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Abstract. In recent years, deep learning-based software defect prediction has gained significant 

attention in software engineering research. This study aims to explore the application of the 

BERT model in the field of software defect detection. Traditional methods are constrained by 

manually designed rules and expert knowledge, which leads to limited accuracy and 

generalization ability. The strengths of deep learning methods lie in their capacity to capture 

complex semantic and contextual information in code. However, the effectiveness of deep 

learning models is hindered by the small scale of software defect datasets. To address this issue, 

we introduce BERT as a pre-trained model and construct a downstream task neural network, 

comprising a single-layer fully connected layer and a softmax classifier. Additionally, we 

evaluate four variants of BERT to enhance predictive performance. Through empirical studies 

on software defect prediction across different versions and projects, we find that utilizing the 

BERT pre-trained model significantly enhances predictive performance. The experimental 

results demonstrate that our model outperforms TextCNN by 8.99% in terms of AUC score and 

LSTM by 5.66%. In terms of the F1 score, our model surpasses TextCNN by 4.51% and LSTM 

by 15.57%. The primary contribution of this paper is the proposal of a cross-version and cross-

project software defect prediction method, leveraging a lightweight BERT-based neural network. 

We also discuss the reasons for the observed variations in the performance of the four BERT 

variants during testing. 
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1.  Introduction 

Software defect detection involves the systematic analysis and examination of software systems or 

program code using methods and tools to uncover vulnerabilities, with the goal of enhancing software 

quality, reliability, and security [1]. Automated software defect detection, utilizing machine learning or 

deep learning techniques, efficiently identifies and addresses defects, thus improving software quality 

and economizing time and costs. This renders it a pivotal and integral step in contemporary software 

development [2-3]. 

In the domain of software defect detection, conventional methods predominantly rely on manually 

devised rules [4-6], heuristic algorithms [7], and machine learning algorithms. The classical processing 

workflow entails establishing a software defect dataset and designing numerous code metrics, followed 

by the utilization of logistic regression, K-Nearest Neighbours Classifier [8], support vector machines 
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[9], or tree-based ensemble learning methods to construct and train software defect detection models. 

These methods typically necessitate substantial human effort and time, and their accuracy and 

generalization ability are confined by the expertise of the practitioners. Traditional machine learning 

algorithms struggle to encapsulate the intricate semantics and contextual information within the code, 

resulting in limited accuracy and generalization ability when confronted with extensive software projects. 

Furthermore, they mandate continuous adjustments and optimizations when confronted with domain 

changes and emerging software technologies. 

The introduction of deep learning into software defect detection tasks has ushered in notable progress 

and breakthroughs in this domain. With the advancement of deep learning, neural networks have 

emerged as a critical component, especially in Natural Language Processing (NLP) tasks, where deep 

learning methods have showcased exceptional performance. In comparison to traditional methods, deep 

learning confers several advantages, with the most pivotal being its capability to grasp intricate 

semantics and contextual information within the code, thereby bolstering accuracy and generalization 

capability. During the evolution of deep learning, several noteworthy NLP models have surfaced, 

including TextCNN [10], RNN, and LSTM [11]. These models have achieved significant milestones in 

text processing. For instance, TextCNN can capture local features through convolutional operations, 

RNN is adept at processing sequence data, and LSTM addresses the issue of vanishing gradients in 

conventional RNNs, enabling the model to comprehend contextual relationships more effectively. 

In recent years, pre-trained models [12-13] have flourished across diverse domains such as natural 

language processing and computer vision. The advent of novel models and enhanced training strategies 

has led to substantial advancements in pre-trained models across various tasks. Exemplary instances 

include Transformer and BERT (Bidirectional Encoder Representations from Transformers) [14], which 

leverage extensive unlabeled text data for pre-training to acquire universal semantic representations. In 

the realm of software defect detection, the software defect datasets are frequently limited in scale, which 

curtails the detection performance of deep learning models and obstructs the complete exploitation of 

intricate semantic and contextual information within the code. To surmount this challenge, the 

introduction of pre-trained models has emerged as a potent solution. Through pre-training on substantial 

general corpora, pre-trained models can amass rich universal semantic knowledge and achieve an 

improved understanding of the import and structure of the code. Subsequently, during the fine-tuning 

phase, the pre-trained model is adapted to the software defect detection task. In comparison to 

conventional methods founded on manual feature engineering and neural networks relying solely on 

