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Abstract. Recommendation systems have emerged as effective tools for mitigating information 
overload. Traditionally, recommendation systems employ various models such as Collaborative 
Filtering, Matrix Decomposition, and Logic Decomposition. Among these, Collaborative 
Filtering stands out due to its high efficiency. However, it encounters challenges related to cold 
start and sparse data. To address these challenges, the integration of Knowledge Graphs with 
recommendation systems has demonstrated significant advantages. This paper classifies 
Knowledge Graph-based recommendation systems into two categories: enhanced classical 
recommendation models and novel recommendation models integrated with Knowledge Graphs. 
We provide explanations for each category and compare them with traditional methods to draw 
conclusions. To inspire future research endeavors, this article identifies potential research areas 
and highlights unresolved issues. 
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1.  Introduction 
In recent years, the rapid evolution of internet services, including e-commerce and streaming media, has 
underscored the pivotal role of recommendation systems in enhancing user experiences within these 
domains. Consequently, the optimization of recommendation system performance has emerged as a 
paramount challenge for enterprises operating in this arena. Extensive research efforts, spanning both 
academia and industry, have yielded a plethora of effective recommendation methods. The majority of 
these methods hinge on the bedrock of collaborative filtering, a technique that sieves information by 
analyzing user-item interactions and user feedback, aiming to unearth content that aligns with users' 
interests. Central to achieving robust recommendation performance is the availability of user-item 
interaction data, often considered the primary resource. However, this interaction data typically exhibits 
sparsity, given that users interact with only a fraction of the available items. This phenomenon, aptly 
labeled as the "sparsity problem," underscores the challenges encountered in developing collaborative 
filtering systems, the cornerstone of recommendation technology. 

In light of technological advancements, knowledge graphs have emerged as a promising solution to 
combat the sparsity issue and other challenges faced by collaborative filtering systems. Knowledge 
graphs, renowned for their rich contextual relationships, offer a wellspring of information resources for 
recommendation systems. They play a pivotal role in alleviating data sparsity and harnessing complex, 
large-scale data effectively. Consequently, many researchers have integrated knowledge graphs into the 
recommendation process, leveraging them to uncover latent connections between users and items, thus 
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augmenting the wealth of observable data available for recommendations. Additionally, innovative 
models grounded in knowledge graph structures have been proposed to elevate the performance of 
recommendation systems. 

This paper aims to provide a comprehensive survey of knowledge graph applications in recommender 
systems while comparing them to conventional methodologies, encompassing knowledge graph-based 
collaborative filtering systems and knowledge graph-based recommendation models. Furthermore, we 
delve into the trade-offs between knowledge graph embedding-driven recommendations and traditional 
recommendation approaches, offering constructive insights and highlighting avenues for future research. 

The remainder of this paper is structured as follows: Section II furnishes a foundational overview of 
the topics and issues associated with recommender systems. Section III, IV, and V sequentially delve 
into traditional recommendation systems, knowledge graph-enhanced collaborative filtering systems, 
and recommendation models underpinned by knowledge graphs. Building on the analysis of empirical 
findings, Section VI proffers constructive trade-off considerations and identifies unresolved research 
questions. Finally, Section VII offers insights into graph embedding-based recommendations, 
encompassing contemporary challenges and potential remedies. 

Section I introduces recommender systems and delineates their three primary approaches. 
Additionally, Section 2A provides a comprehensive outline of recommender systems, elucidating the 
problems they tackle. Subsequently, Section 2B expounds upon the concept of knowledge graphs and 
elucidates the rationale behind incorporating knowledge graph embeddings into recommender systems, 
setting the stage for the ensuing sections, namely Sections 3, 4, and 5. 

2.  Preliminaries 

2.1.  Recommender systems 
The realm of recommender systems constitutes a vital subfield within computer software engineering. 
Leveraging cutting-edge technologies such as machine learning, these systems proactively present users 
with items aligning with their preferences while they navigate and engage with products, thereby 
fostering item consumption. The overarching objectives include conserving user time, elevating user 
experiences, optimizing resource allocation, and ultimately generating business value for service 
providers. 

