

An overview of knowledge graph-based recommendation
systems

Yutao Ye
Class 6, Senior Three, Beihu Campus, Chengdu Shishi Middle School, Chendu, China

2519684863@qq.com

Abstract. Recommendation systems have emerged as effective tools for mitigating information
overload. Traditionally, recommendation systems employ various models such as Collaborative
Filtering, Matrix Decomposition, and Logic Decomposition. Among these, Collaborative
Filtering stands out due to its high efficiency. However, it encounters challenges related to cold
start and sparse data. To address these challenges, the integration of Knowledge Graphs with
recommendation systems has demonstrated significant advantages. This paper classifies
Knowledge Graph-based recommendation systems into two categories: enhanced classical
recommendation models and novel recommendation models integrated with Knowledge Graphs.
We provide explanations for each category and compare them with traditional methods to draw
conclusions. To inspire future research endeavors, this article identifies potential research areas
and highlights unresolved issues.

Keywords: knowledge graph, recommendation system, graph neural network.

1. Introduction
In recent years, the rapid evolution of internet services, including e-commerce and streaming media, has
underscored the pivotal role of recommendation systems in enhancing user experiences within these
domains. Consequently, the optimization of recommendation system performance has emerged as a
paramount challenge for enterprises operating in this arena. Extensive research efforts, spanning both
academia and industry, have yielded a plethora of effective recommendation methods. The majority of
these methods hinge on the bedrock of collaborative filtering, a technique that sieves information by
analyzing user-item interactions and user feedback, aiming to unearth content that aligns with users'
interests. Central to achieving robust recommendation performance is the availability of user-item
interaction data, often considered the primary resource. However, this interaction data typically exhibits
sparsity, given that users interact with only a fraction of the available items. This phenomenon, aptly
labeled as the "sparsity problem," underscores the challenges encountered in developing collaborative
filtering systems, the cornerstone of recommendation technology.

In light of technological advancements, knowledge graphs have emerged as a promising solution to
combat the sparsity issue and other challenges faced by collaborative filtering systems. Knowledge
graphs, renowned for their rich contextual relationships, offer a wellspring of information resources for
recommendation systems. They play a pivotal role in alleviating data sparsity and harnessing complex,
large-scale data effectively. Consequently, many researchers have integrated knowledge graphs into the
recommendation process, leveraging them to uncover latent connections between users and items, thus

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240363

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

57

augmenting the wealth of observable data available for recommendations. Additionally, innovative
models grounded in knowledge graph structures have been proposed to elevate the performance of
recommendation systems.

This paper aims to provide a comprehensive survey of knowledge graph applications in recommender
systems while comparing them to conventional methodologies, encompassing knowledge graph-based
collaborative filtering systems and knowledge graph-based recommendation models. Furthermore, we
delve into the trade-offs between knowledge graph embedding-driven recommendations and traditional
recommendation approaches, offering constructive insights and highlighting avenues for future research.

The remainder of this paper is structured as follows: Section II furnishes a foundational overview of
the topics and issues associated with recommender systems. Section III, IV, and V sequentially delve
into traditional recommendation systems, knowledge graph-enhanced collaborative filtering systems,
and recommendation models underpinned by knowledge graphs. Building on the analysis of empirical
findings, Section VI proffers constructive trade-off considerations and identifies unresolved research
questions. Finally, Section VII offers insights into graph embedding-based recommendations,
encompassing contemporary challenges and potential remedies.

Section I introduces recommender systems and delineates their three primary approaches.
Additionally, Section 2A provides a comprehensive outline of recommender systems, elucidating the
problems they tackle. Subsequently, Section 2B expounds upon the concept of knowledge graphs and
elucidates the rationale behind incorporating knowledge graph embeddings into recommender systems,
setting the stage for the ensuing sections, namely Sections 3, 4, and 5.

2. Preliminaries

2.1. Recommender systems
The realm of recommender systems constitutes a vital subfield within computer software engineering.
Leveraging cutting-edge technologies such as machine learning, these systems proactively present users
with items aligning with their preferences while they navigate and engage with products, thereby
fostering item consumption. The overarching objectives include conserving user time, elevating user
experiences, optimizing resource allocation, and ultimately generating business value for service
providers.

