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Abstract. With the rise of concepts like the metaverse, virtual reality, and augmented reality, 

real-time graphics rendering technology has garnered significant attention. Among its key 

performance indicators, frame rate and graphical quality stand out. Particularly in real-time 

rendering, linear algebra, especially matrix and vector operations, play a crucial role in 

determining the position and transformation of models in multidimensional space. This study 

aims to explore methods for enhancing matrix operation performance in graphics rendering. We 

compare the performance of two popular mathematical libraries in practical rendering scenarios 

and discuss the potential of leveraging their strengths to achieve more efficient performance. The 

research results demonstrate that optimized matrix operations can significantly improve frame 

rates, providing users with smoother visual experiences. This holds great importance for real-

time graphics rendering applications such as games, 3D simulations, and the metaverse. The 

paper also reviews relevant literature, presents specific comparative data, analyzes the reasons 

behind performance differences, and discusses the limitations and future directions of the 

research. 
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1.  Introduction 

With the emergence and popularity of concepts like the metaverse, virtual reality, and augmented reality, 

real-time graphics rendering technology has attracted increasing attention. Apart from graphical quality, 

frame rate – the number of frames rendered per second during real-time rendering – is a crucial 

comparison metric [1]. In computer graphics applications aimed at real-time rendering of graphical 

images, mathematical computations account for a significant portion of the overall processing time. 

Among these, linear algebra, specifically matrix and vector operations, plays a foundational role by 

enabling the precise representation of points' positions and transformation processes in multidimensional 

space [2]. Thus, to deliver a more real-time and seamless user experience, enhancing the efficiency of 

mathematical computations in the graphics rendering process has become a paramount concern for 

professionals in the field. 

This study will focus on how to enhance the performance of matrix operations during graphics 

rendering. By constructing practical rendering scenarios, we will compare the performance of two 

popular scientific computing libraries to identify the reasons behind performance discrepancies and 

explore the potential of combining their strengths to achieve superior performance. In practical graphics 
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rendering, a model's position needs to be determined through multiple matrix transformations. During 

this process, the efficiency of different mathematical libraries may vary, affecting the time taken to 

render images and consequently influencing real-time rendering frame rates [3]. Therefore, by 

comparing frame rates when rendering a substantial number of models, we can assess the rendering 

performance when using different mathematical libraries. By optimizing the computational efficiency 

of this process, we can significantly reduce the generation time for a single frame, resulting in a smoother 

visual experience. In various applications of real-time graphics rendering, such as games, 3D simulations, 

and metaverse scenarios, higher frame rates typically equate to a more realistic experience and reduced 

discomfort. 

This paper is divided into five main sections. Section two will review prior literature on topics like 

spatial transformation operations. Section three will primarily focus on detailed comparisons and 

presentation of specific data results. Section four will analyze the reasons behind performance disparities 

by combining real-world data and characteristics of mathematical libraries. Lastly, section five will 

summarize the paper, discuss its limitations, and outline potential future research directions. 

2.  Literature review 

2.1.  Computer Graphics 

Computer graphics is a branch of computer science that explores the creation and manipulation of visual 

content, particularly in computer-driven simulations and animations. The applications of computer 

graphics are extensive, encompassing areas such as film and television special effects, video games, 

computer-aided design (CAD), virtual reality, web graphics, and many other domains. The evolution of 

computer graphics traces back to the 1960s. Initially, it found use primarily in military and research 

contexts, such as flight simulators and molecular modeling. Over time, computer graphics expanded its 

applications to more diverse fields, including art and entertainment. 

In the work of Bonneel and Digne [4], they extensively delve into optimal transport theory and its 

applications in computer graphics and computer vision. Optimal transport theory is a mathematical tool 

that facilitates comparison and transformation of different probability distributions. Within computer 

graphics, this tool proves useful in addressing various problems, such as image processing, geometry 

manipulation, rendering, fluid simulation, computational optics, and more. Another perspective on 

computer graphics is presented in the review by Riddle [5], which examines Gaboury's book. This work 

explores the materiality of computer graphics, traces the history of rendering images, and discusses their 

impact on contemporary computing. An article by Díaz-Barrancas et al. [6] introduces the use of 

hyperspectral textures in virtual reality systems to enhance real-time computer graphics applications. 

Their scientific contribution lies in improving the authenticity of color representation, especially 

concerning scene lighting conditions and their precision. Lastly, Wang [7] explores the utilization of 

self-supervised learning to distinguish computer-generated images from natural images. This approach 

harnesses a wealth of unlabeled data and employs a training process capable of generating labels, 

obviating the need for manual labeling. 

