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Abstract. Slope engineering plays a crucial role in civil engineering, and its stability directly 

affects the safety, reliability, and economy of the entire project. During construction, the rock 

layers of slopes are prone to deformation due to construction activities, which not only affect the 

progress and quality of construction but also pose potential safety hazards to the surrounding 

environment and structures. Therefore, accurately predicting the deformation of rock layers in 

slopes under construction disturbance is of paramount importance. This paper analyzes the 

traditional and modern methods of slope rock deformation analysis and discusses the prediction 

method of rock deformation in slopes under construction disturbance. Based on this, a 

comparison and evaluation of prediction methods for rock deformation in slopes under 

construction disturbance are conducted, aiming to provide theoretical support and guidance for 

engineering practice. 
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1.  Introduction 

Slope engineering, as an indispensable part of civil engineering, directly relates to the safety, reliability, 

and economy of the project. During the construction of slopes, various construction activities such as 

excavation, filling, and blasting disturb the rock layers of the slope to different extents, resulting in 

deformation. This deformation not only may affect the progress and quality of construction but also 

potentially threatens the surrounding environment and structures. Therefore, accurately predicting the 

deformation of rock layers in slopes under construction disturbance is of significant importance to ensure 

the safety and stability of slope engineering. 

2.  Overview of Rock Deformation Prediction Methods for Slopes 

2.1.  Traditional Prediction Methods 

Traditional prediction methods mainly rely on empirical formulas, geological survey data, and statistical 

analysis. These methods play a certain role in predicting the deformation of rock layers in slopes, but 

due to various limitations, their prediction accuracy and reliability are often unsatisfactory. Table 1 

shows the evaluation results of traditional prediction methods. 
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Table 1. Evaluation of Traditional Prediction Methods 

Method Name Advantages Disadvantages 

Empirical Formula 

Method 

Simple and easy to use, based on a 

large amount of engineering 

practice 

Applicable range is limited, ignores 

important influencing factors 

Geological Survey 

Data Method 

Considers the actual situation of 

slope rock layers, comprehensive 

data 

Large workload, high cost, limited by 

technical equipment 

Statistical 

Analysis Method 

Fully utilizes historical data, reveals 

general rules 

Requires large and high-quality data, 

poor prediction effect for nonlinear 

processes 

2.2.  Modern Prediction Methods 

Modern prediction methods not only overcome the limitations of traditional methods but also improve 

prediction accuracy and reliability by introducing advanced technology [1]. Among them, numerical 

simulation methods occupy an important position in modern prediction. By constructing numerical 

models of slope rock layers, simulating the changes in stress fields, displacement fields, etc., under 

construction disturbance, the deformation law of rock layers can be intuitively displayed. This method 

can comprehensively consider various influencing factors, such as geological structure, rock mechanics 

properties, construction methods, etc., to obtain more accurate prediction results. In addition, machine 

learning methods have also been widely used in predicting the deformation of slope rock layers. By 

training a large amount of historical data, machine learning models can automatically learn and identify 

the complex relationship between deformation and influencing factors. This method has powerful data 

processing and pattern recognition capabilities, can handle nonlinear and non-stationary deformation 

processes, and improve prediction accuracy and adaptability [2]. In addition to numerical simulation 

and machine learning methods, there are also some other modern prediction methods, such as grey 

prediction, neural network prediction, etc. These methods have their own characteristics and can be 

selected and applied according to specific engineering conditions and requirements. 

3.  Prediction Methods for Rock Deformation in Slopes under Construction Disturbance 

3.1.  Numerical Model Prediction Method 

The numerical model prediction method is mainly based on the principles of continuum mechanics, 

using refined mathematical models to simulate the deformation behavior of rock layers in slopes under 

construction disturbance. Common numerical methods such as Finite Element Method (FEM), Finite 

Difference Method (FDM), and Discrete Element Method (DEM) can fully consider the complexity and 

nonlinearity of slope rock layers, thereby providing more accurate prediction results [3]. When 

constructing the numerical model, it is necessary to first establish a geometric model based on the actual 

geometry of the slope and define the material properties of the rock, such as elastic modulus, Poisson’s 

ratio, etc. Then, the model is divided into multiple elements or particles, and corresponding boundary 

conditions and initial conditions are set to simulate the influence of construction disturbance. By 

applying appropriate numerical algorithms, the model can be solved to obtain the deformation of the 

slope rock layers. These data are usually presented in the form of displacement clouds, stress clouds, 

etc., facilitating a visual understanding of the deformation of the slope. 