2.1.1. Definition
a) The recommendation system represents a software engineering solution that materializes
recommendation capabilities through code, orchestrating the automated process of suggesting items to
users.

b) The recommendation system exemplifies an application of machine learning. By assimilating user
behavior data, formulating mathematical models, anticipating user interests, and ultimately proposing
items that align with user preferences, it gratifies users' latent needs and enhances their overall
experience.

c) The recommendation system manifests as an interactive product feature, seamlessly integrated
into the product's framework. Users employ the product to initiate and activate the recommendation
system. This system, in turn, furnishes users with personalized suggestions tailored to fulfill their latent
needs. As a product component, the design of visual representation, user interaction mechanics, and the
resolution of various contextual issues during the user-product interaction process require careful
consideration.

d) The recommendation system embodies a (software) service. By leveraging the recommendation
system, users access personalized item recommendations tailored to their unique interests, thereby
satisfying individualized and passive user needs. Just as any service necessitates management and
upkeep, operating a recommendation service is no exception. Addressing operational challenges and
promoting service adoption often necessitates the involvement of human resources.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240363

58

e) The recommendation system serves as a means to tackle information filtering and resource
matching conundrums. It accomplishes this task through the application of machine learning algorithms
and software engineering techniques, sieving and filtering information to cater to users in the vast
landscape of information scenarios.

In light of the above exposition, we propose a refined definition: The recommendation system stands
as a software service underpinned by machine learning principles. It deploys personalized
recommendations for users by analyzing the intricate interplay between products and users, harnessing
machine learning algorithms and software engineering practices to bolster recommendation efficiency
and amplify user experiences.

2.1.2. Problem resolution
The advent of the internet, particularly the mobile internet, has precipitated the emergence of the
recommendation system as a pivotal technological tool. Fundamentally, it serves as a rapid means of
extracting information of interest from a vast sea of data when user preferences are unclear. The
recommendation system amalgamates user-centric information (such as location, age, gender) with
item-related data (including price, origin), and the user's historical interactions with items (purchase
history, clicks, plays, etc.). Employing machine learning techniques, it constructs models of user
interests, while employing software engineering methods to actualize software services, ultimately
delivering precise personalized recommendations to users.

The recommendation system concurrently addresses the needs of item providers, platforms, and users.
Consider Taobao, an e-commerce platform, where the item providers comprise thousands of individual
shopkeepers, the platform is represented by Taobao itself, and users encompass individuals and entities
engaged in shopping. Through the recommendation system, products can be more effectively showcased
to users in need, thereby augmenting the efficiency of resource allocation within the social ecosystem.

In essence, the recommendation system resolves the resource allocation quandary. Through the
amalgamation of software, algorithms, and engineering techniques, it harmonizes the supply side (item
providers) with the demand side (users) via the intermediary platform (a mobile app offering
personalized recommendations), with the overarching goal of enhancing resource allocation efficiency.

2.2. Knowledge graph
However, within various recommendation scenarios, especially in the context of big data, traditional
recommendation methods are often constrained by the need for repetitive analysis of graph
representations. This inherent limitation causes traditional recommendation methods to lag behind their
knowledge graph-based counterparts in terms of scalability and adaptability. Embedded
recommendation approaches, due to their reliance on rigidly pre-learned graph representations, struggle
to effectively adapt to diverse recommendation scenarios, thereby encountering challenges associated
with data sparsity.

In contrast, recommendation systems grounded in knowledge graph embeddings circumvent these
limitations by directly leveraging node embedding vectors that encapsulate user and item characteristics,
previously gleaned from graph representations. Furthermore, when coupled with machine learning
techniques, knowledge graph embedding-based recommendation systems possess the capacity for
pattern discovery, ultimately enhancing recommendation accuracy. This section aims to elucidate the
fundamental concepts underpinning knowledge graphs and their applications in recommender systems.

2.2.1. Definition. A Knowledge Graph, also referred to as a Knowledge Domain Visualization or
Knowledge Domain Mapping in the library and information domain, constitutes a series of graphical
representations that delineate the evolution of knowledge and its structural relationships. Leveraging
visualization technology, Knowledge Graphs serve as a means to depict knowledge resources, their
carriers, as well as to mine, analyze, construct, map, and display knowledge and the intricate
interconnections that underlie it.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240363

59

2.2.2. Application in recommender systems. a) Knowledge Graph-Enhanced Classical
Recommendation Models

b) Novel Recommendation Models Leveraging Knowledge Graphs

3. Traditional recommendation system

3.1. Collaborative filtering system

3.1.1. Essence: The Collaborative Filtering system comprises two fundamental algorithms:
a) User-based Collaborative Filtering Algorithm (UserCF): Recommends items to a user based on

the preferences of other users with similar interests.
b) Item-based Collaborative Filtering Algorithm (ItemCF): Recommends items similar to those a

user has previously liked.