2.1.1.  Definition 
a) The recommendation system represents a software engineering solution that materializes 
recommendation capabilities through code, orchestrating the automated process of suggesting items to 
users. 

b) The recommendation system exemplifies an application of machine learning. By assimilating user 
behavior data, formulating mathematical models, anticipating user interests, and ultimately proposing 
items that align with user preferences, it gratifies users' latent needs and enhances their overall 
experience. 

c) The recommendation system manifests as an interactive product feature, seamlessly integrated 
into the product's framework. Users employ the product to initiate and activate the recommendation 
system. This system, in turn, furnishes users with personalized suggestions tailored to fulfill their latent 
needs. As a product component, the design of visual representation, user interaction mechanics, and the 
resolution of various contextual issues during the user-product interaction process require careful 
consideration. 

d) The recommendation system embodies a (software) service. By leveraging the recommendation 
system, users access personalized item recommendations tailored to their unique interests, thereby 
satisfying individualized and passive user needs. Just as any service necessitates management and 
upkeep, operating a recommendation service is no exception. Addressing operational challenges and 
promoting service adoption often necessitates the involvement of human resources. 
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e) The recommendation system serves as a means to tackle information filtering and resource 
matching conundrums. It accomplishes this task through the application of machine learning algorithms 
and software engineering techniques, sieving and filtering information to cater to users in the vast 
landscape of information scenarios. 

In light of the above exposition, we propose a refined definition: The recommendation system stands 
as a software service underpinned by machine learning principles. It deploys personalized 
recommendations for users by analyzing the intricate interplay between products and users, harnessing 
machine learning algorithms and software engineering practices to bolster recommendation efficiency 
and amplify user experiences. 

2.1.2.  Problem resolution 
The advent of the internet, particularly the mobile internet, has precipitated the emergence of the 
recommendation system as a pivotal technological tool. Fundamentally, it serves as a rapid means of 
extracting information of interest from a vast sea of data when user preferences are unclear. The 
recommendation system amalgamates user-centric information (such as location, age, gender) with 
item-related data (including price, origin), and the user's historical interactions with items (purchase 
history, clicks, plays, etc.). Employing machine learning techniques, it constructs models of user 
interests, while employing software engineering methods to actualize software services, ultimately 
delivering precise personalized recommendations to users. 

The recommendation system concurrently addresses the needs of item providers, platforms, and users. 
Consider Taobao, an e-commerce platform, where the item providers comprise thousands of individual 
shopkeepers, the platform is represented by Taobao itself, and users encompass individuals and entities 
engaged in shopping. Through the recommendation system, products can be more effectively showcased 
to users in need, thereby augmenting the efficiency of resource allocation within the social ecosystem. 

In essence, the recommendation system resolves the resource allocation quandary. Through the 
amalgamation of software, algorithms, and engineering techniques, it harmonizes the supply side (item 
providers) with the demand side (users) via the intermediary platform (a mobile app offering 
personalized recommendations), with the overarching goal of enhancing resource allocation efficiency. 

2.2.  Knowledge graph 
However, within various recommendation scenarios, especially in the context of big data, traditional 
recommendation methods are often constrained by the need for repetitive analysis of graph 
representations. This inherent limitation causes traditional recommendation methods to lag behind their 
knowledge graph-based counterparts in terms of scalability and adaptability. Embedded 
recommendation approaches, due to their reliance on rigidly pre-learned graph representations, struggle 
to effectively adapt to diverse recommendation scenarios, thereby encountering challenges associated 
with data sparsity. 

In contrast, recommendation systems grounded in knowledge graph embeddings circumvent these 
limitations by directly leveraging node embedding vectors that encapsulate user and item characteristics, 
previously gleaned from graph representations. Furthermore, when coupled with machine learning 
techniques, knowledge graph embedding-based recommendation systems possess the capacity for 
pattern discovery, ultimately enhancing recommendation accuracy. This section aims to elucidate the 
fundamental concepts underpinning knowledge graphs and their applications in recommender systems. 

