
Application of collaborative filtering in movie

recommendation systems and improvements by

hyperparameter tuning

Yicheng Long

Oxford Brookes University & Chengdu University of Technology, No. 1, East 3rd

Road, Erxianqiao, Chenghua District, Chengdu, 610059, China

2624448961@qq.com

Abstract. In the current era of explosive data growth, accurately recommending movies to users

has become a challenge for traditional recommendation algorithms. In this paper, we propose

enhancements to the traditional item-based Collaborative Filtering recommendation algorithm

by focusing on three aspects: the proportion of the training set and test set, the new similarity

algorithm, and the new recall index. These enhancements aim to achieve better recommendation

results. We conducted experiments using a movie recommendation system as the testbed and

implemented an item-based recommendation algorithm using the Python language. A control

experiment was performed using the dataset from the official MovieLens website. The

experimental results demonstrate that the improved algorithm exhibits enhanced

recommendation accuracy.

Keywords: Collaborative Filtering, Recommendation Algorithm, Similarity Calculation, Recall

At K.

1. Introduction

In the era of big data, with the explosion of data, improving the accuracy of recommendation algorithms

has become a prominent research topic. From a practical standpoint, enhancing recommendation

accuracy can assist users in obtaining valuable information quickly and efficiently. Therefore, designing

a well-founded recommendation algorithm to improve accuracy is of paramount importance.

This paper aims to address the challenge of prediction in recommendation systems by analyzing

different collaborative filtering algorithms based on item and user perspectives. The advantages and

disadvantages of these approaches will be examined, along with an analysis of how to consider similarity

and provide recommendations based on similarity to enhance the accuracy of the recommendation

algorithm. Currently, the prevalent algorithm for addressing recommendation problems is collaborative

filtering, first proposed by Goldberg, Nichols, Oki, and Terry in 1992 and implemented in the Tapestry

system [1]. Collaborative filtering algorithms can be broadly categorized into two ideas: user-based and

item-based. The user-based approach assumes that users with similar scores on one item are likely to

have similar scores on other items. Users similar to a target user are considered neighbors, and the

algorithm predicts the user's evaluation of an item based on the evaluations of the item by the nearest

neighbors. On the other hand, the item-based approach predicts that a user will assign similar scores to

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240353

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

1

items that are similar to an item they have already scored [2]. After determining the approach, the

collaborative filtering algorithm calculates similarity using three traditional methods: cosine similarity,

modified cosine similarity, and correlation similarity [3]. Finally, recommendations are generated by

incorporating the calculated similarity into the recommendation strategy. Currently, most collaborative

filtering recommendation systems employ the average weighting strategy [4]. Collaborative filtering has

demonstrated promising results in e-commerce recommendations and other domains.

This article will be divided into six main parts. The second part will provide a literature review,

exploring the concepts and theories of collaborative filtering recommendation algorithms and

summarizing previous research. The third part will focus on the traditional item-based collaborative

filtering recommendation algorithm, presenting the formulas and related concepts involved in the

improved algorithm. The fourth part will explain the experimental process and present the results. In the

fifth part, the experimental results will be discussed, and the advantages, disadvantages, and potential

applications of the improved recommendation algorithms will be analyzed from three perspectives.

Finally, the sixth part will provide a summary, discussing the limitations of this study and suggesting

future research directions.

2. Literature review

The first collaborative filtering-based recommendation system was Tapestry, but it had limitations and

couldn't be applied to large-scale user groups [5]. Subsequently, the GroupLens system gained

prominence for recommending news and movies based on ratings [6]. E-commerce platforms like

