
The role of linear algebra in real-time graphics rendering: A

comparison and analysis of mathematical library performance

Hongyi Zhang

Harbin Institute of Technology, Shenzhen, Nanshan District, Guangdong Province,

China

h1tori@outlook.com

Abstract. With the rise of concepts like the metaverse, virtual reality, and augmented reality,

real-time graphics rendering technology has garnered significant attention. Among its key

performance indicators, frame rate and graphical quality stand out. Particularly in real-time

rendering, linear algebra, especially matrix and vector operations, play a crucial role in

determining the position and transformation of models in multidimensional space. This study

aims to explore methods for enhancing matrix operation performance in graphics rendering. We

compare the performance of two popular mathematical libraries in practical rendering scenarios

and discuss the potential of leveraging their strengths to achieve more efficient performance. The

research results demonstrate that optimized matrix operations can significantly improve frame

rates, providing users with smoother visual experiences. This holds great importance for real-

time graphics rendering applications such as games, 3D simulations, and the metaverse. The

paper also reviews relevant literature, presents specific comparative data, analyzes the reasons

behind performance differences, and discusses the limitations and future directions of the

research.

Keywords: Computer Graphics, Optimization, Matrix Computations, Real-Time Rendering.

1. Introduction

With the emergence and popularity of concepts like the metaverse, virtual reality, and augmented reality,

real-time graphics rendering technology has attracted increasing attention. Apart from graphical quality,

frame rate – the number of frames rendered per second during real-time rendering – is a crucial

comparison metric [1]. In computer graphics applications aimed at real-time rendering of graphical

images, mathematical computations account for a significant portion of the overall processing time.

Among these, linear algebra, specifically matrix and vector operations, plays a foundational role by

enabling the precise representation of points' positions and transformation processes in multidimensional

space [2]. Thus, to deliver a more real-time and seamless user experience, enhancing the efficiency of

mathematical computations in the graphics rendering process has become a paramount concern for

professionals in the field.

This study will focus on how to enhance the performance of matrix operations during graphics

rendering. By constructing practical rendering scenarios, we will compare the performance of two

popular scientific computing libraries to identify the reasons behind performance discrepancies and

explore the potential of combining their strengths to achieve superior performance. In practical graphics

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240358

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

42

rendering, a model's position needs to be determined through multiple matrix transformations. During

this process, the efficiency of different mathematical libraries may vary, affecting the time taken to

render images and consequently influencing real-time rendering frame rates [3]. Therefore, by

comparing frame rates when rendering a substantial number of models, we can assess the rendering

performance when using different mathematical libraries. By optimizing the computational efficiency

of this process, we can significantly reduce the generation time for a single frame, resulting in a smoother

visual experience. In various applications of real-time graphics rendering, such as games, 3D simulations,

and metaverse scenarios, higher frame rates typically equate to a more realistic experience and reduced

discomfort.

This paper is divided into five main sections. Section two will review prior literature on topics like

spatial transformation operations. Section three will primarily focus on detailed comparisons and

presentation of specific data results. Section four will analyze the reasons behind performance disparities

by combining real-world data and characteristics of mathematical libraries. Lastly, section five will

summarize the paper, discuss its limitations, and outline potential future research directions.

2. Literature review

2.1. Computer Graphics

Computer graphics is a branch of computer science that explores the creation and manipulation of visual

content, particularly in computer-driven simulations and animations. The applications of computer

graphics are extensive, encompassing areas such as film and television special effects, video games,

computer-aided design (CAD), virtual reality, web graphics, and many other domains. The evolution of

computer graphics traces back to the 1960s. Initially, it found use primarily in military and research

contexts, such as flight simulators and molecular modeling. Over time, computer graphics expanded its

applications to more diverse fields, including art and entertainment.

In the work of Bonneel and Digne [4], they extensively delve into optimal transport theory and its

applications in computer graphics and computer vision. Optimal transport theory is a mathematical tool

that facilitates comparison and transformation of different probability distributions. Within computer

graphics, this tool proves useful in addressing various problems, such as image processing, geometry

manipulation, rendering, fluid simulation, computational optics, and more. Another perspective on

computer graphics is presented in the review by Riddle [5], which examines Gaboury's book. This work

explores the materiality of computer graphics, traces the history of rendering images, and discusses their

impact on contemporary computing. An article by Díaz-Barrancas et al. [6] introduces the use of

hyperspectral textures in virtual reality systems to enhance real-time computer graphics applications.