3.1.2. Introduction: Among the various recommendation strategies, the collaborative filtering (CF)
approach has achieved significant success by harnessing historical interactions or user preferences,
enabling the effective filtering of vast datasets [1]. According to Mehdi Elahi et al., collaborative
filtering recommender systems express user preferences through ratings, and typically, a higher number
of user ratings leads to more reliable recommendations [2]. The collaborative filtering system filters
information by scrutinizing the relationship between users and their feedback evaluations of items, with
the goal of identifying content that aligns with a target user's interests. Users' preferences are represented
as row vectors, item attributes as column vectors, and similarity is calculated through a scoring matrix
that encompasses rows and columns. Various methods exist for calculating similarity, including:

• Cosine similarity
• Pearson correlation coefficient
• Euclidean distance
• Taxicab geometry

3.2. Overall Process:
(a) UserCF: This process involves quantifying user preferences for products, scoring previous products
based on previous user actions such as purchases, collections, and additions to shopping carts. Similar
users are then identified, and their scores are used to predict a user's preferences. Recommendations are
made for products with higher predicted scores, while those with lower scores are not recommended.
Lastly, the evaluation weight of user preferences for the new product is calculated, often employing
Pearson correlation to standardize ratings among different users.

(b) ItemCF: ItemCF computes item similarities using historical preference data from all users. If
many users exhibit simultaneous preferences for items A and B, it suggests a high degree of similarity
between the two items. The Pearson correlation coefficient is often used for optimizing this process.

3.3. Technology Used: Similarity Calculation
Two primary methods for similarity calculation are as follows:

(a) Cosine Similarity:
This method measures the angle between two vectors, with smaller angles indicating greater

similarity.

 𝑠𝑖𝑚(𝚤,̇ 𝑗) = 𝑐𝑜𝑠(𝑖, 𝑗) = !∙#
‖!‖∙‖#‖

 (1)

 cos(𝜃) = ∑ &!"&#"$
"%!

'(&!"
#$

"%! '(&#"
#$

"%!

 (2)

(b) Pearson Correlation Coefficient:

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240363

60

This method is utilized when users tend to assign scores arbitrarily (e.g., one user consistently rates
items highly, while another rates items poorly). Pearson correlation involves subtracting the mean values
from both vectors before calculating cosine similarity, often yielding more accurate results.

 sim(𝑖, 𝑗) =
∑ (*&,(+*,&)(*),(+*,))(∈+

'∑ (*&,(+*,&)#(∈+ '∑ (*),(+*,))#(∈+

 (3)

3.4. Content-Based Filtering Algorithms
1) Introduction: Content-based filtering algorithms rely on the analysis of a user's historical behavior to
model their interests, allowing for proactive recommendations that align with their preferences and
needs.

2) Essence: These algorithms engage in direct analysis and calculation based on the inherent
characteristics of both items and users. For instance, consider movie A as a sci-fi film; content-based
filtering can recommend movie A to user B by scrutinizing the tags associated with sci-fi movies within
user B's viewing history

3) The Overall Process (Using Movie Watching as an Example):
(a) Tagging the Movie: This involves extracting keywords from movie reviews or determining

multiple tags for a movie based on commonly used tags. Subsequently, the TF-IDF (Term Frequency -
Inverse Document Frequency) value is calculated for each label to ascertain label weight, with the top-
K labels selected as the movie's tags.

(b) Establishing an Inverted Index: An inverted index is created to facilitate the retrieval of
corresponding movies based on keywords.

(c) Tagging the User: By evaluating a user's historical viewing records, keywords associated with all
previously watched movies are identified, word frequencies are tabulated, and the keyword with the
highest frequency is designated as the user's interest word.

(d) Real-time Recommendations: Using the user's interest words, movies are retrieved from the
inverted index to generate real-time recommendations.

Technology Used: TF-IDF Feature Extraction Technology (4):

 𝑤!# = 𝑇𝐹!# ∙ 𝐼𝐷𝐹! =
.&)
.,)

∙ log(/
0&
) (4)

3.5. Matrix Factorization Model

3.5.1. Introduction. Matrix Factorization represents a direction stemming from collaborative filtering,
devised to address the generalization challenges associated with processing sparse matrices. Notably,
the Latent Factor Model, a subset within this category, relies on the co-occurrence matrix derived from
collaborative filtering. This model employs denser hidden vectors (analogous to embeddings in NLP) to
represent users and items. It delves into uncovering latent interests and features of users and items,
ultimately addressing the generalization issue. The matrix is decomposed into the product of two low-
rank matrices, with missing data being imputed via the inner product of these decomposed matrices.
However, it is worth noting that incremental training can be challenging, particularly when faced with
a surge in sample data, which may necessitate the rebuilding of the entire matrix.