Amazon also started utilizing collaborative filtering recommendation systems [7]. However, challenges

still exist in collaborative filtering recommendation systems. Zhang et al. [8] proposed a new algorithm

that overcomes the limitations of traditional algorithms when dealing with extremely sparse data. This

algorithm employs cloud modeling and knowledge-level user similarity comparison. It calculates user

similarity using the cloud model, introduces a user similarity comparison method based on the cloud

model (LICM) to quantify the role of bridges in knowledge transformation, and then calculates the

similarity matrix using the LICM method. The user's nearest neighbors are determined based on the user

to be recommended and the item to be evaluated, and the item's score is predicted using a weighted

average strategy. Experimental results using the MovieLens dataset demonstrate that this algorithm

outperforms traditional recommendation algorithms. Five years later, Li et al. [9] proposed a

collaborative filtering recommendation algorithm based on user scenario fuzzy clustering. This

algorithm efficiently addresses the issues of data sparsity and poor scalability inherent in traditional

recommendation algorithms. It utilizes a fuzzy clustering algorithm to classify user groups with similar

scenarios based on user scenario information. Additionally, it applies the SlopeOne algorithm to fill the

user-item scoring matrix prior to collaborative filtering. Testing with the MovieLens dataset shows that

the improved algorithm significantly enhances recommendation accuracy and resolves data sparsity

problems. In recent years, researchers have proposed various ideas to enhance recommendation accuracy.

For instance, Wang et al. [10] introduced a collaborative filtering recommendation algorithm based on

item fuzzy similarity. This algorithm aims to improve the resolution of fuzzy and sparse problems in

recommendation algorithms, leading to enhanced prediction accuracy. The algorithm employs

trapezoidal fuzzy numbers to describe the mapping relationship between scoring and satisfaction,

enhances the fuzzy similarity calculation strategy, utilizes membership functions to assess tag-item

ownership, calculates similarity based on item tags, and improves the scoring prediction strategy.

Experimental results using the MovieLens 100K and 1M datasets demonstrate that this algorithm

achieves improved mean absolute error (MAE), coverage, accuracy, and efficiency compared to

traditional collaborative filtering algorithms. It also helps alleviate the ambiguity problem and mitigates

the adverse impact of sparse scoring data to some extent. Hao et al. [11] proposed a collaborative

filtering algorithm that integrates multiple types of context information to enhance personalized

recommendation quality. This algorithm represents user-item interactions as a bipartite graph and

constructs different similarity networks based on distinct context characteristics. By designing a joint

matrix decomposition objective function constrained by multiple context information networks, it learns

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240353

2

the representation learning of user-item pairs. Experimental results using the Amazon Software dataset,

which represents today's top question and answer context, show that the algorithm improves various

recommendation indicators and effectively addresses sparsity in recommendation system data. Sun and

She [12] optimized the collaborative filtering recommendation algorithm using a dichotomy-based

approach and developed an intelligent recommendation model for sports training resources. The

algorithm improves the existing algorithm by incorporating the Euclidean formula and binary k-means

algorithm. Furthermore, it combines them with the dichotomy search algorithm to obtain an optimized

recommendation algorithm. Experimental results using a designated dataset show that the optimized

recommendation algorithm outperforms other algorithms in terms of mean absolute error (MAE) and

exhibits higher recommendation accuracy. Additionally, Lin et al. [13] proposed a collaborative filtering

algorithm based on singular value decomposition (SVD) and a popularity-based recommendation

algorithm for food stores. This approach addresses the adaptability issue between recommended

restaurants and user preferences. The method models users, restaurant sign-in records, and restaurant

popularity. It captures users' latent preferences based on restaurant sign-in records and recommends

restaurants by considering popularity. Experimental results using the Hejing Community Food Dataset,

which consists of 40,000 restaurants, 540,000 users, and 4.4 million comments, show that the hybrid

recommendation algorithm combining popularity and SVD significantly improves recommendation

accuracy and comprehensiveness in the food restaurant domain, yielding positive recommendation

outcomes.

3. Methodology

The algorithm primarily used in this paper is item-based collaborative filtering algorithm, which consists

of the following steps:

Step 1: Data collection and preprocessing

Step 2: Splitting the sample data into training and testing sets in a certain ratio

Step 3: Calculating the similarity between items using the training set samples to obtain a similarity

matrix

Step 4: For the target user's item interaction records in the testing set, identifying highly similar items

and calculating the weighted sum to determine the recommendation score for each item with respect to

that user

Step 5: Sorting the items based on the recommendation score and selecting the top K items for

recommendation

Step 6: Evaluating the model's performance using statistical metrics such as accuracy, precision,

recall, and coverage

This paper aims to improve the item-based collaborative filtering recommendation algorithm from

three perspectives: the ratio of training and testing sets, similarity algorithm, and a new recall rate metric.