3.2.  Empirical Formula Prediction Method 

The empirical formula prediction method is a scientific approach rooted in rich engineering practice 

experience and closely combined with the analysis of experimental data, aiming to reveal and quantify 

the inherent correlation between construction disturbance and slope rock layer deformation [4]. In this 

field, numerous empirical formulas are refined and established through detailed case analysis and 
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rigorous statistical inference processes. For example, a typical empirical formula may present a complex 

form as follows: 

𝛥𝐷 =
𝑘1 ⋅ 𝑝𝑛1

√𝐸 ⋅ (1 + 𝑘2 ⋅ 𝑙𝑛( 𝑃/𝑃0))𝑛2
3

 

Here, 𝛥𝐷 represents the predicted deformation of the slope rock layer, 𝑃 is the intensity parameter 

of construction disturbance, 𝐸  is the elastic modulus of the rock, and 𝑘1，𝑛1，𝑘2，𝑛2，𝑃0  are 

empirical coefficients, which respectively reflect the strength of the non-linear relationship between 

different physical quantities, the power exponent, and the correction factor and exponent of the influence 

of disturbance intensity on the elastic modulus. These empirical coefficients need to be determined 

through extensive regression analysis of engineering case data and calibrated and adjusted for specific 

engineering contexts when necessary. 

In practical engineering applications, when facing a specific slope project, if the construction 

disturbance intensity 𝑃 and the elastic modulus of the rock 𝐸 are known, the possible deformation of 

the slope can be predicted using the above empirical formula. For example, in a specific slope project, 

if the measured construction disturbance intensity is 𝑃 =100 kPa and the elastic modulus of the rock is 

𝐸 =20×109 Pa, further assuming that the empirical coefficients obtained after research and calibration 

are 𝑘1=0.01, 𝑛1=2, 𝑘2=0.5, 𝑛2=0.8, 𝑃0=1 kPa, which can be estimated according to the formula. 

The empirical formula prediction method has the advantages of simplicity and ease of operation, 

without the need for complex modeling and calculation, especially showing good practicality in cases 

of limited geological data or insufficient monitoring data. However, this method also has some 

limitations. On the one hand, the establishment of empirical formulas usually relies on specific 

conditions and assumptions, which may not fully capture the diversity and non-linear effects of slope 

deformation phenomena. On the other hand, its applicability is limited and may only be suitable for 

specific types of slopes and engineering conditions. In addition, the selection, calibration, and sensitivity 

of empirical coefficients to prediction results require users to have profound knowledge of 

geomechanics and professional data analysis skills, which also increases the uncertainty of prediction 

results to a certain extent. 

3.3.  Machine Learning and Artificial Intelligence Prediction Methods 

With the development of modern data analysis and artificial intelligence technology, machine learning 

methods, especially neural networks, support vector machines, and deep learning architectures, have 

been increasingly applied in the field of slope rock layer deformation prediction to overcome the 

limitations of traditional methods. 

In neural network models, by training the construction disturbance dataset (X), the network 

automatically extracts features and establishes complex relationships between inputs and outputs 

through multiple layers of nonlinear transformations [5]. For example, by stacking multiple perceptrons, 

convolutional layers, or long short-term memory layers to form deep neural networks, high-precision 

fitting of the nonlinear mapping between construction disturbance and slope deformation can be 

achieved. The prediction model can be expressed as: 

𝑌 = 𝑓𝑁𝑁(𝑊1𝑋 + 𝑏1, 𝑊2𝑓𝑎𝑐𝑡(𝑊1𝑋 + 𝑏1) + 𝑏2, . . . , 𝑊𝐿𝑓𝑎𝑐𝑡(𝑊𝐿−1. . . 𝑓𝑎𝑐𝑡(𝑊1𝑋 + 𝑏1) + 𝑏𝐿−1) + 𝑏𝐿 

Here, 𝑊𝑖 represents the weight matrices of each layer, 𝑏𝑖 is the bias term, 𝑓𝑎𝑐𝑡 is the activation 

function, 𝐿 is the number of layers, and gradient descent algorithm is used to calculate the gradient and 

iteratively optimize the network parameters to minimize prediction errors. 

In support vector machines, especially when using nonlinear kernel functions, it can effectively 

handle nonlinear problems and find the hyperplane that maximizes the distance between constructed 

boundaries and training samples. For slope deformation prediction, SVM can capture the intrinsic rules 

between construction disturbance and deformation by optimizing the decision function, which includes 

not only the support vectors of the training samples but also considers the similarity between samples: 
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𝑌 = 𝑠𝑔𝑛( ∑ 𝛼𝑖𝑦𝑖𝐾(𝑋，𝑋𝑖)

𝑚

𝑖=1

+ 𝑏) 

Here, 𝑚  is the number of support vectors, 𝛼𝑖  is the Lagrange multiplier corresponding to each 

support vector, 𝑦𝑖 is the actual slope deformation label of the corresponding support vector, 𝐾(𝑋，𝑋𝑖) 

is the inner product of two sample points calculated by the kernel function, and 𝑠𝑔𝑛 is the sign function, 

which is not used directly for regression problems but predicts continuous numerical values. 

