

BERT-based cross-project and cross-version software defect

prediction

Binwen Sun

The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon,

Hong Kong

binwen.sun@connect.polyu.hk

Abstract. In recent years, deep learning-based software defect prediction has gained significant

attention in software engineering research. This study aims to explore the application of the

BERT model in the field of software defect detection. Traditional methods are constrained by

manually designed rules and expert knowledge, which leads to limited accuracy and

generalization ability. The strengths of deep learning methods lie in their capacity to capture

complex semantic and contextual information in code. However, the effectiveness of deep

learning models is hindered by the small scale of software defect datasets. To address this issue,

we introduce BERT as a pre-trained model and construct a downstream task neural network,

comprising a single-layer fully connected layer and a softmax classifier. Additionally, we

evaluate four variants of BERT to enhance predictive performance. Through empirical studies

on software defect prediction across different versions and projects, we find that utilizing the

BERT pre-trained model significantly enhances predictive performance. The experimental

results demonstrate that our model outperforms TextCNN by 8.99% in terms of AUC score and

LSTM by 5.66%. In terms of the F1 score, our model surpasses TextCNN by 4.51% and LSTM

by 15.57%. The primary contribution of this paper is the proposal of a cross-version and cross-

project software defect prediction method, leveraging a lightweight BERT-based neural network.

We also discuss the reasons for the observed variations in the performance of the four BERT

variants during testing.

Keywords: software defect prediction, BERT model, deep learning.

1. Introduction

Software defect detection involves the systematic analysis and examination of software systems or

program code using methods and tools to uncover vulnerabilities, with the goal of enhancing software

quality, reliability, and security [1]. Automated software defect detection, utilizing machine learning or

deep learning techniques, efficiently identifies and addresses defects, thus improving software quality

and economizing time and costs. This renders it a pivotal and integral step in contemporary software

development [2-3].

In the domain of software defect detection, conventional methods predominantly rely on manually

devised rules [4-6], heuristic algorithms [7], and machine learning algorithms. The classical processing

workflow entails establishing a software defect dataset and designing numerous code metrics, followed

by the utilization of logistic regression, K-Nearest Neighbours Classifier [8], support vector machines

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240357

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

33

[9], or tree-based ensemble learning methods to construct and train software defect detection models.

These methods typically necessitate substantial human effort and time, and their accuracy and

generalization ability are confined by the expertise of the practitioners. Traditional machine learning

algorithms struggle to encapsulate the intricate semantics and contextual information within the code,

resulting in limited accuracy and generalization ability when confronted with extensive software projects.

Furthermore, they mandate continuous adjustments and optimizations when confronted with domain

changes and emerging software technologies.

The introduction of deep learning into software defect detection tasks has ushered in notable progress

and breakthroughs in this domain. With the advancement of deep learning, neural networks have

emerged as a critical component, especially in Natural Language Processing (NLP) tasks, where deep

learning methods have showcased exceptional performance. In comparison to traditional methods, deep

learning confers several advantages, with the most pivotal being its capability to grasp intricate

semantics and contextual information within the code, thereby bolstering accuracy and generalization

capability. During the evolution of deep learning, several noteworthy NLP models have surfaced,

including TextCNN [10], RNN, and LSTM [11]. These models have achieved significant milestones in

text processing. For instance, TextCNN can capture local features through convolutional operations,

RNN is adept at processing sequence data, and LSTM addresses the issue of vanishing gradients in

conventional RNNs, enabling the model to comprehend contextual relationships more effectively.