TextCNN or LSTM, this approach not only heightens model performance but also diminishes the 

necessity for copious annotated data, augmenting the model's generalization ability, semantic 

comprehension, and contextual modeling capabilities. Consequently, it becomes better suited for 

addressing the formidable task of software defect detection. 

This study aims to address two principal challenges within individual software defect datasets: the 

restricted data volume and the feeble generalization ability of software defect prediction models trained 

for specific projects and versions. To surmount these challenges, we harness a cross-project and cross-

version dataset to train the software defect detection model. Traditional data augmentation techniques, 

such as replacement or deletion, generate synthetic data rather than authentic data. We require a cross-

project and cross-version universal software defect prediction model capable of expanding the dataset's 

dimensions while preserving a substantial quantum of original information. This approach enables us to 

counteract the dataset’s limitations and obtain more precise and dependable prediction models more 

effectively. Additionally, we delve into the influence of case sensitivity on the model's classification 

performance. Code texts often adhere to the camel-case convention for naming variables and functions, 

resulting in scenarios featuring simultaneous occurrences of uppercase and lowercase letters. Moreover, 

the programming language for the software defect dataset employed in this article is Java, a case-

sensitive language. In this paper, we explore a software defect prediction model grounded in the BERT 

model. Concretely, BERT functions as the pre-trained model, and we forge a downstream task neural 

network encompassing a single-layer fully connected layer and a softmax classifier. To assess the model, 

we execute experiments involving four BERT variants. 
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The contributions of this paper encompass: 

• The evaluation of the BERT-based software defect detection method's generalization performance 

across datasets from distinct projects. 

• A comprehensive discussion of the factors underpinning the disparities noted in the performance 

of the four iterations of the lightweight BERT-based software defect detection model during testing. 

2.  Related Works 

The exploration of related works in software defect prediction often centers around widely used public 

datasets, with NASA [15] and PROMISE [16] datasets emerging as prominent choices. The NASA 

dataset serves as a repository of publicly available software defect data, encompassing code metrics and 

defect labels for 14 distinct software projects. These datasets have been extensively employed in 

software defect prediction research to assess and contrast the effectiveness of diverse machine learning 

methodologies in categorizing software modules as either defect-prone or non-defect-prone. 

Nevertheless, Shepperd et al. highlighted certain issues related to data quality within the NASA dataset, 

including variations between different versions, irrational values, absent values, conflicting values, and 

duplicated values. These concerns have the potential to impede the credibility and comparability of 

empirical analyses reliant on the NASA dataset. Thus, the authors recommend that researchers delineate 

data sources, elucidate preprocessing procedures, and cultivate a comprehensive understanding of the 

data prior to applying machine learning techniques. Regarding the PROMISE dataset, Watanabe et al. 

elucidate, in their paper titled "Towards identifying software project clusters with regard to defect 

prediction,” a freshly compiled dataset of software projects, encompassing 92 versions across 38 

proprietary, open-source, and academic projects [1]. Recognized as the PROMISE dataset, this publicly 

accessible software engineering data repository is designed to facilitate the replication and validation of 

software engineering research.  The authors conducted cluster analysis on this dataset to unveil clusters 

of software projects sharing analogous traits from the perspective of defect prediction [2]. They 

harnessed various clustering methodologies, including hierarchical clustering, k-means clustering, and 

Kohonen neural networks, and validated the clustering outcomes through discriminant analysis and 

statistical tests [3]. They identified two prevailing clusters: proprietary cluster B and proprietary/open-

source cluster, subsequently devising defect prediction models for each cluster [4]. This research not 

only provides a blueprint for reutilizing defect prediction models but also furnishes a valuable dataset 

for the software engineering community. 