Furthermore, for construction disturbance data with temporal characteristics, deep learning models 

such as recurrent neural networks (RNN) and long short-term memory networks (LSTM) demonstrate 

unique advantages. These models can handle time series data, retain historical information, and are 

particularly suitable for analyzing the influence of disturbances at different time points on future slope 

deformations. The LSTM network solves the problem of gradient vanishing or explosion in RNN 

through special gate mechanisms and can better capture long-term dependencies, thereby improving the 

accuracy of slope deformation prediction: 

ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡，ℎ𝑡−1，𝐶𝑡−1) 

𝑌𝑡 = 𝑓𝑜𝑢𝑡(ℎ𝑡) 

Here, 𝑥𝑡 is the construction disturbance input at time step 𝑡, ℎ𝑡 is the hidden state, 𝐶𝑡 is the cell 

state, 𝑓𝑜𝑢𝑡  is the output layer function used to transform the hidden state into the predicted slope 

deformation value. LSTM contains several gate mechanisms such as input gate, forget gate, and output 

gate internally. By regulating the storage and transmission of information through these mechanisms, 

more accurate predictions of future slope deformations can be made. 

4.  Comparison and Evaluation of Prediction Methods for Rock Deformation in Slopes under 

Construction Disturbance 

4.1.  Comparison of Prediction Effects of Different Prediction Methods under Construction 

Disturbance 

In the construction disturbance environment, the prediction of slope rock layer deformation is an 

important safety assessment link. Currently, commonly used prediction methods mainly include 

numerical model prediction methods, empirical formula prediction methods, and machine learning and 

artificial intelligence prediction methods. Table 1 compares and analyzes the prediction effects of these 

three methods under construction disturbance. 

The numerical model prediction method has higher accuracy in simulating the deformation of slope 

rock layers under construction disturbance, and can better reflect complex geological structures and 

nonlinear mechanical behaviors. For example, in a tunnel excavation project, the maximum predicted 

displacement of the slope using the finite element method was 15 cm, with an error of only ±3% 

compared to actual monitoring data. However, it has a long calculation time and requires high accuracy 

of input parameters. Once there is a large deviation in parameter estimation, the prediction results will 

also be affected. 

The empirical formula prediction method is widely used for its simplicity and speed, often applied 

in preliminary assessment and rapid prediction. In the same tunnel excavation project, the maximum 

predicted displacement using a certain empirical formula was around 17 cm, with an error of 

approximately ±8%. However, as mentioned earlier, the empirical formula may not consider complex 

factors sufficiently, leading to relatively conservative or overly optimistic prediction results. 

Machine learning and artificial intelligence prediction methods rely on their powerful data learning 

capabilities and advantages in nonlinear processing, showing rapid development in recent years. In the 

same case, the maximum predicted displacement of the slope using deep learning algorithms was 16 cm, 

and the prediction error was reduced to ±5%, demonstrating high prediction accuracy and robustness. 
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However, these methods require a large amount of high-quality data for training, and have a high 

dependency on algorithm selection and technical details. 

Table 2. Comparison of Different Prediction Methods for Rock Deformation in Slopes under 

Construction Disturbance 

Prediction Method 
Prediction 

Result (cm) 
Error Range Calculation Time Data Requirement Level 

Numerical Model 

Prediction Method 
15 ±3% Long High 

Empirical Formula 

Prediction Method 
17 ±8% Short Medium 

AI/Machine 

Learning Method 
16 ±5% Medium to Long Extremely High 

In summary, each of the three prediction methods has its own advantages and disadvantages, and the 

choice of method depends on the specific project conditions, the ease of data acquisition, and the 

requirements for prediction accuracy. In practical applications, it is common to combine the advantages 

of various methods to form a comprehensive prediction system in order to achieve the optimal prediction 

effect. 

4.2.  Comprehensive Evaluation Considering Accuracy, Efficiency, Cost, and Other Factors 

From the perspective of prediction accuracy, the numerical model prediction method can simulate 

complex stress-strain states and provide results closer to reality, especially in dealing with complex 

geological structures and dynamic construction processes. However, its accuracy is influenced by the 

accuracy of input parameters and the complexity of the model. If the parameters are inaccurate or the 

model is overly simplified, the accuracy will be affected. Although the empirical formula prediction 

method has slightly lower accuracy, it is fast and easy to operate, suitable for initial assessment and 

quick judgment, but it has weak universality. Machine learning and artificial intelligence prediction 

methods, relying on big data and algorithm optimization, have high accuracy in handling complex 

nonlinear relationships. Moreover, as the dataset expands, their performance can be further improved. 