In recent years, pre-trained models [12-13] have flourished across diverse domains such as natural

language processing and computer vision. The advent of novel models and enhanced training strategies

has led to substantial advancements in pre-trained models across various tasks. Exemplary instances

include Transformer and BERT (Bidirectional Encoder Representations from Transformers) [14], which

leverage extensive unlabeled text data for pre-training to acquire universal semantic representations. In

the realm of software defect detection, the software defect datasets are frequently limited in scale, which

curtails the detection performance of deep learning models and obstructs the complete exploitation of

intricate semantic and contextual information within the code. To surmount this challenge, the

introduction of pre-trained models has emerged as a potent solution. Through pre-training on substantial

general corpora, pre-trained models can amass rich universal semantic knowledge and achieve an

improved understanding of the import and structure of the code. Subsequently, during the fine-tuning

phase, the pre-trained model is adapted to the software defect detection task. In comparison to

conventional methods founded on manual feature engineering and neural networks relying solely on

TextCNN or LSTM, this approach not only heightens model performance but also diminishes the

necessity for copious annotated data, augmenting the model's generalization ability, semantic

comprehension, and contextual modeling capabilities. Consequently, it becomes better suited for

addressing the formidable task of software defect detection.

This study aims to address two principal challenges within individual software defect datasets: the

restricted data volume and the feeble generalization ability of software defect prediction models trained

for specific projects and versions. To surmount these challenges, we harness a cross-project and cross-

version dataset to train the software defect detection model. Traditional data augmentation techniques,

such as replacement or deletion, generate synthetic data rather than authentic data. We require a cross-

project and cross-version universal software defect prediction model capable of expanding the dataset's

dimensions while preserving a substantial quantum of original information. This approach enables us to

counteract the dataset’s limitations and obtain more precise and dependable prediction models more

effectively. Additionally, we delve into the influence of case sensitivity on the model's classification

performance. Code texts often adhere to the camel-case convention for naming variables and functions,

resulting in scenarios featuring simultaneous occurrences of uppercase and lowercase letters. Moreover,

the programming language for the software defect dataset employed in this article is Java, a case-

sensitive language. In this paper, we explore a software defect prediction model grounded in the BERT

model. Concretely, BERT functions as the pre-trained model, and we forge a downstream task neural

network encompassing a single-layer fully connected layer and a softmax classifier. To assess the model,

we execute experiments involving four BERT variants.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240357

34

The contributions of this paper encompass:

• The evaluation of the BERT-based software defect detection method's generalization performance

across datasets from distinct projects.

• A comprehensive discussion of the factors underpinning the disparities noted in the performance

of the four iterations of the lightweight BERT-based software defect detection model during testing.

2. Related Works

The exploration of related works in software defect prediction often centers around widely used public

datasets, with NASA [15] and PROMISE [16] datasets emerging as prominent choices. The NASA

dataset serves as a repository of publicly available software defect data, encompassing code metrics and

defect labels for 14 distinct software projects. These datasets have been extensively employed in

software defect prediction research to assess and contrast the effectiveness of diverse machine learning

methodologies in categorizing software modules as either defect-prone or non-defect-prone.

Nevertheless, Shepperd et al. highlighted certain issues related to data quality within the NASA dataset,

including variations between different versions, irrational values, absent values, conflicting values, and

duplicated values. These concerns have the potential to impede the credibility and comparability of

empirical analyses reliant on the NASA dataset. Thus, the authors recommend that researchers delineate

data sources, elucidate preprocessing procedures, and cultivate a comprehensive understanding of the

data prior to applying machine learning techniques. Regarding the PROMISE dataset, Watanabe et al.

elucidate, in their paper titled "Towards identifying software project clusters with regard to defect

prediction,” a freshly compiled dataset of software projects, encompassing 92 versions across 38

proprietary, open-source, and academic projects [1]. Recognized as the PROMISE dataset, this publicly

accessible software engineering data repository is designed to facilitate the replication and validation of

software engineering research. The authors conducted cluster analysis on this dataset to unveil clusters

of software projects sharing analogous traits from the perspective of defect prediction [2]. They

harnessed various clustering methodologies, including hierarchical clustering, k-means clustering, and

Kohonen neural networks, and validated the clustering outcomes through discriminant analysis and

statistical tests [3]. They identified two prevailing clusters: proprietary cluster B and proprietary/open-

source cluster, subsequently devising defect prediction models for each cluster [4]. This research not

only provides a blueprint for reutilizing defect prediction models but also furnishes a valuable dataset

for the software engineering community.