2.2.1.  Definition. A Knowledge Graph, also referred to as a Knowledge Domain Visualization or 
Knowledge Domain Mapping in the library and information domain, constitutes a series of graphical 
representations that delineate the evolution of knowledge and its structural relationships. Leveraging 
visualization technology, Knowledge Graphs serve as a means to depict knowledge resources, their 
carriers, as well as to mine, analyze, construct, map, and display knowledge and the intricate 
interconnections that underlie it. 
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2.2.2.  Application in recommender systems. a) Knowledge Graph-Enhanced Classical 
Recommendation Models 

b) Novel Recommendation Models Leveraging Knowledge Graphs 

3.  Traditional recommendation system 

3.1.  Collaborative filtering system 

3.1.1.  Essence: The Collaborative Filtering system comprises two fundamental algorithms: 
a) User-based Collaborative Filtering Algorithm (UserCF): Recommends items to a user based on 

the preferences of other users with similar interests. 
b) Item-based Collaborative Filtering Algorithm (ItemCF): Recommends items similar to those a 

user has previously liked. 

3.1.2.  Introduction: Among the various recommendation strategies, the collaborative filtering (CF) 
approach has achieved significant success by harnessing historical interactions or user preferences, 
enabling the effective filtering of vast datasets [1]. According to Mehdi Elahi et al., collaborative 
filtering recommender systems express user preferences through ratings, and typically, a higher number 
of user ratings leads to more reliable recommendations [2]. The collaborative filtering system filters 
information by scrutinizing the relationship between users and their feedback evaluations of items, with 
the goal of identifying content that aligns with a target user's interests. Users' preferences are represented 
as row vectors, item attributes as column vectors, and similarity is calculated through a scoring matrix 
that encompasses rows and columns. Various methods exist for calculating similarity, including: 

• Cosine similarity 
• Pearson correlation coefficient 
• Euclidean distance 
• Taxicab geometry 

3.2.   Overall Process: 
(a) UserCF: This process involves quantifying user preferences for products, scoring previous products 
based on previous user actions such as purchases, collections, and additions to shopping carts. Similar 
users are then identified, and their scores are used to predict a user's preferences. Recommendations are 
made for products with higher predicted scores, while those with lower scores are not recommended. 
Lastly, the evaluation weight of user preferences for the new product is calculated, often employing 
Pearson correlation to standardize ratings among different users. 

(b) ItemCF: ItemCF computes item similarities using historical preference data from all users. If 
many users exhibit simultaneous preferences for items A and B, it suggests a high degree of similarity 
between the two items. The Pearson correlation coefficient is often used for optimizing this process. 

3.3.  Technology Used: Similarity Calculation 
Two primary methods for similarity calculation are as follows: 

(a) Cosine Similarity: 
This method measures the angle between two vectors, with smaller angles indicating greater 

similarity. 

 𝑠𝑖𝑚(𝚤,̇ 𝑗) = 𝑐𝑜𝑠(𝑖, 𝑗) = !∙#
‖!‖∙‖#‖
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 (2)  

(b) Pearson Correlation Coefficient: 
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This method is utilized when users tend to assign scores arbitrarily (e.g., one user consistently rates 
items highly, while another rates items poorly). Pearson correlation involves subtracting the mean values 
from both vectors before calculating cosine similarity, often yielding more accurate results. 

 sim(𝑖, 𝑗) =
∑ (*&,(+*,&)(*),(+*,))(∈+

'∑ (*&,(+*,&)#(∈+ '∑ (*),(+*,))#(∈+

 (3) 

3.4.  Content-Based Filtering Algorithms 
1)  Introduction: Content-based filtering algorithms rely on the analysis of a user's historical behavior to 
model their interests, allowing for proactive recommendations that align with their preferences and 
needs. 

2) Essence: These algorithms engage in direct analysis and calculation based on the inherent 
characteristics of both items and users. For instance, consider movie A as a sci-fi film; content-based 
filtering can recommend movie A to user B by scrutinizing the tags associated with sci-fi movies within 
user B's viewing history 

3) The Overall Process (Using Movie Watching as an Example): 
(a) Tagging the Movie: This involves extracting keywords from movie reviews or determining 

multiple tags for a movie based on commonly used tags. Subsequently, the TF-IDF (Term Frequency - 
Inverse Document Frequency) value is calculated for each label to ascertain label weight, with the top-
K labels selected as the movie's tags. 