Their scientific contribution lies in improving the authenticity of color representation, especially

concerning scene lighting conditions and their precision. Lastly, Wang [7] explores the utilization of

self-supervised learning to distinguish computer-generated images from natural images. This approach

harnesses a wealth of unlabeled data and employs a training process capable of generating labels,

obviating the need for manual labeling.

2.2. Optimization of Virtual Engines

As personal computers and computer graphics rendering technology have become widespread, the

performance of hardware specialized in image rendering operations (e.g., GPUs) has garnered increasing

attention. In the work of Owens et al. [8], the development of GPU performance is discussed from the

perspective of general-purpose GPU computing. The article elaborates on the advantages of GPUs

compared to other computational hardware (e.g., CPUs). It highlights that the multi-core parallel nature

of GPUs, contrasting the linear operation of CPUs, grants GPUs superior capabilities for handling

graphics rendering tasks. Given that the process of matrix operations can also be decomposed into

multiple independent subtasks, the notion of optimizing matrix operation performance through

parallelism naturally emerges. Efforts and studies by Kelefouras et al. [9], RSTAD et al. [10], and Jiang

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240358

43

and Snir [11] have validated this idea. Their accomplishments have been widely adopted in

contemporary computer graphics rendering.

3. Research methods

3.1. Overall Research Structure/Flowchart

Figure 1. Overall Research Flowchart.

In this study, we undertake explorations and optimization efforts concerning the efficiency of

calculations within the computer graphics rendering process. Throughout this process, we design

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240358

44

experimental environments, conduct experiments with relevant parameters, arrive at final comparative

results, and validate optimization strategies through these outcomes.

3.2. Existing Techniques

3.2.1. OpenGL

OpenGL (Open Graphics Library) is a cross-language, cross-platform application programming

interface used for rendering 2D and 3D vector graphics. It typically interacts with GPUs to achieve

hardware-accelerated graphics rendering. The first version of the OpenGL specification was released by

Silicon Graphics, Inc. in 1992. Since then, OpenGL has found extensive applications in fields including

CAD, virtual reality, scientific visualization, and electronic gaming. Starting from 2006, the non-profit

industry consortium Khronos Group took over control of the OpenGL specification [12].

3.2.2. GLM

GLM (OpenGL Mathematics) is a Header-Only Library designed to serve graphics software

development based on OpenGL. Developed following the OpenGL Shading Language (GLSL) standard,

GLM boasts excellent compatibility not only with GLSL and OpenGL but also for developers familiar

with both [13].

3.2.3. Eigen3

Eigen3 is a C++ template library developed for linear algebra purposes. It encompasses various

optimizations targeting multiple use cases and scenarios from a computer hardware perspective,

including SIMD (Single Instruction, Multiple Data) and Expression Template Metaprogramming,

resulting in outstanding computational efficiency [14].

3.3. Optimization Approaches

Figure 2. Comparison of Eigen3 and GLM Computation Processes.

In Eigen3, data structures like Transform are specifically provided for storing and performing geometric

transformation operations. These structures aim to ensure logical clarity during design and efficiency

during high-scale complex operations of storing, retrieving, and modifying transformation values.

However, during the actual process of rendering graphical images on a computer, the scale of single

transformations isn't substantial, and the matrix dimensions are not large (four-dimensional matrices).

Consequently, optimizations intended for higher dimensions and larger-scale computations might

become inefficient due to repeated encapsulation and multiple invocations. Thus, a possibility exists

that, compared to Eigen3's provided Transform structures, using matrices for naive three-dimensional

transformations might yield greater efficiency.

In GLM, both data storage and computation methods are straightforward, involving direct storage

and calculations. Conversely, Eigen3 incorporates technologies like Expression Template and

Metaprogramming, optimizing the library's efficiency from both computational process and computer

architecture perspectives. Consequently, a possibility exists that, compared to GLM's naive

implementation approach, Eigen3's computation and storage structures might offer superior efficiency.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240358

45

In summary, a possibility exists that, by combining GLM's spatial transformation computation with

Eigen3's foundational computation and storage structure implementation, maximum graphics rendering

efficiency can be achieved.