The influence of these factors on the recommendation algorithm will be studied to achieve better

recommendation results.

Traditionally, the training set ratio is commonly set to 0.75. This paper will attempt to change the

ratio to 0.70, 0.80, and 0.90, respectively, and conduct separate tests to observe the impact of the training

and testing set ratio on the recommendation results.

In traditional collaborative filtering, the similarity calculation method is given by 𝑠𝑖𝑚𝑖𝑗 =
𝑛𝑖𝑗

√𝑛𝑖∗𝑛𝑗

where 𝑛𝑖𝑗 represents the number of users who have interacted with both items I and j, and 𝑛𝑖, 𝑛𝑗

represent the number of users who have interacted with items i and j individually. However, it is

observed that users with different numbers of interacted items have varying contributions to the

similarity calculation between two items. Users with more interacted items have a smaller contribution

to the similarity calculation between the two items. Therefore, we consider the different contributions

of each user as
1

𝑙𝑛(1+𝑢)
, where u represents the cumulative number of items the user has interacted with.

Thus, the improved similarity calculation formula is as follows:

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240353

3

1

𝑙𝑛(1 + 𝑢)
𝑠𝑖𝑚𝑖𝑗 =

∑
1

𝑙𝑛(1 + 𝑢)

√𝑛𝑖 ∗ 𝑛𝑗

On the other hand, the recall algorithm in traditional collaborative filtering does not consider the

impact of the system's recommended quantity on the accuracy of recommendations. Therefore, recall at

K is introduced to analyze the recommendation performance. The calculation formula is as follows:

𝑟𝑒𝑐𝑎𝑙𝑙𝑎𝑡𝐾 =
ℎ𝑖𝑡

∑𝑚𝑖𝑛(𝑡𝑒𝑠𝑡𝑐𝑜𝑢𝑛𝑡, 𝐾)

where hit represents the total number of successful recommendations for all users, the sum runs over all

users, and testcount represents the number of items the user has interacted with in the testing set.

4. Results

4.1. Dataset and preprocessing

The dataset used in this paper is the official MovieLens dataset, which includes userID, movieID, rating,

and timestamp. The dataset consists of 600 users who provided 100,000 ratings for 9,000 movies and

applied 3,600 tags. The dataset was last updated in September 2018. The experiments were conducted

using Python programming language, with Python interpreter version 3.9 and Pycharm 3.3 as the

compiler.

4.2. Numerical experiments

First, a set of baseline experiments was conducted as the control group, where the number of

recommended movies for each user was set to 10. The experimental conditions were as follows: the

initial training set ratio was set to 0.75, traditional similarity calculation method was used 𝑠𝑖𝑚𝑖𝑗 =
𝑛𝑖𝑗

√𝑛𝑖∗𝑛𝑗
, and model performance evaluation was conducted using metrics such as precision, recall, and

coverage. The recall metric was based on the traditional recall index. The experimental results are shown

below:

Table 1. Baseline experiment results.

Percentage of training set Precision Recall Coverage

0.75 0.2803 0.0676 0.0665

Next, three sets of experiments were conducted:

4.2.1. Based on the control group, the training and testing set ratio was adjusted to 0.70, 0.80, 0.90,

and so on, and repeated experiments were performed to obtain the following results:

Table 2. Experimental results with adjusted training set ratio.

Percentage of training set: Precision Recall Coverage.

Percentage of training set: Precision Recall Coverage

0.75 0.2803 0.0676 0.0665

0.70 0.2890 0.0585 0.0714

0.80 0.2539 0.0766 0.0604

0.90 0.1485 0.0897 0.0497

4.2.2. Based on the control group, the new improved similarity calculation formula 𝑠𝑖𝑚𝑖𝑗 =
∑

1

𝑙𝑛(1+𝑢)

√𝑛𝑖∗𝑛𝑗

was tested, and repeated experiments were conducted, resulting in the following results:

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240353

4

Table 3. Experimental results with adjusted similarity calculation.