2.2.  Optimization of Virtual Engines  

As personal computers and computer graphics rendering technology have become widespread, the 

performance of hardware specialized in image rendering operations (e.g., GPUs) has garnered increasing 

attention. In the work of Owens et al. [8], the development of GPU performance is discussed from the 

perspective of general-purpose GPU computing. The article elaborates on the advantages of GPUs 

compared to other computational hardware (e.g., CPUs). It highlights that the multi-core parallel nature 

of GPUs, contrasting the linear operation of CPUs, grants GPUs superior capabilities for handling 

graphics rendering tasks. Given that the process of matrix operations can also be decomposed into 

multiple independent subtasks, the notion of optimizing matrix operation performance through 

parallelism naturally emerges. Efforts and studies by Kelefouras et al. [9], RSTAD et al. [10], and Jiang 
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and Snir [11] have validated this idea. Their accomplishments have been widely adopted in 

contemporary computer graphics rendering.  

3.  Research methods 

3.1.  Overall Research Structure/Flowchart 

 

Figure 1. Overall Research Flowchart. 

In this study, we undertake explorations and optimization efforts concerning the efficiency of 

calculations within the computer graphics rendering process. Throughout this process, we design 
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experimental environments, conduct experiments with relevant parameters, arrive at final comparative 

results, and validate optimization strategies through these outcomes. 

3.2.  Existing Techniques 

3.2.1.  OpenGL 

OpenGL (Open Graphics Library) is a cross-language, cross-platform application programming 

interface used for rendering 2D and 3D vector graphics. It typically interacts with GPUs to achieve 

hardware-accelerated graphics rendering. The first version of the OpenGL specification was released by 

Silicon Graphics, Inc. in 1992. Since then, OpenGL has found extensive applications in fields including 

CAD, virtual reality, scientific visualization, and electronic gaming. Starting from 2006, the non-profit 

industry consortium Khronos Group took over control of the OpenGL specification [12]. 

3.2.2.  GLM 

GLM (OpenGL Mathematics) is a Header-Only Library designed to serve graphics software 

development based on OpenGL. Developed following the OpenGL Shading Language (GLSL) standard, 

GLM boasts excellent compatibility not only with GLSL and OpenGL but also for developers familiar 

with both [13]. 

3.2.3.  Eigen3 

Eigen3 is a C++ template library developed for linear algebra purposes. It encompasses various 

optimizations targeting multiple use cases and scenarios from a computer hardware perspective, 

including SIMD (Single Instruction, Multiple Data) and Expression Template Metaprogramming, 

resulting in outstanding computational efficiency [14]. 

3.3.  Optimization Approaches 

  

Figure 2. Comparison of Eigen3 and GLM Computation Processes. 

In Eigen3, data structures like Transform are specifically provided for storing and performing geometric 

transformation operations. These structures aim to ensure logical clarity during design and efficiency 

during high-scale complex operations of storing, retrieving, and modifying transformation values. 

However, during the actual process of rendering graphical images on a computer, the scale of single 

transformations isn't substantial, and the matrix dimensions are not large (four-dimensional matrices). 

Consequently, optimizations intended for higher dimensions and larger-scale computations might 

become inefficient due to repeated encapsulation and multiple invocations. Thus, a possibility exists 

that, compared to Eigen3's provided Transform structures, using matrices for naive three-dimensional 

transformations might yield greater efficiency. 

In GLM, both data storage and computation methods are straightforward, involving direct storage 

and calculations. Conversely, Eigen3 incorporates technologies like Expression Template and 

Metaprogramming, optimizing the library's efficiency from both computational process and computer 

architecture perspectives. Consequently, a possibility exists that, compared to GLM's naive 

implementation approach, Eigen3's computation and storage structures might offer superior efficiency. 
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In summary, a possibility exists that, by combining GLM's spatial transformation computation with 

Eigen3's foundational computation and storage structure implementation, maximum graphics rendering 

efficiency can be achieved. 

3.4.  Experimental Setup 

Table 1. Experimental Conditions. 

 Tool Version 

Software 

Conditions 

CMake 3.25.2 

Clang Apple clang version 14.0.3 

(clang-1403.0.22.14.1) 

Target arm64-apple-darwin23.0.0 

CMAKE_BUILD_TYPE Release 

Hardware 

Conditions 

Laptop MacBook Pro 14’ (2021) 

SoC M1 Pro 

Unified RAM 16GB 

 

In addition to using the same software and hardware conditions, the experiments in this study were 

conducted within a constructed test scenario. This scenario comprises 20,000 rock models rapidly 

orbiting a single planet model. 

3.5.  Evaluation Criteria 

In this study, we utilize the average frame generation rate as a quantitative measure for evaluation. 