3.4. Experimental Setup

Table 1. Experimental Conditions.

 Tool Version

Software

Conditions

CMake 3.25.2

Clang Apple clang version 14.0.3

(clang-1403.0.22.14.1)

Target arm64-apple-darwin23.0.0

CMAKE_BUILD_TYPE Release

Hardware

Conditions

Laptop MacBook Pro 14’ (2021)

SoC M1 Pro

Unified RAM 16GB

In addition to using the same software and hardware conditions, the experiments in this study were

conducted within a constructed test scenario. This scenario comprises 20,000 rock models rapidly

orbiting a single planet model.

3.5. Evaluation Criteria

In this study, we utilize the average frame generation rate as a quantitative measure for evaluation.

The frame generation rate refers to the number of frames that a program can render within a unit of

time, expressed in FPS (Frames Per Second). Due to potential time discrepancies when different

mathematical libraries calculate the same content, resulting in varied time consumption for rendering a

single frame, the accumulated effect over time reflects specific discrepancies through the frame

generation rate (higher frame generation rate indicating better performance).

The average frame generation rate refers to the program's average frame generation rate within a unit

of time, preventing occasional fluctuations in frame generation rates from affecting the results.

4. Experimental results

Under the previously mentioned conditions, the results from running the three code implementations are

as follows:

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240358

46

Figure 3. Screenshots of the Test Scenario Used in this Experiment.

Table 2. Experimental Results.

 Average Frame Rate (FPS)

Using GLM with its Built-in

Transformation Functions

31.336708

Using Eigen3 with its Built-in

Transformation Functions

31.0393939

Using Eigen3 with Transformation

Functions Rewritten according to the

Proposed Optimization Approach

32.1694355

From the experimental results, it is evident that the program utilizing rewritten transformation

functions exhibits an improvement of approximately 1 FPS in terms of frame rate, compared to the

programs using Eigen3's built-in transformation functions and those employing GLM's built-in

transformation functions.

Another noteworthy observation is that the program utilizing Eigen3's built-in transformation

functions displays a lower frame rate by approximately 0.3 FPS compared to the program using GLM's

built-in transformation functions.

This discrepancy becomes more pronounced when the CMAKE_BUILD_TYPE is switched to

Debug mode:

Table 3. Performance Comparison of Eigen3 and GLM in Debug Mode.

 Average Frame Rate (FPS)

Using GLM with its Built-in

Transformation Functions

15.864917

Using Eigen3 with its Built-in

Transformation Functions

5.7030758

Data from Table 3 reveals that in Debug mode, the performance gap between Eigen3 and GLM is

further magnified, with a frame rate difference of around 10 FPS.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240358

47

5. Discussion

Based on the data from the experimental results, we can draw preliminary conclusions: The optimization

approach proposed in this study, which involves reducing nested function calls for small-scale

transformation operations and directly performing calculations, proves effective. Additionally, through

comparisons, it is evident that the repetitive calling of multiple functions in Eigen3 does indeed impact

performance when compiler optimization is not applied. However, post-compiler optimization, the

performance difference caused by this factor becomes negligible. Therefore, it can be inferred that with

the ongoing advancements in compiler technology, the performance impact of nested function calls in

Eigen3 is likely to diminish. The comparison between the "Using Eigen3 with Transformation Functions

Rewritten according to the Proposed Optimization Approach" group and the "Using GLM with its Built-

in Transformation Functions" group also illustrates that with the same transformation function

implementation, Eigen3's data structures and computational performance are superior. Consequently, in

the foreseeable future, when compiler-induced performance overhead due to repeated function calls is

eliminated, Eigen3's overall performance is expected to surpass that of GLM.

From the experimental data, it is evident that the test scenario constructed for this experiment remains

relatively simplistic. Increasing the number of rock models reveals that the performance bottleneck

primarily stems from rasterization processing rather than transformation computations. This

phenomenon could be attributed to the hardware's limitations used in the experiment or to the possibility

that the OpenGL API employed in this experiment lags behind more cutting-edge APIs such as

DirectX12, Metal, and Vulkan.