Matrix Factorization involves breaking down the rating matrix of collaborative filtering into a user
matrix multiplied by an item matrix, both represented as hidden vectors. When predicting the rating of
a new item, one simply multiplies the item vector by the user vector. Various algorithms have emerged
to perform this matrix decomposition, including BasicSVD, RSVD, ASVD, and SVD++.

4. Knowledge graph enhanced classical recommendation model

4.1. Translating models embedded in knowledge graphs
a. TransE (Translating Embeddings for Modeling Multi-relational Data)

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240363

61

h t

h t

r h

t

h t

TransE(5) stands as the inaugural model in the series of transformation models, grounded in the
fundamental concept of minimizing the distance between the head vector and the relation vector to
approximate the tail vector. It is crucial to note, however, that this model is primarily designed to handle
one-to-one relationships and is less suited for addressing one-to-many or many-to-one relationships.

TransE

 ℎ + 𝑟 ≈ 𝑡 𝑓1(ℎ, 𝑡) = ‖ℎ + 𝑟 − 𝑡‖ (5)

Figure 1. TransE.

b. TransH (Knowledge Graph Embedding by Translating on Hyperplanes)
To overcome the limitations of TransE when confronted with intricate relationships, such as one-to-

many and many-to-many, Cao et al. introduced TransH(6), a knowledge graph embedding module, and
a translation-based user preference model. This approach leverages the knowledge graph to enrich user
preferences and representation projection [3], enabling the mining of more granular user preferences
through joint learning, thereby enhancing recommendation efficacy. One of its key advantages lies in
its ability to handle one-to-many, many-to-one, and many-to-many relationships without introducing
added complexity or training challenges to the model.

(a)TransE (b)TransH.

c. TransR (Learning Entity and Relation Embeddings for Knowledge Graph Completion)
TransE and TransH models operate on the assumption that entities and relations are vectors within a

shared semantic space, leading to the implication that similar entities will closely cluster within this
shared entity space. However, each entity may encompass various facets, and different relationships can
emphasize distinct aspects of an entity. To tackle this challenge, the TransR model introduces a novel
approach by modeling entities and relations within two separate spaces: the entity space and multiple
relation spaces (relation-specific entity spaces). Transformations are then executed within the
corresponding relation space, giving rise to the name TransR.

In various recommendation system applications, collaborative filtering systems often grapple with
the issue of data sparsity. In response to this challenge, Zhang et al. recently proposed a hybrid
recommendation framework. This framework capitalizes on heterogeneous information within the
knowledge graph to enhance collaborative filtering quality [4]. The framework encompasses three types
of knowledge stored within the knowledge graph: structural knowledge (comprising triple facts), textual
knowledge (including textual summaries of books or movies), and visual knowledge (such as book
covers or movie poster images). These sources of information collectively generate semantic
representations of items. Structural knowledge is modeled using a conventional KG embedding

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240363

62

technique, TransR, to acquire structural representations for each item. Textual and visual knowledge, on
the other hand, is extracted using stack denoising autoencoders and stack convolutional autoencoders,
respectively.

 ℎ2 + 𝑑1 ≈ 𝑡2

 ℎ2 = ℎ − 𝑤13ℎ𝑤1 , 𝑡2 = 𝑡 − 𝑤13ℎ𝑤1

 𝑓1(ℎ, 𝑡) = ‖ℎ2 + 𝑑1 − 𝑡2‖44 (6)

Translating entities to a hyperplane by a relation
transformation matrix

4.2. Others
Top-N Collaborative Leaching Recommendation Algorithm

To address the issue of low recommendation accuracy, Ming Zhu et al. introduced a Top-N
Collaborative Leaching Recommendation Algorithm rooted in knowledge graph embedding [5]. This
algorithm elevates the semantic effectiveness of Collaborative Filtering recommendations and addresses
the limitation of Collaborative Filtering algorithms, which typically overlook the intrinsic knowledge
and information associated with the items themselves.