At present, software defect detection is underpinned by two primary technological approaches:

traditional machine learning-based methods and the rapidly evolving neural network-based approaches.

Traditional software defect methods, rooted in machine learning, necessitate manual feature

engineering, often involving code metrics. Moreover, numerous studies have delineated statistically

derived code features for software defect detection tasks. In the domain of traditional machine learning-

based software defect prediction, prominent classifiers encompass logistic regression, decision trees,

Naive Bayes, Support Vector Machines (SVM), K-Nearest Neighbors (KNN), K-Means, and Random

Forest. Notably, the logistic regression classifier serves as a benchmark model. Noteworthy

advancements arise from Random Forest and other tree-based classifiers within the traditional machine

learning realm. Zhou et al. [17] introduced a software defect prediction model rooted in deep forest,

which transforms random forest classifiers into a layered structure to discern more pivotal defect features.

However, as software systems burgeon in complexity and scale, conventional detection methods

might encounter limitations. Additionally, for domain-specific and application-specific defect detection,

a profound comprehension of the domain's attributes and requisites is indispensable for devising

appropriate manual features and detection strategies. Thus, in response to these challenges, a novel

approach has materialized in recent years, entailing the harnessing of neural networks (Deep Learning)

to automatically glean code features from datasets, thereby enabling automated code defect detection.

Pan et al. [18] formulated a software defect detection model built upon CodeBERT [19] and undertook

empirical investigations in both cross-project and within-project scenarios. Uddin et al. [20] presented

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240357

35

a hybrid software defect prediction model hinged on BERT and BiLSTM, amplifying model

performance through data augmentation techniques.

3. Method

The methodology employed in our study is depicted in the figure below:

Figure 1. The workflow of our model

In our investigation, we initially delve into version control repositories to extract essential files for

the dataset. These files are subsequently categorized as either containing errors or being error-free.

Subsequently, we extract vocabulary files from the software defect dataset and preprocess the data by

encoding and tokenizing it, rendering it compatible with the BERT model. Next, the preprocessed data

is fed into the BERT model provided by the HuggingFace community. Lastly, we construct a

downstream task neural network based on BERT and proceed with training the network for predictive

purposes.

Traditional software defect detection methods have not fully harnessed the semantic information

present in the source code, thereby curbing the classification performance of software defect detection

models. Moreover, the constrained scale of existing defect datasets has somewhat impeded the

advancement of classification performance for extant models, exemplified by the limited size of the

PROMISE dataset. To address this challenge, methods like code metric-based statistical learning or

abstract syntax tree-based approaches frequently overlook specific function and variable names. To

surmount this issue, we have embraced the standard BERT (Bidirectional Encoder Representations from

Transformers) model. BERT constitutes a pre-trained natural language processing model widely

deployed across various text processing tasks.

The advent of the "pre-training" technique stems from the practical scenario of sparse annotated

resources juxtaposed with abundant unlabeled resources. In certain specific tasks, a meager quantity of

relevant training data poses a challenge for the model to glean meaningful patterns. Consequently, we

endeavor to leverage extensive pre-trained models on datasets replete with ample data to amplify model

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240357

36

performance on smaller datasets. This approach can be conceptualized as bifurcating the training process

into two stages: foundational learning and task-specific learning, corresponding to the pre-training and

fine-tuning phases. BERT's pre-training phase encompasses two tasks: Masked Language Model (MLM)

and Next Sentence Prediction (NSP). The MLM task simulates a "fill in the blanks" exercise, wherein a

word is concealed, and its context is employed to predict the concealed term. The NSP task endeavors

to ascertain whether two given sentences are contiguous within the original text. Post pre-training, BERT

can be fine-tuned for sundry downstream tasks such as text classification, sequence labeling, and reading

comprehension, culminating in superior experimental outcomes.