6. Conclusion

In today's context, with the continuous maturation of computer graphics, rapid advancements in

consumer computers, and graphics rendering-related hardware, both users and content creators are

increasingly attentive to the performance of graphic image rendering, particularly in the realm of three-

dimensional spatial image rendering. As attention shifts towards rasterization performance, it is equally

essential not to overlook the transformation process that occurs prior to rasterization. To investigate the

performance and optimization methods within this aspect, this study compared the frame rates of

rendering programs using two computational libraries: GLM and Eigen3. By contrasting the

implementation approaches between the two libraries, we explored the factors causing performance

disparities and proposed an optimization approach. Based on the experimental results, we can conclude

that, under the premise of using built-in transformation functions, GLM's performance slightly surpasses

that of Eigen3. However, after rewriting the transformation functions with the proposed optimization

approach, Eigen3's performance outperforms GLM's. This study has solely attempted an optimization

approach involving reducing multi-layered function calls. Beyond this, there are optimization avenues

to explore, such as those based on Cache utilization and parallel computation. These avenues remain

open for further in-depth exploration in subsequent research.

References

[1] T. Akenine-Mo, E. Haines, and N. Hoffman, "Real-time rendering," 2018.

[2] J. Krüger and R. Westermann, "Linear algebra operators for GPU implementation of numerical

algorithms," in ACM SIGGRAPH 2005 Courses, 2005, pp. 234-es.

[3] T. Neff et al., "DONeRF: Towards Real‐Time Rendering of Compact Neural Radiance Fields

using Depth Oracle Networks," in Computer Graphics Forum, 2021, vol. 40, no. 4: Wiley

Online Library, pp. 45-59.

[4] N. Bonneel and J. Digne, "A survey of optimal transport for computer graphics and computer

vision," in Computer Graphics Forum, 2023, vol. 42, no. 2: Wiley Online Library, pp. 439-

460.

[5] A. Riddle, "Extending Beyond the Ultimate Display in Image Objects: An Archaeology of

Computer Graphics," Media-N, vol. 19, no. 1, pp. 153-156, 2023.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240358

48

[6] F. Díaz-Barrancas, H. Cwierz, and P. J. Pardo, "Real-time application of computer graphics

improvement techniques using hyperspectral textures in a virtual reality system," Electronics,

vol. 10, no. 22, p. 2852, 2021.

[7] K. Wang, "Self-Supervised Learning for the Distinction between Computer-Graphics Images and

Natural Images," Applied Sciences, vol. 13, no. 3, p. 1887, 2023.

[8] J. D. Owens et al., "A survey of general‐purpose computation on graphics hardware," in Computer

graphics forum, 2007, vol. 26, no. 1: Wiley Online Library, pp. 80-113.

[9] V. Kelefouras, A. Kritikakou, and C. Goutis, "A Matrix–Matrix Multiplication methodology for

single/multi-core architectures using SIMD," The Journal of Supercomputing, vol. 68, pp.

1418-1440, 2014.

[10] P. RSTAD, F. Manne, T. REVIK, and M. V. SICy, "Efficient matrix multiplication on SIMD

computers," 1991.

[11] C. Jiang and M. Snir, "Automatic tuning matrix multiplication performance on graphics

hardware," in 14th International Conference on Parallel Architectures and Compilation

Techniques (PACT'05), 2005: IEEE, pp. 185-194.

[12] M. Segal and K. Akeley, "The OpenGL graphics system: A specification (version 1.1)," ed, 1999.

[13] R. Rieder and J. D. Brancher, "Development of a micro world for the education of the

Fundamental Mathematics, using OpenGL and Delphi," in X Congreso Iberoamericano de

Educación Superior em Computación en el marco de CLEI, 2002.

[14] P. Zangerl, H. Jordan, P. Thoman, P. Gschwandtner, and T. Fahringer, "Exploring the semantic

gap in compiling embedded dsls," in Proceedings of the 18th International Conference on

Embedded Computer Systems: Architectures, Modeling, and Simulation, 2018, pp. 195-201.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240358

49