ECFKG (Explainable Collaborative Filtering over Knowledge Graph)
Ai et al. introduced the Explainable Collaborative Filtering over Knowledge Graph (ECFKG) based

on knowledge graph [6]. ECFKG employs TransE to model various types of user behaviors and project
attributes, encoding collaborative relationships into a graph structure. This approach extends the
Collaborative Filtering algorithm and learns entity representations to uncover latent user preferences.
Additionally, it features a soft matching algorithm designed to identify interpretation paths from users
to projects. The best path is determined through a combination of breadth-first search and a soft matching
formula, enabling the calculation of path probabilities to generate natural language explanations for
recommendations.

Kopra (Knowledge Pruning-based Recurrent Graph Convolutional Network)
Tian et al. jointly developed Kopra, a knowledge pruning-based recurrent graph convolutional

network, employing TransE to embed significant entities extracted from historical news headlines and
abstracts [7]. The model employs recurrent graph convolution (RGC) to aggregate entity context
information, constructing a user interest graph. RGC goes a step further by enhancing and adapting the
user interest map. This is achieved by identifying highly correlated entities within the knowledge graph
through a knowledge pruning strategy, resulting in the derivation of both long-term and short-term
preference representations for users. This enhancement leads to more granular-level causal explanations
for recommendations.

5. Novel recommendation model with knowledge graph

5.1. Entity 2 Rec
Enrico Palumbo et al. introduced "Entity 2 Rec," a model designed to learn user-project relevance by
employing attribute-specific knowledge graph embedding [8]. A crucial aspect of using a knowledge
graph for project recommendations lies in the ability to effectively define measures of user-item
relevance within the graph.

5.2. Unsupervised API recommendation
Xin Wang et al. proposed an unsupervised API recommendation method founded on deep random walks
across the knowledge graph [9]. Their approach involves constructing a comprehensive knowledge
graph and subsequently expressing it in a specific manner. To enhance recommendation accuracy, they
have devised an entity preference process to account for distinct entity preferences. API
recommendations are generated through unsupervised feature learning.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240363

63

5.3. KQGC (knowledge-query-based graph convolution recommendation system)
The combination of Knowledge Graph Embeddings (KGE) and Graph Neural Networks (GNNS), often
referred to as KG-GNNS, has been explored in numerous academic works and has demonstrated
effectiveness. Daisuke Kikuta et al. introduced a knowledge-query-based graph convolution
recommendation system model [10]. In contrast to KG-GNNS, KQGC places a stronger emphasis on
smoothing and employs a straightforward linear graph convolution to enhance KGE. Pre-trained KGE
is directly integrated into KQGC, with the KGC being smoothed by aggregating knowledge queries
from neighboring entities. This process aligns entity embeddings at relevant vector points, effectively
enhancing the smoothness of KGE. The proposed KQGC is applied to recommend potential users for
specific products, with its effectiveness validated through experimental results.

5.4. HAKG (hierarchical attention knowledge graph embedding)
Many existing methods require modifications to harness knowledge graphs accurately for obtaining user
preferences. These methods either represent user-item connections through paths with limited
expressive capabilities or implicitly model them by disseminating information across the entire
knowledge graph, potentially resulting in erroneous data. In this study, Xiao Sha et al. introduced a
novel Hierarchical Attention Knowledge Graph Embedding (HAKG) [11] framework designed for
effective recommendation. HAKG initially extracts expressive subgraphs linking user-item pairs to
capture their connectivity, aligning with the semantics and topology of the knowledge graph. These
subgraphs are subsequently hierarchically encoded and attended to generate efficient subgraph
embeddings, thus enhancing user preference prediction. Through extensive experiments, the researchers
demonstrate the superiority of HAKG over existing recommendation methods and its potential to
mitigate the data sparsity challenge.

6. Comparison and recommendation

6.1. Graph-based recommender systems and traditional recommender systems
There exists an ongoing debate concerning the effectiveness of knowledge graph embedding-based
recommendations (discussed in Sections V and VI) in comparison to traditional recommender systems
when it comes to effectively leveraging side information or knowledge to enhance recommendation
efficiency. In terms of scalability [12,13], recommendations grounded in graph embeddings typically
outperform traditional recommender systems. When confronted with vast and intricate datasets,
knowledge graph-based recommendation systems harness the three characteristics of big data (Volume,
Variety, and Velocity) with remarkable speed and efficiency to suggest items to users. This advantage
stems from distinct theoretical foundations: After data (or information) organization is represented
through a knowledge graph, traditional recommender systems rely on topological analysis
characteristics. In contrast, recommender systems founded on knowledge graph embeddings operate
through node embedding vectors, preserving features indicated by embedding techniques, thus
eliminating the need for repetitive analysis, as seen in traditional recommendations [14]. Consequently,
knowledge graph embedding-based recommendations demonstrate significantly enhanced scalability.
Additionally, the storability of embedding vectors supports downstream machine learning tasks [15],
requiring feature vectors of data instances as inputs, such as classification [16-18], link prediction [19],
and more. This property of embedding vectors positions knowledge graph-based recommendations as
superior to traditional recommendations in terms of model scalability.