At present, software defect detection is underpinned by two primary technological approaches: 

traditional machine learning-based methods and the rapidly evolving neural network-based approaches. 

Traditional software defect methods, rooted in machine learning, necessitate manual feature 

engineering, often involving code metrics. Moreover, numerous studies have delineated statistically 

derived code features for software defect detection tasks. In the domain of traditional machine learning-

based software defect prediction, prominent classifiers encompass logistic regression, decision trees, 

Naive Bayes, Support Vector Machines (SVM), K-Nearest Neighbors (KNN), K-Means, and Random 

Forest. Notably, the logistic regression classifier serves as a benchmark model. Noteworthy 

advancements arise from Random Forest and other tree-based classifiers within the traditional machine 

learning realm. Zhou et al. [17] introduced a software defect prediction model rooted in deep forest, 

which transforms random forest classifiers into a layered structure to discern more pivotal defect features. 

However, as software systems burgeon in complexity and scale, conventional detection methods 

might encounter limitations. Additionally, for domain-specific and application-specific defect detection, 

a profound comprehension of the domain's attributes and requisites is indispensable for devising 

appropriate manual features and detection strategies. Thus, in response to these challenges, a novel 

approach has materialized in recent years, entailing the harnessing of neural networks (Deep Learning) 

to automatically glean code features from datasets, thereby enabling automated code defect detection. 

Pan et al. [18] formulated a software defect detection model built upon CodeBERT [19] and undertook 

empirical investigations in both cross-project and within-project scenarios. Uddin et al. [20] presented 
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a hybrid software defect prediction model hinged on BERT and BiLSTM, amplifying model 

performance through data augmentation techniques. 

3.  Method 

The methodology employed in our study is depicted in the figure below: 

 

Figure 1. The workflow of our model 

In our investigation, we initially delve into version control repositories to extract essential files for 

the dataset. These files are subsequently categorized as either containing errors or being error-free. 

Subsequently, we extract vocabulary files from the software defect dataset and preprocess the data by 

encoding and tokenizing it, rendering it compatible with the BERT model. Next, the preprocessed data 

is fed into the BERT model provided by the HuggingFace community. Lastly, we construct a 

downstream task neural network based on BERT and proceed with training the network for predictive 

purposes. 

Traditional software defect detection methods have not fully harnessed the semantic information 

present in the source code, thereby curbing the classification performance of software defect detection 

models. Moreover, the constrained scale of existing defect datasets has somewhat impeded the 

advancement of classification performance for extant models, exemplified by the limited size of the 

PROMISE dataset. To address this challenge, methods like code metric-based statistical learning or 

abstract syntax tree-based approaches frequently overlook specific function and variable names. To 

surmount this issue, we have embraced the standard BERT (Bidirectional Encoder Representations from 

Transformers) model. BERT constitutes a pre-trained natural language processing model widely 

deployed across various text processing tasks. 

The advent of the "pre-training" technique stems from the practical scenario of sparse annotated 

resources juxtaposed with abundant unlabeled resources. In certain specific tasks, a meager quantity of 

relevant training data poses a challenge for the model to glean meaningful patterns. Consequently, we 

endeavor to leverage extensive pre-trained models on datasets replete with ample data to amplify model 
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performance on smaller datasets. This approach can be conceptualized as bifurcating the training process 

into two stages: foundational learning and task-specific learning, corresponding to the pre-training and 

fine-tuning phases. BERT's pre-training phase encompasses two tasks: Masked Language Model (MLM) 

and Next Sentence Prediction (NSP). The MLM task simulates a "fill in the blanks" exercise, wherein a 

word is concealed, and its context is employed to predict the concealed term. The NSP task endeavors 

to ascertain whether two given sentences are contiguous within the original text. Post pre-training, BERT 

can be fine-tuned for sundry downstream tasks such as text classification, sequence labeling, and reading 

comprehension, culminating in superior experimental outcomes. 