(b) Establishing an Inverted Index: An inverted index is created to facilitate the retrieval of 
corresponding movies based on keywords. 

(c) Tagging the User: By evaluating a user's historical viewing records, keywords associated with all 
previously watched movies are identified, word frequencies are tabulated, and the keyword with the 
highest frequency is designated as the user's interest word. 

(d) Real-time Recommendations: Using the user's interest words, movies are retrieved from the 
inverted index to generate real-time recommendations. 

Technology Used: TF-IDF Feature Extraction Technology (4): 

 𝑤!# = 𝑇𝐹!# ∙ 𝐼𝐷𝐹! =
.&)
.,)

∙ log(/
0&
)  (4) 

3.5.   Matrix Factorization Model 

3.5.1.  Introduction. Matrix Factorization represents a direction stemming from collaborative filtering, 
devised to address the generalization challenges associated with processing sparse matrices. Notably, 
the Latent Factor Model, a subset within this category, relies on the co-occurrence matrix derived from 
collaborative filtering. This model employs denser hidden vectors (analogous to embeddings in NLP) to 
represent users and items. It delves into uncovering latent interests and features of users and items, 
ultimately addressing the generalization issue. The matrix is decomposed into the product of two low-
rank matrices, with missing data being imputed via the inner product of these decomposed matrices. 
However, it is worth noting that incremental training can be challenging, particularly when faced with 
a surge in sample data, which may necessitate the rebuilding of the entire matrix. 

Matrix Factorization involves breaking down the rating matrix of collaborative filtering into a user 
matrix multiplied by an item matrix, both represented as hidden vectors. When predicting the rating of 
a new item, one simply multiplies the item vector by the user vector. Various algorithms have emerged 
to perform this matrix decomposition, including BasicSVD, RSVD, ASVD, and SVD++. 

4.  Knowledge graph enhanced classical recommendation model 

4.1.  Translating models embedded in knowledge graphs 
a. TransE (Translating   Embeddings for Modeling Multi-relational Data) 
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TransE(5) stands as the inaugural model in the series of transformation models, grounded in the 
fundamental concept of minimizing the distance between the head vector and the relation vector to 
approximate the tail vector. It is crucial to note, however, that this model is primarily designed to handle 
one-to-one relationships and is less suited for addressing one-to-many or many-to-one relationships. 

TransE 

 ℎ + 𝑟 ≈ 𝑡          𝑓1(ℎ, 𝑡) = ‖ℎ + 𝑟 − 𝑡‖  (5) 

 
Figure 1. TransE. 

b. TransH (Knowledge Graph Embedding by Translating on   Hyperplanes) 
To overcome the limitations of TransE when confronted with intricate relationships, such as one-to-

many and many-to-many, Cao et al. introduced TransH(6), a knowledge graph embedding module, and 
a translation-based user preference model. This approach leverages the knowledge graph to enrich user 
preferences and representation projection [3], enabling the mining of more granular user preferences 
through joint learning, thereby enhancing recommendation efficacy. One of its key advantages lies in 
its ability to handle one-to-many, many-to-one, and many-to-many relationships without introducing 
added complexity or training challenges to the model. 

 
(a)TransE                                     (b)TransH. 

c.  TransR (Learning Entity and Relation Embeddings for Knowledge Graph Completion) 
TransE and TransH models operate on the assumption that entities and relations are vectors within a 

shared semantic space, leading to the implication that similar entities will closely cluster within this 
shared entity space. However, each entity may encompass various facets, and different relationships can 
emphasize distinct aspects of an entity. To tackle this challenge, the TransR model introduces a novel 
approach by modeling entities and relations within two separate spaces: the entity space and multiple 
relation spaces (relation-specific entity spaces). Transformations are then executed within the 
corresponding relation space, giving rise to the name TransR. 