However, in the context of model interpretability [20] (i.e., understanding why the model provides
particular recommendations to users), knowledge graph embedding-based recommendations often lag
behind traditional recommendations. This discrepancy arises because knowledge graph embedding-
based recommendations predominantly employ machine learning methods [21], resulting in models that
are mostly black boxes, relying heavily on input-output data to discover underlying patterns through
numerical or analytical optimization techniques [22]. In contrast, traditional recommendations can offer
direct interpretability. While recent studies have argued that interpretability of recommendation results

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240363

64

can be achieved indirectly through the utilization of content within knowledge graphs or causal learning
(causal inference) [23] to reason and comprehend user preferences, the interpretability of
recommendation models remains fundamentally constrained.

Moreover, the debate between graph embedding-based recommendations and traditional
recommendations extends to recommendation accuracy. Undoubtedly, by incorporating auxiliary
information and knowledge, recommendation methods founded on knowledge graph embeddings can
notably enhance recommendation accuracy compared to traditional methods [24,25]. However, their
ability to predict implicit user-item interactions in certain recommendation tasks may not match that of
traditional recommendations, casting doubt on their overall performance. Similar findings have been
reported by Dacrema et al. [26]. In reality, the development of graph embedding-based
recommendations is not in opposition to traditional recommendations. Analyzing traditional
recommendation models can inspire graph embedding-based recommendations to explore aspects such
as motifs [27], subgraphs [28], and neighborhoods, ultimately improving their interpretability [29].

Conversely, knowledge graph-based recommendations have been applied in recent recommendation
scenarios, such as Conversational Recommender Systems (CRS) or News Recommendation, offering
promising application prospects for traditional recommendations as well. Therefore, a future-oriented
approach would prioritize the simultaneous development of both aspects rather than a singular focus on
one.

6.2. Knowledge graph-enhanced classical recommendation models and novel recommendation
models with knowledge graph
Knowledge graph-enhanced classical recommendation models predict and recommend based on both
user and project aspects. They construct a database of user-project preferences, linking it with the
knowledge map to address the limitation of collaborative filtering recommendation algorithms, which
often overlook the knowledge and information associated with the projects themselves [5].

Although the knowledge map enhances the efficiency of collaborative filtering systems, challenges
such as cold start [30], data sparsity, and the synonym problem remain inevitable. These challenges have
not been effectively resolved. In response, novel recommendation models with a knowledge graph have
emerged to provide solutions to these issues. These models are built upon the foundation of the
knowledge map and have significantly improved recommendation performance. They utilize feature
learning from the knowledge graph to reduce the high dimensionality and heterogeneity of the
knowledge graph, enhancing the flexibility of knowledge graph applications. This approach also reduces
the workload associated with feature engineering and mitigates the potential computational burden
introduced by knowledge graph integration. However, they face challenges related to being perceived
as "black boxes" and having insufficient interpretability, as mentioned earlier. These challenges can only
be effectively addressed by integrating novel recommendation models with knowledge graph-enhanced
classical recommendation models.

Consequently, it is our belief that future development should encompass both aspects simultaneously,
rather than exclusively focusing on one development trend.

7. Discussions and outlook

7.1. Current challenges
(1) Realizing Explainability in Graph Embedding-Based Recommendation: The challenge lies in
making graph embedding-based recommendation systems more interpretable, ensuring that users can
understand the reasoning behind recommendations.

(2) Deep Integration of Knowledge Graphs and Recommendation Systems: The quest for seamlessly
combining knowledge graphs and recommendation systems is an ongoing challenge, requiring strategies
to maximize their synergy.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240363

65

(3) Effectiveness of Recommendation Categories in Different Contexts: Assessing whether all three
recommendation categories (collaborative filtering, content-based, and hybrid) are universally effective
in various contexts remains a complex issue.

(4) Enhancing Recommendation System Performance: The pursuit of improved recommendation
systems necessitates exploring innovative methods and techniques beyond the current state of the art.

(5) Leveraging Graph Topology for Graph Embedding-Based Recommendation: Investigating how
graph topology analysis can contribute to the efficacy of graph embedding-based recommendation
systems is another area of interest.