In our research, in accordance with the BERT model's specifications, we adopted a subword 

tokenization strategy based on WordPiece to tokenize each statement in the source code into discrete 

words or symbols. This process is acknowledged as BERT's tokenization process. Initially, we compiled 

a dataset vocabulary file encompassing all potential tokens. Subsequently, we preprocessed the source 

code text by eliminating comments and newline characters, adding the "<SOS>" tag at the 

commencement and the "<EOS>" tag at the culmination of the text. Thereafter, predicated on the pre-

established vocabulary file, we embraced a greedy longest-match-first algorithm to fragment less 

frequent words into word pieces comprised of more prevalent subwords. This operation is imperative 

due to code variables frequently adhering to camel case naming conventions, leading to the segmentation 

of a term like "studentId" into "student" and "id." 

If a term within the code text eludes identification within the vocabulary, it is substituted with 

"<UNK>" (indicating an unknown token). Through this process of word piece tokenization, the source 

code text undergoes transformation into an integer list, with each integer signifying the ID of a token. 

This list of integers can be employed as input for the BERT model. 

The downstream task models encompass further computations on the extracted features from BERT 

to derive the computational outcomes requisite for the binary software defect detection task expounded 

in this paper. Within this study, two distinct downstream task models have been delineated to 

accommodate diverse iterations of the BERT model. Our model adopts a fully connected neural network 

structure with weight matrices of dimensions 768x2 and 1024x2. The classifier employs the softmax 

regression technique. Within softmax regression, the model gauges the likelihood of the code text 

containing defects. If the probability surpasses 0.5, the text is classified as "buggy"; contrarily, it is 

deemed "clean." 

4.  Experiment 

4.1.  A. Experiment Dataset 

For our experiments, we employed 6 projects from the PROMISE dataset. The table below presents 

dataset information, encompassing Project Name, Description, File Numbers, Bug File Numbers, and 

Bug Rate. 

Table 1. Dataset description 

Project 

Name 

File 

Numbers 

Bug File 

Numbers 

Bug 

Rate 
Description 

camel-1.6 965 188 19.5% 
A framework of enterprise 

integration 

lucene-2.0 195 91 46.7% 
An engine library for searching text 

lucene-2.2 247 144 58.3% 

synapse-1.0 157 16 10.2% 

Adapters for transporting data synapse-1.1 222 60 27.0% 

synapse-1.2 256 86 33.6% 
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The table below shows the number of training instances and testing instances we have: 

Table 2. Statistics of training set and test set 

 Training Instances Test Instances 

Total 1705 300 

4.2.  B. BERT 

We evaluated four slightly distinct BERT models, all provided by Hugging Face: bert-base-uncased, 

bert-base-cased, bert-large-uncased, and bert-large-cased. The designations “base” and “large” 

correspond to the model’s parameter size. “Cased” denotes that the model distinguishes between 

uppercase and lowercase letters in English, while “uncased” implies that case distinctions are 

disregarded. The bert-base model features 12 stacked transformer blocks, 768 hidden units, 12 attention 

heads, and a total of 110 million parameters. Conversely, the bert-large model encompasses 24 stacked 

transformer blocks, 1024 hidden units, 16 attention heads, and a total of 340 million parameters. 

4.3.  C. Evaluation Metrics 

We employed four evaluation metrics to gauge the model’s performance: AUC, F1 score, Precision, and 

Recall. These metrics are standard in software defect detection. 

The F1 score, a merger of precision and recall, serves as a pivotal metric for evaluating classification 

models. The F1 score, often represented as the harmonic mean of precision and recall, is calculated using 

the formula: 

 𝐹1 =
2* precision * recall 

 precision + recall 
  

The AUC metric (Area Under the Curve) comprehensively assesses the predictive accuracy of 

classification models. It quantifies performance by calculating the area beneath the Receiver Operating 

Characteristic (ROC) curve. The AUC value ranges from 0 to 1, with a higher value indicating superior 

performance. An AUC of 1 signifies perfect prediction, while an AUC of 0.5 suggests performance 

equivalent to random guessing. 

