroma information for the user's hint image, denoted as 

𝐼ℎ𝑖𝑛𝑡 ∈ ℝ𝐻×𝑊×2. The merging of these two images yields the image information 𝑋0 ∈ ℝ𝐻×𝑊×3 in the 
Lab color space: 

 𝑋0 = 𝐼𝑔⨁𝐼ℎ𝑖𝑛𝑡 (4) 

where ⨁ is the channel-wise concatenation. Following this, the grayscale image with color hints is 
subjected to Patch Embedding, involving the following steps: the image gets divided into a series of 
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patches, and each patch goes through feature extraction and mapping into a one-dimensional sequence, 

treated as a visual token. Initially, the patch size is set to 4×4, denoted as 𝑃1 = 4, resulting in each patch 

having a feature dimension of 𝐶 = 3 × 𝑃1
2 , while the image information 𝑋1  has dimensions 

(𝐻 𝑃1⁄ , 𝑊 𝑃1⁄ ,3 × 𝑃1
2). 𝑋1 is then employed as input and processed through our improved Hierarchical 

Transformer Encoder. In this encoder, as depicted in figure 3, the patch size changes at each stage, with 

a total of 4 stages. The final output feature information 𝑋4 has dimensions (𝐻 32⁄ , 𝑊 32⁄ ,3 × 322), and 

at this stage, the patch size is 𝑃4 = 32. 

The output image resolution, 𝐼ℎ𝑖𝑛𝑡 ∈ ℝ𝐻×𝑊×2, is only 1/32 of the original image, so it is necessary to 

upsample the output feature image 𝑋4 to obtain a full-resolution color image [24]. The DUpsampling 
[25] technique, which is a more concise and efficient upsampling method, has been enhanced by the 
model. DUpsampling achieves upsampling by learning sub-pixel convolutions and can rearrange an 

image with dimensions (𝐻 𝑃⁄ , 𝑊 𝑃⁄ , 3 × 𝑃2) into the shape (𝐻, 𝑊, 3) to obtain a full-resolution image. 

To further mitigate the artifacts and color bleeding caused by DUpsampling, a convolutional layer with 

a receptive field of 3 is added as a local stabilizing layer between the Transformer and DUpsampling 
modules. This local stabilizing layer ensures smoother upsampling. Section 4.5 of this paper will include 
a set of ablation experiments to validate the effectiveness of the convolutional layer as a local stabilizing 
layer. 

For the output result of upsampling, the a and b chrominance channels are retained, and channel 

fusion is carried out with the image 𝐼𝑔 with the original brightness channel to obtain the final color 

prediction result 𝐼𝑝𝑟𝑒𝑑: 

 𝐼𝑝𝑟𝑒𝑑 = 𝐼𝑔 ⊕ 𝐼𝑎𝑏 (5) 

where ⨁ is the channel-wise concatenation. 𝐼𝑔  represents the grayscale image information, and 𝐼𝑎𝑏 

represents the calculated a and b chromaticity channel information. 

 

Figure 3. Hierarchical Vision Transformer structure 

3.2.  Hierarchical Transformer 
The hierarchical Transformer structure mentioned earlier, as shown in figure 3, operates with 4×4-sized 
patches. Tokens are input into the Dual Local Self-Attention Transformer module, which goes through 

both image space local self-attention and feature space local self-attention calculations sequentially. This 
process is referred to as "Stage 1." 

Next, the patch size is increased to 8×8 through a patch merging layer, reducing the length of the 
token sequence by 4 times and increasing the output channels by a corresponding factor of 4. It's worth 
noting that in the Swin model [13] design, at this point, there's an additional 1x1 convolution operation 
to reduce the channel dimension by half. However, in this model, this step is omitted to retain more 
channel information, which will be useful for later color resolution upsampling. This idea will be further 

validated in a set of ablation experiments in Section 4.5. The process of Patch Merging in the Swin 
model and our model is depicted in figure 4. Following this, tokens are applied to dual local self-attention 
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Transformer blocks, referred to as "Stage 2". This process is repeated two more times until Stage 4, 

which outputs a resolution of (𝐻 32⁄ , 𝑊 32⁄ ) with 3 × 322 channels. 