In various recommendation system applications, collaborative filtering systems often grapple with 
the issue of data sparsity. In response to this challenge, Zhang et al. recently proposed a hybrid 
recommendation framework. This framework capitalizes on heterogeneous information within the 
knowledge graph to enhance collaborative filtering quality [4]. The framework encompasses three types 
of knowledge stored within the knowledge graph: structural knowledge (comprising triple facts), textual 
knowledge (including textual summaries of books or movies), and visual knowledge (such as book 
covers or movie poster images). These sources of information collectively generate semantic 
representations of items. Structural knowledge is modeled using a conventional KG embedding 
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technique, TransR, to acquire structural representations for each item. Textual and visual knowledge, on 
the other hand, is extracted using stack denoising autoencoders and stack convolutional autoencoders, 
respectively. 

 ℎ2 + 𝑑1 ≈ 𝑡2  

 ℎ2 = ℎ − 𝑤13ℎ𝑤1 , 𝑡2 = 𝑡 − 𝑤13ℎ𝑤1  

 𝑓1(ℎ, 𝑡) = ‖ℎ2 + 𝑑1 − 𝑡2‖44  (6) 

Translating entities to a hyperplane by a relation  
transformation matrix 

4.2.  Others 
Top-N Collaborative Leaching Recommendation Algorithm 

To address the issue of low recommendation accuracy, Ming Zhu et al. introduced a Top-N 
Collaborative Leaching Recommendation Algorithm rooted in knowledge graph embedding [5]. This 
algorithm elevates the semantic effectiveness of Collaborative Filtering recommendations and addresses 
the limitation of Collaborative Filtering algorithms, which typically overlook the intrinsic knowledge 
and information associated with the items themselves. 

ECFKG (Explainable Collaborative Filtering over Knowledge Graph) 
Ai et al. introduced the Explainable Collaborative Filtering over Knowledge Graph (ECFKG) based 

on knowledge graph [6]. ECFKG employs TransE to model various types of user behaviors and project 
attributes, encoding collaborative relationships into a graph structure. This approach extends the 
Collaborative Filtering algorithm and learns entity representations to uncover latent user preferences. 
Additionally, it features a soft matching algorithm designed to identify interpretation paths from users 
to projects. The best path is determined through a combination of breadth-first search and a soft matching 
formula, enabling the calculation of path probabilities to generate natural language explanations for 
recommendations. 

Kopra (Knowledge Pruning-based Recurrent Graph Convolutional Network) 
Tian et al. jointly developed Kopra, a knowledge pruning-based recurrent graph convolutional 

network, employing TransE to embed significant entities extracted from historical news headlines and 
abstracts [7]. The model employs recurrent graph convolution (RGC) to aggregate entity context 
information, constructing a user interest graph. RGC goes a step further by enhancing and adapting the 
user interest map. This is achieved by identifying highly correlated entities within the knowledge graph 
through a knowledge pruning strategy, resulting in the derivation of both long-term and short-term 
preference representations for users. This enhancement leads to more granular-level causal explanations 
for recommendations. 

5.  Novel recommendation model with knowledge graph 

5.1.  Entity 2 Rec 
Enrico Palumbo et al. introduced "Entity 2 Rec," a model designed to learn user-project relevance by 
employing attribute-specific knowledge graph embedding [8]. A crucial aspect of using a knowledge 
graph for project recommendations lies in the ability to effectively define measures of user-item 
relevance within the graph. 

5.2.  Unsupervised API recommendation 
Xin Wang et al. proposed an unsupervised API recommendation method founded on deep random walks 
across the knowledge graph [9]. Their approach involves constructing a comprehensive knowledge 
graph and subsequently expressing it in a specific manner. To enhance recommendation accuracy, they 
have devised an entity preference process to account for distinct entity preferences. API 
recommendations are generated through unsupervised feature learning. 
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5.3.  KQGC (knowledge-query-based graph convolution recommendation system) 
The combination of Knowledge Graph Embeddings (KGE) and Graph Neural Networks (GNNS), often 
referred to as KG-GNNS, has been explored in numerous academic works and has demonstrated 
effectiveness. Daisuke Kikuta et al. introduced a knowledge-query-based graph convolution 
recommendation system model [10]. In contrast to KG-GNNS, KQGC places a stronger emphasis on 
smoothing and employs a straightforward linear graph convolution to enhance KGE. Pre-trained KGE 
is directly integrated into KQGC, with the KGC being smoothed by aggregating knowledge queries 
from neighboring entities. This process aligns entity embeddings at relevant vector points, effectively 
enhancing the smoothness of KGE. The proposed KQGC is applied to recommend potential users for 
specific products, with its effectiveness validated through experimental results. 