The frame generation rate refers to the number of frames that a program can render within a unit of 

time, expressed in FPS (Frames Per Second). Due to potential time discrepancies when different 

mathematical libraries calculate the same content, resulting in varied time consumption for rendering a 

single frame, the accumulated effect over time reflects specific discrepancies through the frame 

generation rate (higher frame generation rate indicating better performance). 

The average frame generation rate refers to the program's average frame generation rate within a unit 

of time, preventing occasional fluctuations in frame generation rates from affecting the results. 

4.  Experimental results 

Under the previously mentioned conditions, the results from running the three code implementations are 

as follows: 
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Figure 3. Screenshots of the Test Scenario Used in this Experiment. 

Table 2. Experimental Results. 

 Average Frame Rate (FPS) 

Using GLM with its Built-in 

Transformation Functions 

31.336708 

Using Eigen3 with its Built-in 

Transformation Functions 

31.0393939 

Using Eigen3 with Transformation 

Functions Rewritten according to the 

Proposed Optimization Approach 

32.1694355 

 

From the experimental results, it is evident that the program utilizing rewritten transformation 

functions exhibits an improvement of approximately 1 FPS in terms of frame rate, compared to the 

programs using Eigen3's built-in transformation functions and those employing GLM's built-in 

transformation functions. 

Another noteworthy observation is that the program utilizing Eigen3's built-in transformation 

functions displays a lower frame rate by approximately 0.3 FPS compared to the program using GLM's 

built-in transformation functions.  

This discrepancy becomes more pronounced when the CMAKE_BUILD_TYPE is switched to 

Debug mode: 

Table 3. Performance Comparison of Eigen3 and GLM in Debug Mode. 

 Average Frame Rate (FPS) 

Using GLM with its Built-in 

Transformation Functions 

15.864917 

Using Eigen3 with its Built-in 

Transformation Functions 

5.7030758 

 

Data from Table 3 reveals that in Debug mode, the performance gap between Eigen3 and GLM is 

further magnified, with a frame rate difference of around 10 FPS. 
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5.  Discussion 

Based on the data from the experimental results, we can draw preliminary conclusions: The optimization 

approach proposed in this study, which involves reducing nested function calls for small-scale 

transformation operations and directly performing calculations, proves effective. Additionally, through 

comparisons, it is evident that the repetitive calling of multiple functions in Eigen3 does indeed impact 

performance when compiler optimization is not applied. However, post-compiler optimization, the 

performance difference caused by this factor becomes negligible. Therefore, it can be inferred that with 

the ongoing advancements in compiler technology, the performance impact of nested function calls in 

Eigen3 is likely to diminish. The comparison between the "Using Eigen3 with Transformation Functions 

Rewritten according to the Proposed Optimization Approach" group and the "Using GLM with its Built-

in Transformation Functions" group also illustrates that with the same transformation function 

implementation, Eigen3's data structures and computational performance are superior. Consequently, in 

the foreseeable future, when compiler-induced performance overhead due to repeated function calls is 

eliminated, Eigen3's overall performance is expected to surpass that of GLM. 

From the experimental data, it is evident that the test scenario constructed for this experiment remains 

relatively simplistic. Increasing the number of rock models reveals that the performance bottleneck 

primarily stems from rasterization processing rather than transformation computations. This 

phenomenon could be attributed to the hardware's limitations used in the experiment or to the possibility 

that the OpenGL API employed in this experiment lags behind more cutting-edge APIs such as 

DirectX12, Metal, and Vulkan. 

6.  Conclusion 

In today's context, with the continuous maturation of computer graphics, rapid advancements in 

consumer computers, and graphics rendering-related hardware, both users and content creators are 

increasingly attentive to the performance of graphic image rendering, particularly in the realm of three-

dimensional spatial image rendering. As attention shifts towards rasterization performance, it is equally 

essential not to overlook the transformation process that occurs prior to rasterization. To investigate the 

performance and optimization methods within this aspect, this study compared the frame rates of 

rendering programs using two computational libraries: GLM and Eigen3. By contrasting the 

implementation approaches between the two libraries, we explored the factors causing performance 

disparities and proposed an optimization approach. Based on the experimental results, we can conclude 

that, under the premise of using built-in transformation functions, GLM's performance slightly surpasses 

that of Eigen3. However, after rewriting the transformation functions with the proposed optimization 

approach, Eigen3's performance outperforms GLM's. This study has solely attempted an optimization 

approach involving reducing multi-layered function calls. Beyond this, there are optimization avenues 

to explore, such as those based on Cache utilization and parallel computation. These avenues remain 

open for further in-depth exploration in subsequent research. 
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