 

Figure 4. Patch Merging structure and subsequent size changes 

3.3.  Dual Local Self-Attention 

In the standard Transformer architecture, global self-attention operations have quadratic computational 
complexity with the number of tokens, rendering them unsuitable for many high-resolution visual tasks 
with numerous tokens. To streamline computation and effectively capture inter-region relationships 
within an image, a Dual Local Self-Attention Transformer module is introduced in this paper, as shown 
in figure 5. It consists of three core components: the Windows Local Self-Attention (WSA) module, the 
Shifted Windows Self-Attention (SWSA) module and the Feature Windows Self-Attention (FWSA) 
module. 

 

Figure 5. Dual Local Self-Attention structure 

The first step in performing local self-attention computation is to divide the image into non-
overlapping local windows, and each token computes self-attention only within its window. However, 
if self-attention computation is restricted to non-overlapping regions, a token cannot establish 
connections with information outside its window. To facilitate cross-window connections, the shifted 
windows approach is adopted, where there is partial overlap between windows before and after shifting, 
and tokens are computed alternately following two different window partitioning rules. Although this 

approach significantly improves efficiency, it focuses only on connections between nearby regions. In 
the field of image colorization, similar colors may not necessarily be in spatial proximity. 

To tackle this issue, the Feature Windows Self-Attention (FWSA) module is introduced in the paper. 
It operates based on feature similarity, where patches with high feature similarity are grouped into a 
local window. Self-attention computation is then performed within this new window. Consequently, a 
patch can establish connections with patches from the previous and subsequent windows, granting it 
access to a larger receptive field, akin to achieving global attention. The paper illustrates the two 
different window partitioning strategies in figure 2, each with its respective focus. 

A complete Dual Local Self-Attention Transformer block is formed by adding Layer Normalization 
(LN) modules and Multi-Layer Perceptron (MLP) modules before and after the two local self-attention 
modules. The calculation for input token sequences through this Transformer encoder is as follows: 

 𝑧𝑙
′ = 𝑊𝑆𝐴(𝐿𝑁(𝑧𝑙−1)) + 𝑧𝑙−1 (6) 
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 𝑧𝑙
′′ = 𝑆𝑊𝑆𝐴(𝐿𝑁(𝑧𝑙

′)) + 𝑧𝑙
′ (7) 

 𝑧𝑙
′′′ = 𝐹𝑊𝑆𝐴(𝐿𝑁(𝑧𝑙

′′)) + 𝑧𝑙
′′ (8) 

 𝑧𝑙+1 = 𝑀𝐿𝑃(𝐿𝑁(𝑧𝑙
′′)) + 𝑧𝑙

′′′ (9) 

Where LN(∙)  indicates the layer normalization and 𝑀𝐿𝑃(∙)  the multi-layer perceptron. 

𝑊𝑆𝐴(∙) ,𝑆𝑊𝑆𝐴(∙) and 𝐹𝑊𝑆𝐴(∙) respectively represent the three local window self-attention modules 

shown in figure 5, and the output is 𝑧𝑙
′, 𝑧𝑙

′′ and 𝑧𝑙
′′′ in layer 𝑙, 𝑧𝑙+1represents the input features of the 

next layer. Since self-attention does not utilize any position-related information, position encoding Epos 

is added to the input of the attention layer and relative position biases [26]. Therefore, the calculation 
for the attention layer is as follows: 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇 √𝑑⁄ + 𝐵)𝑉 (10) 

where 𝑄, 𝐾, 𝑉 ∈ ℝ𝑁×𝑑are the query, key and value matrices . 𝐵 ∈ ℝ𝑁×𝑁  is the relative positional bias. 

𝑁 = 𝐻𝑊/𝑃2 is the number of input tokens, 𝑑 = 3 × 𝑃2 is the hidden dimension. 
Based on the existing ViT architecture [27], the MLP module consists of two fully connected layers. 

The first layer increases the feature dimension from 𝐶 to 𝑟𝐶, and the second layer reduces it back from 

𝑟𝐶 to 𝐶 . By default, 𝑟 is set to 4. 