5.4.  HAKG (hierarchical attention knowledge graph embedding) 
Many existing methods require modifications to harness knowledge graphs accurately for obtaining user 
preferences. These methods either represent user-item connections through paths with limited 
expressive capabilities or implicitly model them by disseminating information across the entire 
knowledge graph, potentially resulting in erroneous data. In this study, Xiao Sha et al. introduced a 
novel Hierarchical Attention Knowledge Graph Embedding (HAKG) [11] framework designed for 
effective recommendation. HAKG initially extracts expressive subgraphs linking user-item pairs to 
capture their connectivity, aligning with the semantics and topology of the knowledge graph. These 
subgraphs are subsequently hierarchically encoded and attended to generate efficient subgraph 
embeddings, thus enhancing user preference prediction. Through extensive experiments, the researchers 
demonstrate the superiority of HAKG over existing recommendation methods and its potential to 
mitigate the data sparsity challenge. 

6.  Comparison and recommendation 

6.1.  Graph-based recommender systems and traditional recommender systems 
There exists an ongoing debate concerning the effectiveness of knowledge graph embedding-based 
recommendations (discussed in Sections V and VI) in comparison to traditional recommender systems 
when it comes to effectively leveraging side information or knowledge to enhance recommendation 
efficiency. In terms of scalability [12,13], recommendations grounded in graph embeddings typically 
outperform traditional recommender systems. When confronted with vast and intricate datasets, 
knowledge graph-based recommendation systems harness the three characteristics of big data (Volume, 
Variety, and Velocity) with remarkable speed and efficiency to suggest items to users. This advantage 
stems from distinct theoretical foundations: After data (or information) organization is represented 
through a knowledge graph, traditional recommender systems rely on topological analysis 
characteristics. In contrast, recommender systems founded on knowledge graph embeddings operate 
through node embedding vectors, preserving features indicated by embedding techniques, thus 
eliminating the need for repetitive analysis, as seen in traditional recommendations [14]. Consequently, 
knowledge graph embedding-based recommendations demonstrate significantly enhanced scalability. 
Additionally, the storability of embedding vectors supports downstream machine learning tasks [15], 
requiring feature vectors of data instances as inputs, such as classification [16-18], link prediction [19], 
and more. This property of embedding vectors positions knowledge graph-based recommendations as 
superior to traditional recommendations in terms of model scalability. 

However, in the context of model interpretability [20] (i.e., understanding why the model provides 
particular recommendations to users), knowledge graph embedding-based recommendations often lag 
behind traditional recommendations. This discrepancy arises because knowledge graph embedding-
based recommendations predominantly employ machine learning methods [21], resulting in models that 
are mostly black boxes, relying heavily on input-output data to discover underlying patterns through 
numerical or analytical optimization techniques [22]. In contrast, traditional recommendations can offer 
direct interpretability. While recent studies have argued that interpretability of recommendation results 

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240363

64



 

 

can be achieved indirectly through the utilization of content within knowledge graphs or causal learning 
(causal inference) [23] to reason and comprehend user preferences, the interpretability of 
recommendation models remains fundamentally constrained. 

Moreover, the debate between graph embedding-based recommendations and traditional 
recommendations extends to recommendation accuracy. Undoubtedly, by incorporating auxiliary 
information and knowledge, recommendation methods founded on knowledge graph embeddings can 
notably enhance recommendation accuracy compared to traditional methods [24,25]. However, their 
ability to predict implicit user-item interactions in certain recommendation tasks may not match that of 
traditional recommendations, casting doubt on their overall performance. Similar findings have been 
reported by Dacrema et al. [26]. In reality, the development of graph embedding-based 
recommendations is not in opposition to traditional recommendations. Analyzing traditional 
recommendation models can inspire graph embedding-based recommendations to explore aspects such 
as motifs [27], subgraphs [28], and neighborhoods, ultimately improving their interpretability [29]. 