7.2. Potential solutions
1) Interpretability: Efforts to enhance the interpretability of graph embedding-based recommendation
systems are crucial for knowledge acquisition and real-world applications. Some progress has been made
in this regard. For instance, TransF [31] incorporates a sparse attention mechanism to uncover hidden
relational concepts and transfer statistical strength through concept sharing, leading to easily explainable
associations between relations and concepts. CrossE [32], a novel knowledge graph embedding,
explores knowledge graph explanation schemes by employing embedding-based path searching for
generating link prediction explanations. While recent neural models have shown impressive
performance, they often lack transparency and interpretability. Some methods address this limitation by
blending black-box neural models with symbolic reasoning through the integration of logical rules,
enhancing interpretability to instill trust in predictions. Further research should continue to enhance
interpretability and boost the reliability of predicted knowledge.

2) Historical Preferences: Bei Hui et al. [33] introduce the KG-Aware recommendation model, which
utilizes a self-attention mechanism to extract short-term and long-term user preferences from individual
users' historical behaviors. These historical preferences are then deeply mined in combination with
knowledge graphs, offering potential avenues to enhance recommendation systems.

References
[1] B. Schafer, “LNCS 4321 - Collaborative Filtering Recommender Systems,” 2007. [Online].

Available: https://www.researchgate.net/publication/200121027
[2] M. Elahi, F. Ricci, and N. Rubens, “LNBIP 188 - Active Learning in Collaborative Filtering

Recommender Systems.” [Online]. Available: http://www.unibz.ithttp//www.uec.ac.jp
[3] Y. Cao, X. Wang, X. He, Z. Hu, and T. S. Chua, “Unifying knowledge graph learning and

recommendation: Towards a better understanding of user preferences,” in The Web
Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019, Association
for Computing Machinery, Inc, May 2019, pp. 151–161. doi: 10.1145/3308558.3313705.

[4] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W. Y. Ma, “Collaborative knowledge base embedding
for recommender systems,” in Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Association for Computing Machinery, Aug. 2016,
pp. 353–362. doi: 10.1145/2939672.2939673.

[5] M. Zhu, D. S. Zhen, R. Tao, Y. Q. Shi, X. Y. Feng, and Q. Wang, Top-N collaborative filtering
recommendation algorithm based on knowledge graph embedding, vol. 1027. Springer
International Publishing, 2019. doi: 10.1007/978-3-030-21451-7_11.

[6] Q. Ai, V. Azizi, X. Chen, and Y. Zhang, “Learning heterogeneous knowledge base embeddings
for explainable recommendation,” Algorithms, vol. 11, no. 9, Sep. 2018, doi:
10.3390/a11090137.

[7] Y. Tian et al., “Joint Knowledge Pruning and Recurrent Graph Convolution for News
Recommendation,” in SIGIR 2021 - Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, Association for
Computing Machinery, Inc, Jul. 2021, pp. 51–60. doi: 10.1145/3404835.3462912.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240363

66

[8] E. Palumbo, D. Monti, G. Rizzo, R. Troncy, and E. Baralis, “entity2rec: Property-specific
knowledge graph embeddings for item recommendation,” Expert Syst. Appl., vol. 151, pp. 1–
48, 2020, doi: 10.1016/j.eswa.2020.113235.

[9] X. Wang, X. Liu, J. Liu, X. Chen, and H. Wu, “A novel knowledge graph embedding based API
recommendation method for Mashup development,” World Wide Web, vol. 24, no. 3, pp. 869–
894, 2021, doi: 10.1007/s11280-021-00894-3.

[10] D. Kikuta et al., “KQGC : Knowledge Graph Embedding with Smoothing Effects of Graph
Convolutions for Recommendation”.

[11] X. Sha, Z. Sun, and J. Zhang, “Hierarchical attentive knowledge graph embedding for
personalized recommendation,” Electron. Commer. Res. Appl., vol. 48, no. June, p. 101071,
2021, doi: 10.1016/j.elerap.2021.101071.

[12] M. Singh, “Scalability and sparsity issues in recommender datasets: a survey,” Knowl. Inf. Syst.,
vol. 62, no. 1, pp. 1–43, 2020, doi: 10.1007/s10115-018-1254-2.

[13] B. M. Sarwar, Sparsity, scalability, and distribution in recommender systems. University of
Minnesota, 2001.

[14] P. Goyal and E. Ferrara, “Graph Embedding Techniques, Applications, and Performance: A
Survey,” May 2017, doi: 10.1016/j.knosys.2018.03.022.