3.4.  Feature-space local attention 
The feature-local attention mechanism classifies tokens based on the content of the tokens themselves. 
To enable efficient parallel processing on GPU platforms, this paper employs a multi-level binary 

clustering approach [17]. It performs 𝐾-level clustering, and at each level, a balanced binary clustering 

is performed, dividing a group of tokens into two equal sets. Suppose an image has 𝑁 tokens. At the 

first level, these tokens are split into two subsets, each containing 𝑁 ∕ 2 tokens. At the 𝑘-th level, there 

will be 2𝑘 subsets, each containing 𝑁 ∕ 2𝑘 tokens. 
Similar to K-means clustering, this method relies on cluster centers. In a set of tokens, two cluster 

centers, denoted as 𝑐1 and 𝑐2, are established. The distance between each token 𝑡𝑖 and the two cluster 

centers is compared, represented as 𝑟𝑖: 

 𝑟𝑖 =
𝑠(𝑡𝑖,𝑐1)

𝑠(𝑡𝑖,𝑐2)
 (11) 

where, 𝑠(𝑡, 𝑐) represents the similarity between tokens. In the works of Roy and Yu [16, 17], cosine 
similarity is commonly used for calculating similarity, which is a widely accepted standard. However, 

for grayscale image colorization, this paper proposes a more fitting brightness similarity, 𝑠(𝑡, 𝑐), based 
on Levin et al.'s pixel neighborhood weight function [1]. In the experimental section in 4.5, we will 
compare the impact of choosing these two similarity measures to validate the effectiveness of the 

proposed brightness similarity in this paper. 𝑠(𝑡, 𝑐) only requires a qualitative comparison of the 

distance between token 𝑡  and the two cluster centers and does not require precise quantitative 

calculations. Therefore, the weight function 𝜔𝑡𝑐 is simplified to: 

 𝑠(𝑡, 𝑐) = (𝑁(𝑡) − 𝑁(𝑐))
2
 (12) 

Where 𝑁(∙) represents the neighborhood of tokens. The smaller 𝑠(𝑡, 𝑐) is, the more similar the 

information between token 𝑡  and cluster center 𝑐  . Otherwise, if 𝑠(𝑡, 𝑐)  is larger, the information 

difference between the token and the cluster center is greater. Each token 𝑡𝑖 and its corresponding 

distance ratio 𝑟𝑖 are sorted in ascending order. The tokens in the first half of the sorted list are assigned 

to cluster 𝑐1, while those in the second half are assigned to cluster 𝑐2. The process is repeated for the 
two sets of tokens until the number of tokens matches that in the corresponding SWSA module's local 
window. Finally, multi-head self-attention calculations are performed on the tokens within each set. 
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3.5.  Objective Function 
Our model is trained using the Huber loss [27] between the predicted image and the original color image 
in the CIELab color space. Our goal is to optimize the overall Huber loss. The loss function is defined 
as follows: 

 𝐿𝐻𝑢𝑏𝑒𝑟 = {

1

2
(𝐼𝑝𝑟𝑒𝑑 − 𝐼𝑜𝑟𝑖)

2
   |𝐼𝑝𝑟𝑒𝑑 − 𝐼𝑜𝑟𝑖| ≤ 𝛿

|𝐼𝑝𝑟𝑒𝑑 − 𝐼𝑜𝑟𝑖| −
1

2
𝛿2   |𝐼𝑝𝑟𝑒𝑑 − 𝐼𝑜𝑟𝑖| > 𝛿

 (13) 

where 𝐿𝐻𝑢𝑏𝑒𝑟 , 𝐼𝑝𝑟𝑒𝑑 and 𝐼𝑜𝑟𝑖 represent huber loss, the predicted image and the original color image. The 

hyperparameter 𝛿 plays a certain selection role in this formula. When 𝛿~0, Huber loss tends to MAE, 

and when 𝛿~∞, Huber loss tends to MSE, in this model we take 𝛿 = 1. 

4.  Experiments 

4.1.  Datasets 
The experiments were conducted using the ImageNet 2021 dataset as the training set, which comprises 
over 1.2 million annotated images spanning 1000 categories. The model in this paper is trained in a self-

supervised manner, and it does not utilize any classification labels during training. To assess the model's 
generalization capabilities, four different datasets from various domains were chosen for evaluation. 
These datasets are ImageNet ctest10k, Oxford 102flowers, CUB-200, NCD datasets [29], and no 
additional fine-tuning was applied to any of the validation datasets. 

ImageNet ctest10k: This dataset is a subset of the ImageNet validation set, consisting of 10,000 color 
images. It doesn't contain any images from the ImageNet-1k dataset and is widely used as a standard 
validation set for evaluating grayscale image colorization models. It serves as the primary validation set 

for comparing results in this paper. 
Oxford 102-flowers Dataset: This dataset provides 102 different categories of flowers, with each 

category containing around 40 to 258 images, totaling 8,189 images. 
CUB-200 Dataset: The CUB-200 dataset includes 200 different categories of birds, with each 

category having around 40 to 60 images, resulting in approximately 12,000 images. 
NCD Dataset: The NCD dataset encompasses over 6,000 images of various fruit categories, including 

lemons, strawberries, apples, bananas, oranges, and more. 
These datasets were used to evaluate the performance of the model across different domains and 

scenarios. 