However, they require high initial investment, including data collection, cleaning, labeling, model 

training, etc., and have high requirements for hardware facilities and professional skills. 

In terms of efficiency, the empirical formula prediction method is fast, while the numerical model 

prediction method, although slow, can ensure timeliness with the help of high-performance computing 

platforms. Machine learning and artificial intelligence prediction methods are relatively fast after model 

training. In terms of cost, the empirical formula prediction method is relatively low, the numerical model 

prediction method has certain expenses in software licenses and computing resources, and machine 

learning and artificial intelligence prediction methods involve high hardware investment and continuous 

data maintenance, model updates, resulting in overall high costs. Therefore, the choice of prediction 

method needs to comprehensively consider accuracy, efficiency, and cost. 

4.3.  Recommended Methods for Different Engineering Conditions and Construction Disturbances 

When selecting a prediction method for rock deformation in slopes under construction disturbance, it is 

essential to tailor the choice to the specific engineering conditions and characteristics of construction 

disturbance. For large-scale projects with complex geology and intense disturbance, such as deep-buried 

tunnel construction and open-pit mining, the numerical model prediction method is particularly crucial 

due to its high precision. Utilizing advanced computing technology, it can intricately delineate stress 

distribution and deformation patterns within the rock mass, providing a reliable basis for slope stability 

assessment in complex environments. For medium-sized projects with simple geology and minor 

disturbance, such as highway slope excavation and urban foundation pit support, the empirical formula 
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prediction method holds advantages. Based on classical theories and practical experience, it can swiftly 

provide preliminary prediction results, facilitating adjustments to construction plans. In engineering 

projects where monitoring data is abundant and high accuracy is required, machine learning and artificial 

intelligence prediction methods are increasingly valued. By training complex models, they can extract 

the relationship between construction disturbance and slope deformation from massive datasets, 

achieving high-precision and dynamic predictions, supporting refined management and risk alerting. 

5.  Conclusion 

The prediction of rock deformation in slopes under construction disturbance is a critical task concerning 

engineering safety and environmental protection. Faced with diverse engineering conditions and 

characteristics of construction disturbance, it is appropriate to adopt a diversified and targeted prediction 

strategy. From numerical analysis techniques that accurately simulate complex geological mechanics to 

empirical formula methods optimized based on classical theories and practical experience, and to 

cutting-edge prediction methods utilizing big data and intelligent algorithms, each method has its 

strengths, complementing each other. In practical applications, it is essential to comprehensively 

consider project characteristics, resource investment, and accuracy requirements, to select and 

effectively integrate multiple prediction methods. This approach aims to achieve efficient prediction and 

precise control of slope deformation, minimize engineering risks, and ensure the sustainable 

development of people’s lives and property safety and engineering construction. 

6.  Fund Project 

This research was supported by the Zunyi Science and Big Data Bureau. Fund Project: “Research and 

Application of Dynamic Evaluation Method for Slope Stability in Building Construction” (Zunyi 

Science and Technology Cooperation [2022] No. 42). 

References 

[1] Song, K. Z., Hou, Z. S., & Liu, Y. Y. (2020). Stability analysis of tunnel portal slopes under 

internal and external combined construction disturbances. Journal of Water Resources and 

Architectural Engineering, 18(06), 208-212. 

[2] Li, Z. R. (2020). Stability analysis of steep slopes with adverse geological conditions during 

reservoir area construction period. Water Resources Science and Technology and Economy, 

26(11), 98-102. 

[3] Xie, W. D. (2020). Analysis of the influence of rainfall infiltration on the stability of slopes 

beneath tunnels crossing roadbed sections. Journal of Xi’an University of Architecture and 

Technology (Natural Science Edition), 52(04), 470-477. 

[4] Zhang, Q., Chen, L. J., & Deng, Y. B. (2016). Case study on slope stability considering 

disturbance effects. Shanxi Architecture, 42(21), 95-97. 

[5] Lu, J., Shi, B. G., & Zhang, F. G. (2014). Analysis of the influence of changes in structural plane 

parameters of rocky slopes under blasting loads on slope stability. Highway Traffic Science 

and Technology (Applied Technology Edition), 10(02), 81-86. 

Proceedings of  the 2nd International  Conference on Functional  Materials  and Civil  Engineering 
DOI:  10.54254/2755-2721/70/20240970 

34 