 Percentage of training set: Precision Recall Coverage

Traditional

similarity

0.75 0.2803 0.0676 0.0665

New

Similarity

0.75 0.2956 0.0711 0.0599

4.2.3. Based on the control group, additional consideration was given to the recall at K metric, and

repeated experiments were conducted, resulting in the following results:

Table 4. Experimental results using recall at K.

Ratio of training set to test set: Similarity Precision Coverage Recall at K

0.75 Traditional 0.2659 0.0627 0.2659

5. Discussion

Based on the analysis and comparison of the experimental results in 4.2.1, it can be observed that the

Precision and Recall metrics show a negative correlation. When the training set ratio decreases,

Precision tends to increase while Recall decreases. Conversely, when the training set ratio increases,

Precision tends to decrease while Recall increases. The main reason for this phenomenon is as follows:

Precision represents the proportion of correctly predicted data among the predicted data, which, in this

experiment, refers to the proportion of successfully recommended movies out of the 10 recommended

movies for each user. Clearly, for Precision, the denominator, which is the number of recommended

movies (i.e., 10), remains fixed, while the numerator, which represents the number of correctly

recommended movies, decreases when the training set ratio increases. Consequently, Precision

decreases. On the other hand, Recall represents the probability of correctly identified samples out of all

the correct samples as perceived by the model. In this experiment, it represents the proportion of

correctly recommended movies out of all the movies. The numerator of Recall is limited by the number

of recommended movies (i.e., 10), indicating that the maximum number of correctly recommended

movies can only be 10. In this case, the magnitude of Recall is mainly determined by the denominator,

which is the total number of movies in the test set, representing the number of movies that the user has

watched. Therefore, when the training set ratio increases, the test set ratio decreases, resulting in a

smaller denominator and higher Recall. Additionally, it is observed from the results that increasing the

training set ratio leads to a decrease in coverage. This is because an increase in the training set ratio

reduces the sample size of the test set. Coverage has the total number of movies as its denominator and

the number of recommended movies in the test set as its numerator. Thus, a decrease in the test set

sample size leads to a decrease in the numerator and subsequently a decrease in coverage.

According to the analysis and comparison of the experimental results in 4.2.2, it can be concluded

that after considering the factor that users have different numbers of interacted items and users with

more interacted items have a smaller contribution to the similarity calculation between two items,

adopting the improved similarity calculation with the logarithmic function, which depends on the

specific user's interaction quantity with items, results in lower contributions from users with more

interacted items in the calculation of item similarity. When compared to the control group data, we found

that under the same conditions of training set ratio and Recall metric, both Precision and Recall increased

simultaneously. Specifically, Precision increased by 1.53% and Recall increased by 0.35%. This is a

strong indication that the new algorithm can effectively improve the recommendation performance.

Typically, Precision and Recall are negatively correlated according to their definitions. However, after

improving the similarity algorithm in this experiment, both Precision and Recall increased, which to

some extent indicates that the measure of improving the similarity algorithm can enhance the overall

recommendation performance of the model.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240353

5

Based on the results in 4.2.3, it is evident that the new metric, Recall at K, directly increased from

the original value of 0.0676 to 0.2659. Compared to the original Recall, Recall at K has a more

significant reference value in terms of magnitude. The reason for this result is that the numerator of

Recall represents the number of correctly recommended movies, constrained by the total number of

recommended movies. In this experiment, the total number of recommended movies is set to 10. On the

other hand, the denominator of Recall represents the total number of movies that the user has watched.

When a user has watched more than 10 movies, the denominator increases, resulting in a loss of the

original reference significance based on recommending 10 movies. Therefore, by adopting the new

metric Recall at K, when the number of movies watched by the user exceeds the number of

recommended movies, the number of recommended movies is used as the denominator, making Recall

at K a more reasonable and meaningful metric to consider.