4.2.  evaluation indices  
In this paper, the primary evaluation metric used is Peak Signal-to-Noise Ratio (PSNR) and Structure 
Similarity Index Measure (SSIM). PSNR is a common method for assessing the similarity between a 
reconstructed image and the original image, with higher values indicating smaller differences between 

the reconstructed and original images. In grayscale image colorization tasks, PSNR is used to measure 
the similarity between the colorized image and the original color image. It needs to be defined by Mean 

Squared Error (MSE). Let 𝐼(𝑖, 𝑗) and 𝐾(𝑖, 𝑗) represent the original image and the processed image 

respectively, and 𝑀 × 𝑁 represents the image size. MSE can be written as, 

 𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ ‖𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)‖2𝑛−1

𝑖=0
𝑚−1
𝑖=𝑜  (14) 

Then PSNR is defined as,  

 𝑃𝑆𝑁𝑅 = 10 ∙ 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) (15) 

where 𝑀𝐴𝑋𝐼 is the maximum possible pixel value of the image. If each pixel is represented by an 8-bit 
binary, that would be 255. 
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SSIM is also a full-reference image quality evaluation index, which measures image similarity from 
three aspects: brightness, contrast, and structure. SSIM [30] is usually calculated as, 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2 +𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
 (16) 

where 𝑥, 𝑦  represent the original image and the processed image respectively, 𝜇𝑥 , 𝜇𝑦  respectively 

represent the average value of 𝑥, 𝑦, 𝜎𝑥
2, 𝜎𝑦

2 respectively represent the variance of 𝑥, 𝑦, and 𝜎𝑥𝑦 represents 

the covariance of 𝑥, 𝑦. 
In addition to PSNR and SSIM, the paper also uses Patch Errors Variance (PEV) as an auxiliary 

evaluation metric in comparative experiments. PEV is calculated as the variance of the MSE for each 
image patch. Lower PEV values indicate smoother accuracy across different regions, resulting in better 
colorization quality with fewer artifacts such as visual noise and color bleeding. It's worth noting that 
PEV can only be calculated for models based on the ViT framework, while many interactive colorization 

algorithms are based on CNNs or Generative Adversarial Networks (GANs). Therefore, PEV 
comparisons are conducted in the paper's ablation experiment section. The higher the psnr and ssim 
values, the lower the pev value, and the better the image colorization quality. 

4.3.  Implementation Details  
The experimental environment in this paper is based on a 64-bit Ubuntu 21.04 system with CUDA 

version 11.4, cuDNN version 8.4, Python version 3.8, an NVIDIA RTX-5000 GPU with 16GB of 
VRAM, and 128GB of system memory. 

Regarding the specific parameters for designing the Transformer encoder, the paper follows the 
configurations of Swin-S and Swin-T [13], implementing two sets of models: Ours-S and Ours-T. The 
Ours-S model has more parameters, while the Ours-T model is a more lightweight version. During 
training, the images are initially resized to a resolution of 224×224, and the initial patch size is set to 4. 
The paper uses the AdamW optimizer [31] with a learning rate of 0.0005, managed by a cosine annealing 
scheduler [32]. For the colorization hints, 2×2 pixel blocks are used, and 10 random points are selected. 

Training phase: We use the ImageNet 2021 dataset for training, the color images in the data set are 
grayscaled, and then we randomly select several coordinate points (usually 10, more and less quantities 
also tried, each dot size is 2×2 pixels) on each grayscale image and add the color prompt information of 
the original image. The model performs coloring based on these prompt information, and compares the 
coloring results with the original image to continuously learn iteratively. 

Testing phase: The images in the test set are processed in the same way as in the training phase. Each 
comparison model is colored according to the same prompt information and finally compared with the 

original image. 