[15] C. Yang, Z. Liu, C. Tu, C. Shi, and M. Sun, Network embedding: theories, methods, and
applications. Springer Nature, 2022.

[16] S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node Classification in Social Networks,” Jan.
2011, doi: 10.1007/978-1-4419-8462-3_5.

[17] A. M. Khattak et al., “Tweets classification and sentiment analysis for personalized tweets
recommendation,” Complexity, vol. 2020, 2020, doi: 10.1155/2020/8892552.

[18] A. Galland and M. Lelarge, “Invariant embedding for graph classification,” 2019. [Online].
Available: https://hal.science/hal-02947290

[19] D. Liben-Nowell and J. Kleinberg, “The Link-Prediction Problem for Social Networks.” [Online].
Available: www.arxiv.org.

[20] Y. Zhang and X. Chen, “Explainable recommendation: A survey and new perspectives,”
Foundations and Trends in Information Retrieval, vol. 14, no. 1. Now Publishers Inc, pp. 1–
101, Mar. 11, 2020. doi: 10.1561/1500000066.

[21] M. I. Jordan and T. M. Mitchell, “Machine learning:Trends,perspectives,and prospects,” Science
(80-.)., vol. 349, no. 6245, pp. 253–255, Jul. 2015, doi: 10.1126/science.aac4520.

[22] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A Survey of Optimization Methods from a Machine
Learning Perspective,” Jun. 2019, [Online]. Available: http://arxiv.org/abs/1906.06821

[23] D. Liang, L. Charlin, and D. M. Blei, “Causal Inference for Recommendation.” [Online].
Available: http://arxiv.org

[24] Y. Mao, S. A. Mokhov, and S. P. Mudur, “Application of Knowledge Graphs to Provide Side
Information for Improved Recommendation Accuracy,” Jan. 2021, [Online]. Available:
http://arxiv.org/abs/2101.03054

[25] B. Yu, C. Zhou, C. Zhang, G. Wang, and Y. Fan, “A Privacy-Preserving Multi-Task Framework
for Knowledge Graph Enhanced Recommendation,” IEEE Access, vol. 8, pp. 115717–115727,
2020, doi: 10.1109/ACCESS.2020.3004250.

[26] M. F. Dacrema, P. Cremonesi, and D. Jannach, “Are we really making much progress? A
worrying analysis of recent neural recommendation approaches,” in RecSys 2019 - 13th ACM
Conference on Recommender Systems, Association for Computing Machinery, Inc, Sep. 2019,
pp. 101–109. doi: 10.1145/3298689.3347058.

[27] H. Peng, J. Li, Q. Gong, Y. Ning, S. Wang, and L. He, “Motif-Matching Based Subgraph-Level
Attentional Convolutional Network for Graph Classification.” [Online]. Available:
www.aaai.org

[28] J. Zhao, X. Wang, C. Shi, B. Hu, G. Song, and Y. Ye, “Heterogeneous Graph Structure Learning
for Graph Neural Networks,” 2021. [Online]. Available: www.aaai.org

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240363

67

[29] H. Wang, Y. Deng, L. Lü, and G. Chen, “Hyperparameter-free and Explainable Whole Graph
Embedding,” Aug. 2021, [Online]. Available: http://arxiv.org/abs/2108.02113

[30] J. Gope and S. K. Jain, “A survey on solving cold start problem in recommender systems,” in
Proceeding - IEEE International Conference on Computing, Communication and Automation,
ICCCA 2017, Institute of Electrical and Electronics Engineers Inc., Dec. 2017, pp. 133–138.
doi: 10.1109/CCAA.2017.8229786.

[31] Q. Xie, X. Ma, Z. Dai, and E. Hovy, “An Interpretable Knowledge Transfer Model for Knowledge
Base Completion,” Apr. 2017, [Online]. Available: http://arxiv.org/abs/1704.05908

[32] W. Zhang, B. Paudel, W. Zhang, A. Bernstein, and H. Chen, “Interaction embeddings for
prediction and explanation in knowledge graphs,” in WSDM 2019 - Proceedings of the 12th
ACM International Conference on Web Search and Data Mining, Association for Computing
Machinery, Inc, Jan. 2019, pp. 96–104. doi: 10.1145/3289600.3291014.

[33] B. Hui, L. Zhang, X. Zhou, X. Wen, and Y. Nian, “Personalized recommendation system based
on knowledge embedding and historical behavior,” Appl. Intell., vol. 52, no. 1, pp. 954–966,
2022, doi: 10.1007/s10489-021-02363-w.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240363

68