In our research, in accordance with the BERT model's specifications, we adopted a subword

tokenization strategy based on WordPiece to tokenize each statement in the source code into discrete

words or symbols. This process is acknowledged as BERT's tokenization process. Initially, we compiled

a dataset vocabulary file encompassing all potential tokens. Subsequently, we preprocessed the source

code text by eliminating comments and newline characters, adding the "<SOS>" tag at the

commencement and the "<EOS>" tag at the culmination of the text. Thereafter, predicated on the pre-

established vocabulary file, we embraced a greedy longest-match-first algorithm to fragment less

frequent words into word pieces comprised of more prevalent subwords. This operation is imperative

due to code variables frequently adhering to camel case naming conventions, leading to the segmentation

of a term like "studentId" into "student" and "id."

If a term within the code text eludes identification within the vocabulary, it is substituted with

"<UNK>" (indicating an unknown token). Through this process of word piece tokenization, the source

code text undergoes transformation into an integer list, with each integer signifying the ID of a token.

This list of integers can be employed as input for the BERT model.

The downstream task models encompass further computations on the extracted features from BERT

to derive the computational outcomes requisite for the binary software defect detection task expounded

in this paper. Within this study, two distinct downstream task models have been delineated to

accommodate diverse iterations of the BERT model. Our model adopts a fully connected neural network

structure with weight matrices of dimensions 768x2 and 1024x2. The classifier employs the softmax

regression technique. Within softmax regression, the model gauges the likelihood of the code text

containing defects. If the probability surpasses 0.5, the text is classified as "buggy"; contrarily, it is

deemed "clean."

4. Experiment

4.1. A. Experiment Dataset

For our experiments, we employed 6 projects from the PROMISE dataset. The table below presents

dataset information, encompassing Project Name, Description, File Numbers, Bug File Numbers, and

Bug Rate.

Table 1. Dataset description

Project

Name

File

Numbers

Bug File

Numbers

Bug

Rate
Description

camel-1.6 965 188 19.5%
A framework of enterprise

integration

lucene-2.0 195 91 46.7%
An engine library for searching text

lucene-2.2 247 144 58.3%

synapse-1.0 157 16 10.2%

Adapters for transporting data synapse-1.1 222 60 27.0%

synapse-1.2 256 86 33.6%

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240357

37

The table below shows the number of training instances and testing instances we have:

Table 2. Statistics of training set and test set

 Training Instances Test Instances

Total 1705 300

4.2. B. BERT

We evaluated four slightly distinct BERT models, all provided by Hugging Face: bert-base-uncased,

bert-base-cased, bert-large-uncased, and bert-large-cased. The designations “base” and “large”

correspond to the model’s parameter size. “Cased” denotes that the model distinguishes between

uppercase and lowercase letters in English, while “uncased” implies that case distinctions are

disregarded. The bert-base model features 12 stacked transformer blocks, 768 hidden units, 12 attention

heads, and a total of 110 million parameters. Conversely, the bert-large model encompasses 24 stacked

transformer blocks, 1024 hidden units, 16 attention heads, and a total of 340 million parameters.

4.3. C. Evaluation Metrics

We employed four evaluation metrics to gauge the model’s performance: AUC, F1 score, Precision, and

Recall. These metrics are standard in software defect detection.

The F1 score, a merger of precision and recall, serves as a pivotal metric for evaluating classification

models. The F1 score, often represented as the harmonic mean of precision and recall, is calculated using

the formula:

 𝐹1 =
2* precision * recall

 precision + recall

The AUC metric (Area Under the Curve) comprehensively assesses the predictive accuracy of

classification models. It quantifies performance by calculating the area beneath the Receiver Operating

Characteristic (ROC) curve. The AUC value ranges from 0 to 1, with a higher value indicating superior

performance. An AUC of 1 signifies perfect prediction, while an AUC of 0.5 suggests performance

equivalent to random guessing.