4.4.  Implementation Details  
The paper compares the proposed model with five mainstream algorithms in the point-interactive 
colorization domain. These algorithms are Zhang et al.'s iDeepColor model [7], Yin et al.'s SWF model 
[9], Su et al.'s InstColor model [8], Yun et al.'s iColoriT model [11] and Lee et al.'s A-ColViT model 

[12]. It should be noted that the InstColor model of Su et al. [9] is originally an unconditional 
colorization model. Yun et al. extended it to the corresponding point interactive colorization model [11]. 
The InstColor model compared in this article is actually an extended version of Yun et al. We evaluate 
our network on multiple datasets, as shown in table 1. GFLOPs, PSNR, SSIM and the time cost of image 
colorization (measured in milliseconds) are used as our metrics. We were not able to measure  the 
number of parameters for Yin et al. [9] since the method is not a learning-based model. 
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Table 1. Objective evaluation on different datasets 

Model GFLOPs ctest10k Flowers CUB NCD 

  PSNR SSIM TIME/ms PSNR SSIM TIME/ms PSNR SSIM TIME/ms PSNR SSIM TIME/ms 

SWF - 24.232 0.917 15,198 19.445 0.892 12484 25.097 0.901 15253 24.098 0.917 12203 

iDeepColor 58.04 29.009 0.932 848 25.134 0.904 718 29.320 0.917 872 28.060 0.933 696 

InstColor 123.48 29.108 0.933 1372 25.130 0.909 1193 29.450 0.919 1391 28.334 0.936 1113 

iColoriT-S 4.95 30.626 0.937 253 27.370 0.912 204 30.595 0.927 246 30.939 0.954 195 

A-ColViT 1.32 28.966 0.927 167 24.894 0.907 137 29.713 0.923 176 30.065 0.946 142 

Ours-T 1.01 30.432 0.934 89 27.021 0.910 71 30.127 0.921 86 30.107 0.947 67 

Ours-S 3.47 31.467 0.940 187 28.209 0.911 147 30.779 0.932 194 31.553 0.957 157 

 
A higher PSNR value indicates better image quality. In this study, the Ours-S model consistently 

achieved thehighest PSNR values across all four datasets, while the Ours-T model exhibited slightly 
lower PSNR values compared to iColoriT. Compared to iColoriT-S, Ours-S shows a significant 
improvement in GFLOPs and time costs. The parameter count and time costs of the lightweight models 
A-ColViT and Ours-T are roughly equivalent. A-ColViT achieves a good balance between colorization 

performance and lightweight design. It's worth noting that the iColoriT model is built upon the ViT-B 
architecture [10], whereas our two models in this paper adhere to the configurations of Swin-S and Swin-
T [13]. As a result, our models have smaller model parameter sizes and computational requirements, as 
detailed in table 2.  

The comparative results of the colorization performance between our model, Zhang et al.'s 
iDeepColor model, and Yun et al.'s iColoriT model are illustrated in figure 6. Zhang first introduced 
deep learning-based methods for interactive image colorization in 2017, while iColoriT by Yun, 
proposed in 2022, currently represents the state-of-the-art in colorization performance. Subjectively, it 

is evident that both iDeepColor and iColoriT models exhibit varying degrees of color bleeding artifacts, 
whereas our model excels in preserving color edge details, resulting in a more visually realistic output. 

     

     

     
(a) Input (b)iDeepColor (c)iColoriT (d) Ours-S (e) Truth 

Figure 6. Colorization comparison effect with different models 
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Table 2. Comparison of the complexity of various ViT 

Model #para. GFLOPs 

ViT-B 86M 55.4G 

Swin-S 50M 8.7G 
Swin-T 29M 4.5G 

4.5.  Ablation Study  
In this section, based on the Ours-S model as the baseline, we conducted five sets of ablation experiments 
to investigate the impact of three aspects: the choice of the local stabilizing layer, whether the patch 
merging layer performs channel-wise convolution, and the selection of the feature space clustering 
metric. 

Local Stabilizing Layer: The local stabilizing layer is placed between the Hierarchical Transformer 
Encoder and the DUpsampling modules. Its purpose is to mitigate artifacts caused by upsampling. Our 
model employs a convolutional layer with a receptive field of 3 as the local stabilizing layer. There are 
three contrast models: Model 1: No local stabilizing layer. Model 2: A simpler linear layer as the local 
stabilizing layer. Model 3: A more complex local self-attention layer as the local stabilizing layer. 