Precision gauges the proportion of true positive samples among instances predicted as positive by 

the model. It's calculated as: 

 Precision =
TruePositives

TruePositives+FalsePositives
  

Recall, also known as True Positive Rate or Sensitivity, quantifies the model's capacity to predict 

positive instances. It's calculated using: 

 Recall =
True Positives

True Positives+False Negatives
  

5.  Baseline Model 

To benchmark our method's effectiveness against other defect prediction approaches, we compared our 

classifier with two baseline classifiers: TextCNN and LSTM. 

5.1.  TextCNN 

TextCNN employs convolutional filters of varying window sizes on input text sequences to capture local 

features and generate fixed-size feature maps. These maps are then subjected to max-pooling layers to 

extract important features, followed by predictions using fully connected layers and a softmax classifier, 

determining the class label for the input text. 

5.2.  LSTM 

LSTM (Long Short-Term Memory) is a recurrent neural network model well-suited for handling 

sequential data with long-term dependencies. By utilizing gating mechanisms like input gates, forget 
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gates, and output gates, LSTM effectively captures long-range dependencies in sequences while 

mitigating vanishing and exploding gradient problems. LSTM has exhibited remarkable achievements 

in natural language processing tasks, including text classification, language modeling, and machine 

translation. 

6.  Results Analysis 

Table 3. Performance comparisons with base models 

 AUC Precision Recall F1 

TextCNN 0.6267 0.6000 0.7600 0.6706 

LSTM 0.6600 0.7926 0.4333 0.5603 

BERT-L-U 0.7166 0.6946 0.7733 0.7157 

BERT-L-C 0.6733 0.6494 0.7533 0.6712 

BERT-B-U 0.6800 0.7934 0.4866 0.6675 

BERT-B-C 0.6566 0.7764 0.4400 0.6397 

 

Figure 2. Comparisons with base models 

To enhance clarity in the table, the following abbreviations are employed to represent the model 

names: 

blu-sdp: Software Defect Prediction Model based on bert-large-uncased 

blc-sdp: Software Defect Prediction Model based on bert-large-cased 

bbu-sdp: Software Defect Prediction Model based on bert-base-uncased 

bbc-sdp: Software Defect Prediction Model based on bert-base-cased 

(1) The BERT-based approach outperforms TextCNN and LSTM across all evaluation metrics. The 

results demonstrate that our model surpasses TextCNN by 8.99% in AUC and LSTM by 5.66%, and in 

terms of F1 score, it outperforms TextCNN by 4.51% and LSTM by 15.57%. This underscores the 

efficacy of introducing pre-trained models for software defect detection datasets. 

(2) Among the BERT variants, the software defect classifier based on bert-large-uncased exhibits 

exceptional performance, surpassing other BERT model variations. It achieves the highest values in 

AUC, Recall, and F1 metrics. This finding suggests that, in software defect detection tasks, pre-trained 

models with more parameters and case insensitivity deliver outstanding results. This is attributed to the 

predominant lowercase usage in code text, despite Java's case sensitivity. 
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7.  Conclusion and Future Work 

This paper introduces a BERT-based approach for software defect detection, employing a pre-trained 

BERT model alongside fully connected layers and a softmax classifier to harness code semantics and 

bolster classification performance. Through a series of experiments, we compared different iterations of 

BERT models, with the method built upon bert-large-uncased demonstrating optimal results. 

Furthermore, our discussion delves into the implications of model parameters and case sensitivity on 

classification efficacy. 

To advance predictive capabilities, our future research endeavors encompass broadening the software 

defect prediction dataset and utilizing this data to train a dedicated pre-trained model specifically tailored 

for software defect detection. We intend to explore whether customized pre-trained models, in tandem 

with more intricate downstream task neural networks, can further amplify model performance. 

Concurrently, we will closely monitor the latest advancements in real-time software defect prediction, 

seeking opportunities to integrate cutting-edge developments into our methodology. 
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