Precision gauges the proportion of true positive samples among instances predicted as positive by

the model. It's calculated as:

 Precision =
TruePositives

TruePositives+FalsePositives

Recall, also known as True Positive Rate or Sensitivity, quantifies the model's capacity to predict

positive instances. It's calculated using:

 Recall =
True Positives

True Positives+False Negatives

5. Baseline Model

To benchmark our method's effectiveness against other defect prediction approaches, we compared our

classifier with two baseline classifiers: TextCNN and LSTM.

5.1. TextCNN

TextCNN employs convolutional filters of varying window sizes on input text sequences to capture local

features and generate fixed-size feature maps. These maps are then subjected to max-pooling layers to

extract important features, followed by predictions using fully connected layers and a softmax classifier,

determining the class label for the input text.

5.2. LSTM

LSTM (Long Short-Term Memory) is a recurrent neural network model well-suited for handling

sequential data with long-term dependencies. By utilizing gating mechanisms like input gates, forget

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240357

38

gates, and output gates, LSTM effectively captures long-range dependencies in sequences while

mitigating vanishing and exploding gradient problems. LSTM has exhibited remarkable achievements

in natural language processing tasks, including text classification, language modeling, and machine

translation.

6. Results Analysis

Table 3. Performance comparisons with base models

 AUC Precision Recall F1

TextCNN 0.6267 0.6000 0.7600 0.6706

LSTM 0.6600 0.7926 0.4333 0.5603

BERT-L-U 0.7166 0.6946 0.7733 0.7157

BERT-L-C 0.6733 0.6494 0.7533 0.6712

BERT-B-U 0.6800 0.7934 0.4866 0.6675

BERT-B-C 0.6566 0.7764 0.4400 0.6397

Figure 2. Comparisons with base models

To enhance clarity in the table, the following abbreviations are employed to represent the model

names:

blu-sdp: Software Defect Prediction Model based on bert-large-uncased

blc-sdp: Software Defect Prediction Model based on bert-large-cased

bbu-sdp: Software Defect Prediction Model based on bert-base-uncased

bbc-sdp: Software Defect Prediction Model based on bert-base-cased

(1) The BERT-based approach outperforms TextCNN and LSTM across all evaluation metrics. The

results demonstrate that our model surpasses TextCNN by 8.99% in AUC and LSTM by 5.66%, and in

terms of F1 score, it outperforms TextCNN by 4.51% and LSTM by 15.57%. This underscores the

efficacy of introducing pre-trained models for software defect detection datasets.

(2) Among the BERT variants, the software defect classifier based on bert-large-uncased exhibits

exceptional performance, surpassing other BERT model variations. It achieves the highest values in

AUC, Recall, and F1 metrics. This finding suggests that, in software defect detection tasks, pre-trained

models with more parameters and case insensitivity deliver outstanding results. This is attributed to the

predominant lowercase usage in code text, despite Java's case sensitivity.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240357

39

7. Conclusion and Future Work

This paper introduces a BERT-based approach for software defect detection, employing a pre-trained

BERT model alongside fully connected layers and a softmax classifier to harness code semantics and

bolster classification performance. Through a series of experiments, we compared different iterations of

BERT models, with the method built upon bert-large-uncased demonstrating optimal results.

Furthermore, our discussion delves into the implications of model parameters and case sensitivity on

classification efficacy.

To advance predictive capabilities, our future research endeavors encompass broadening the software

defect prediction dataset and utilizing this data to train a dedicated pre-trained model specifically tailored

for software defect detection. We intend to explore whether customized pre-trained models, in tandem

with more intricate downstream task neural networks, can further amplify model performance.

Concurrently, we will closely monitor the latest advancements in real-time software defect prediction,

seeking opportunities to integrate cutting-edge developments into our methodology.