Patch Merging Layer: In the patch merging layer of the Hierarchical Transformer module, Swin 
models include an additional 1x1 convolution in the channel dimension. This is done to align with 

widely used CNN architectures and enhance model compatibility. On the other hand, the Ours-S model 
preserves more channel information to improve upsampling. There is one comparative model: Model 4: 
Similar to Swin models, retains the convolution operation on the channel dimension and adjusts the 
upsampling rate accordingly in the DUpsampling stage. 

Feature Space Clustering Metric: In feature-based local space clustering, where patches are organized 
for local self-attention calculations, the Ours-S model utilizes the suggested luminance similarity metric. 
There is one comparative model: Model 5: Utilizes the more common cosine similarity as the clustering 
metric. These ablation experiments were conducted using the ImageNet ctest10k as the validation set, 

and the results are shown in table 3. 

Table 3. Results of ablation experiments 

Model Changes PSNR@10 B-PSNR@10 PEV 

Ours-S - 31.46 31.39 37.40 

Model 1 No local stabilizing layer 29.39 29.11 42.34 

Model 2 Linear local stabilizing layer 31.40 31.35 37.81 

Model 3 
Attention-based local stabilizing 

layer 
31.45 31.38 37.65 

Model 4 Channel-wise convolution 31.28 31.22 37.92 

Model 5 Cosine similarity clustering metric 30.77 30.72 39.19 

 
Where B-PSNR stands for Boundary Peak Signal-to-Noise Ratio, akin to PEV, which can only be 

computed in models based on the ViT framework. A higher PSNR implies a smaller difference between 
the reconstructed image and the original image, while a lower PEV signifies smoother precision in 
generated images, with fewer artifacts such as pseudo-contours and color bleeding. Referring to table 3, 
we can infer the colorization quality of the control models in the following order: Model 3 > Model 2 > 
Model 4 > Model 5 > Model 1. For ease of visual comparison, the colorization results are presented in 
figure 7 accordingly. Combining the subjective impressions from figure 7 with the objective indicators 
in table 3, it's evident that the image quality reflected by the objective metrics is largely consistent. 
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Model 1, without a local stabilizing layer, exhibits a notable decrease of 2.07 dB in PSNR and a 4.94 
increase in PEV, significantly impacting image quality.  

Using a convolutional layer as the local stabilizing layer, as in Model 2, and employing a local 
attention layer as in Model 3, yields slight improvements compared to the linear layer. This design is 

straightforward and effective. In Model 4, following the original Swin model by applying an additional 
channel-wise convolution after each hierarchical stage, there's a slight decline in image quality. Model 
5, utilizing the simpler cosine similarity as a feature space clustering metric, experiences a significant 
drop in image colorization quality, only surpassing Model 1 without a local stabilizing layer. This 
underscores the effectiveness of the proposed brightness similarity metric. 

       

       

       
(a) Model 1 (b) Model 5 (c) Model 4 (d) Model 2 (e) Model 3 (f) Ours-S (g)Truth 

Figure 7. Comparison of model colorization effects in ablation experiments 

5.  Conclusion 

This paper improves the ViT framework for the task of point-wise interactive grayscale image 
colorization. To address the computational inefficiency of Transformers in the colorization domain, the 
global self-attention mechanism is replaced with a dual local self-attention mechanism. This is achieved 
by establishing spatial relationships between patches through sliding local windows and creating feature 

connections through clustering similar patches. Furthermore, the paper introduces brightness similarity 
as a targeted replacement for the more common cosine similarity, tailoring it for image colorization. 
DUpsampling techniques are applied during the upsampling phase of Transformer output, and a local 
stabilizing layer is added to alleviate artifacts and color bleeding associated with upsampling. In 
comparison to colorization methods based on standard Transformer models, this approach not only 
reduces parameter count by 40% and computational complexity by 80% but also exhibits superior 
colorization performance across multiple datasets compared to mainstream algorithms. 

While our proposed algorithm demonstrates several advantages in the context of interactive image 

colorization, it does have limitations, particularly when colorizing small objects. Achieving satisfactory 
colorization in small object regions often requires a substantial amount of meticulous user-provided 
colors. This challenge becomes more prominent when dealing with grayscale information that is highly 
similar. Given that the model operates without leveraging any semantic labels and is trained in a self-
supervised manner, a viable avenue for improvement is to explore direct training using segmentation 
labels for point-interactive colorization models. An alternative approach involves granting users 
complete creative freedom, where the model's role is limited to identifying potential regions of dissimilar 

colors, serving as prompts for the user. In summary, we believe that the algorithm can effectively assist 
users in images colorization. 
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