Conversely, knowledge graph-based recommendations have been applied in recent recommendation 
scenarios, such as Conversational Recommender Systems (CRS) or News Recommendation, offering 
promising application prospects for traditional recommendations as well. Therefore, a future-oriented 
approach would prioritize the simultaneous development of both aspects rather than a singular focus on 
one. 

6.2.  Knowledge graph-enhanced classical recommendation models and novel recommendation 
models with knowledge graph 
Knowledge graph-enhanced classical recommendation models predict and recommend based on both 
user and project aspects. They construct a database of user-project preferences, linking it with the 
knowledge map to address the limitation of collaborative filtering recommendation algorithms, which 
often overlook the knowledge and information associated with the projects themselves [5]. 

Although the knowledge map enhances the efficiency of collaborative filtering systems, challenges 
such as cold start [30], data sparsity, and the synonym problem remain inevitable. These challenges have 
not been effectively resolved. In response, novel recommendation models with a knowledge graph have 
emerged to provide solutions to these issues. These models are built upon the foundation of the 
knowledge map and have significantly improved recommendation performance. They utilize feature 
learning from the knowledge graph to reduce the high dimensionality and heterogeneity of the 
knowledge graph, enhancing the flexibility of knowledge graph applications. This approach also reduces 
the workload associated with feature engineering and mitigates the potential computational burden 
introduced by knowledge graph integration. However, they face challenges related to being perceived 
as "black boxes" and having insufficient interpretability, as mentioned earlier. These challenges can only 
be effectively addressed by integrating novel recommendation models with knowledge graph-enhanced 
classical recommendation models. 

Consequently, it is our belief that future development should encompass both aspects simultaneously, 
rather than exclusively focusing on one development trend. 

7.  Discussions and outlook 

7.1.  Current challenges 
(1) Realizing Explainability in Graph Embedding-Based Recommendation: The challenge lies in 
making graph embedding-based recommendation systems more interpretable, ensuring that users can 
understand the reasoning behind recommendations. 

(2) Deep Integration of Knowledge Graphs and Recommendation Systems: The quest for seamlessly 
combining knowledge graphs and recommendation systems is an ongoing challenge, requiring strategies 
to maximize their synergy. 
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(3) Effectiveness of Recommendation Categories in Different Contexts: Assessing whether all three 
recommendation categories (collaborative filtering, content-based, and hybrid) are universally effective 
in various contexts remains a complex issue. 

(4) Enhancing Recommendation System Performance: The pursuit of improved recommendation 
systems necessitates exploring innovative methods and techniques beyond the current state of the art. 

(5) Leveraging Graph Topology for Graph Embedding-Based Recommendation: Investigating how 
graph topology analysis can contribute to the efficacy of graph embedding-based recommendation 
systems is another area of interest. 

7.2.  Potential solutions 
1) Interpretability: Efforts to enhance the interpretability of graph embedding-based recommendation 
systems are crucial for knowledge acquisition and real-world applications. Some progress has been made 
in this regard. For instance, TransF [31] incorporates a sparse attention mechanism to uncover hidden 
relational concepts and transfer statistical strength through concept sharing, leading to easily explainable 
associations between relations and concepts. CrossE [32], a novel knowledge graph embedding, 
explores knowledge graph explanation schemes by employing embedding-based path searching for 
generating link prediction explanations. While recent neural models have shown impressive 
performance, they often lack transparency and interpretability. Some methods address this limitation by 
blending black-box neural models with symbolic reasoning through the integration of logical rules, 
enhancing interpretability to instill trust in predictions. Further research should continue to enhance 
interpretability and boost the reliability of predicted knowledge. 

2) Historical Preferences: Bei Hui et al. [33] introduce the KG-Aware recommendation model, which 
utilizes a self-attention mechanism to extract short-term and long-term user preferences from individual 
users' historical behaviors. These historical preferences are then deeply mined in combination with 
knowledge graphs, offering potential avenues to enhance recommendation systems. 
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