References

[1] X. Sun, W. Zhou, B. Li, Z. Ni, and J. Lu, “Bug Localization for Version Issues With Defect

Patterns,” IEEE Access, vol. 7, pp. 18811–18820, 2019, doi: 10.1109/ACCESS.2019.2894976.

[2] Association for Computing Machinery, PROMISE : 7th International Conference on Predictive

Models in Software Engineering : Banff, Canada, Sept 20-21, 2011 : co-located with ESEM

2011.

[3] J. (Jean) Bézivin, J.-Marie. Favre, Bernhard. Rumpe, Association for Computing Machinery., and

ACM Sigsoft., GaMMa ’06: : proceedings of the 2006 International Workshop on Global

Integrated Model Management. Association for Computing Machinery, 2006.

[4] T. J. Mccabe, “A Complexi-ty Measure,” 1976.

[5] R. Harrison, S. J. Counsell, and R. V Nithi, “An Evaluation of the MOOD Set of Object-Oriented

Software Metrics,” 1998.

[6] M. Jureczko and D. D. Spinellis, “Using Object-Oriented Design Metrics to Predict Software

Defects 1*.” [Online]. Available: http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm

[7] M. A. Elsabagh, M. S. Farhan, and M. G. Gafar, “Cross-projects software defect prediction using

spotted hyena optimizer algorithm,” SN Appl Sci, vol. 2, no. 4, Apr. 2020, doi:

10.1007/s42452-020-2320-4.

[8] A. B. Nasser et al., “A Robust Tuned K-Nearest Neighbours Classifier for Software Defect

Prediction Lower Limb Exoskeleton View project Artificial Image processing based decision

making for grading and sorting of rotatiinally symmetric products View project A Robust

Tuned K-Nearest Neighbours Classifier for Software Defect Prediction.” [Online]. Available:

https://www.researchgate.net/publication/362850366

[9] H. A. Alhija, M. Azzeh, and F. Almasalha, “Software Defect Prediction Using Support Vector

Machine.”

[10] Y. Kim, “Convolutional Neural Networks for Sentence Classification,” Aug. 2014, [Online].

Available: http://arxiv.org/abs/1408.5882

[11] “LSTM”.

[12] T. B. Brown et al., “Language Models are Few-Shot Learners.” [Online]. Available:

https://commoncrawl.org/the-data/

[13] A. Vaswani et al., “Attention Is All You Need.”

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding,” Oct. 2018, [Online]. Available:

http://arxiv.org/abs/1810.04805

[15] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some comments on the NASA

software defect datasets,” IEEE Transactions on Software Engineering, vol. 39, no. 9, pp.

1208–1215, 2013, doi: 10.1109/TSE.2013.11.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240357

40

[16] Gunes. Koru and Association for Computing Machinery., PROMISE 2010 : 6th International

Conference on Predictive Models in Software Engineering : Timișoara, Romania, September

12-13, 2010. ACM, 2010.

[17] T. Zhou, X. Sun, X. Xia, B. Li, and X. Chen, “Improving defect prediction with deep forest,” Inf

Softw Technol, vol. 114, pp. 204–216, Oct. 2019, doi: 10.1016/j.infsof.2019.07.003.

[18] C. Pan, M. Lu, and B. Xu, “An empirical study on software defect prediction using codebert

model,” Applied Sciences (Switzerland), vol. 11, no. 11, Jun. 2021, doi: 10.3390/app11114793.

[19] Z. Feng et al., “CodeBERT: A Pre-Trained Model for Programming and Natural Languages,” Feb.

2020, [Online]. Available: http://arxiv.org/abs/2002.08155

[20] M. N. Uddin, B. Li, Z. Ali, P. Kefalas, I. Khan, and I. Zada, “Software defect prediction

employing BiLSTM and BERT-based semantic feature,” Soft comput, vol. 26, no. 16, pp.

7877–7891, Aug. 2022, doi: 10.1007/s00500-022-06830-5.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240357

41