6. Conclusion

To conclude, this article focuses on enhancing traditional recommendation algorithms to achieve

improved recommendation accuracy. A comprehensive review of the application and development of

Collaborative filtering algorithms in this domain was conducted. Furthermore, a Python program for an

item-based recommendation algorithm was implemented to recommend users' favorite movies.

Comparative tests were then performed, considering three aspects: modifying the ratio of the training

set and test set, refining the similarity algorithm, and enhancing the recall index algorithm. The

experimental dataset utilized was obtained from the official MovieLens website. The results of the

experiments revealed several key findings. Firstly, reducing the proportion of the training set led to

higher precision but lower recall. Secondly, the new similarity algorithm demonstrated a precision

improvement of 1.53% and a recall improvement of 0.35%. Lastly, the new recall rate algorithm, Recall

at K, provided a more accurate reflection of the recommendation effectiveness by avoiding errors arising

from users encountering more movies than recommended ones. These results demonstrate that the three

proposed improvements to the Collaborative filtering algorithm in this paper contribute to enhancing

the recommendation effectiveness to a significant extent.

References

[1] Goldberg, D., Nichols, D., Oki, B., & Terry, D.. (1992). Using Collaborative Filtering to Weave

an Information Tapestry.

[2] Sarwar, B., Karypis, G., Konstan, J., & Riedl, J.. (2001). Item-based collaborative filtering

recommendation algorithms. ACM.

[3] Xu, C., Xu, J., & Du, X.. (2006). Recommendation algorithm combining the user-based classified

regression and the item-based filtering. Proceedings of the 8th International Conference on

Electronic Commerce: The new e-commerce - Innovations for Conquering Current Barriers,

Obstacles and Limitations to Conducting Successful Business on the Internet, 2006,

Fredericton, New Brunswick, Canada, August 13-16, 2006. ACM.

[4] Ai-Lin, D., Yang-Yong, Z., & Bai-Le, S.. (2003). A collaborative filtering recommendation

algorithm based on item rating prediction. Journal of Software, 14(9), 54-65.

[5] Ma, H. W., Zhang, G. W., & Li, P.. (2009). Survey of Collaborative Filtering Algorithms. Journal

of Chinese Computer Systems(7), 7.

[6] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J.. (1994). GroupLens: An Open

Architecture for Collaborative Filtering of Netnews. Acm Conference on Computer Supported

Cooperative Work. MIT Center for Coordination Science.

[7] Yan, W. U., Jie, S., Tian-Zhu, G. U., Xiao-Hong, C., Hui, L. I., & Shu, Z.. (2007). Algorithm for

sparse problem in collaborative filtering. Application Research of Computers, 24(6), 94-97.

[8] Zhang, G. W., Li, D. Y., Li, P., Kang, J. C., & Chen, G. S.. (2007). A Collaborative Filtering

Recommendation Algorithm Based on Cloud Model. Journal of Software.

[9] Li, H., Zhang, Y., & Sun, J. H.. (2012). Research on Collaborative Filtering Recommendation

Based on User Fuzzy Clustering. Computer Science, 39(12), 4.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240353

6

[10] Wang, S., Chen, L., & Zhang, J.. (2021). Collaborative filtering recommendation algorithm based

on item fuzzy similarity. Application Research of Computers.

[11] Hao, Z. F., Liao, X. C., When, W., & Cai, R. C.. (2021). Collaborative filtering Recommendation

Algorithm Based on Multi-context Information. Computer Science, 048(003), 168-173.

[12] Sun, Y., & She, L.. (2022). Intelligent Sports Auxiliary Training Method Based on Collaborative

Filtering Recommendation Algorithm. Wireless Communications and Mobile Computing,

2022. https://doi.org/10.1155/2022/8703707

[13] Lin, S. J., Yu, T., & Chen, F. Y.. (2012). Food store recommendation algorithm based on

Collaborative filtering. Computer Knowledge and Technology.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240353

7

