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Abstract. In recent years, with the continuous advancement of technologies such as Large 

Language Models (LLMs) and Chat Generative Pre-trained Transformer (ChatGPT), an 

increasing number of developers have turned to AI-assisted code generation. However, in the 

context of code generation, simple question-and-answer approaches may not yield the desired 

results. To address this challenge, we introduce prompt engineering as a means to construct 

efficient prompting methods for guiding models in generating the intended code. This paper 

empirically explores the impact of different prompting methods on code-generation tasks. We 

introduce several prompt-sensitive code tasks in our experiments and assess the effectiveness of 

various prompt methods in terms of the quality of generated code. Ultimately, we find that 

guiding the model from a specific role perspective yields the best results, while other methods 

exhibit varying degrees of effectiveness. This research provides valuable insights into the 

application of prompt engineering in code generation, encouraging future efforts to further 

optimize prompting methods and enhance the accuracy and practicality of generated code. 
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1.  Introduction 

The development of Large Language Models (LLMs) has injected new vitality into the field of Natural 

Language Processing (NLP). Models such as the GPT series have demonstrated outstanding 

performance in generating various forms of text, including articles, translations, conversations, and code. 

However, in practical code generation tasks, simple question-and-answer approaches may not yield 

sufficiently accurate results. To enhance the quality of generated code, the introduction of prompt 

engineering has become a highly regarded direction. Prompt engineering aims to guide models in 

generating code that meets expected standards and is functionally complete by constructively designing 

prompts. However, existing research lacks systematic and empirical analysis to validate the practical 

effectiveness of prompt engineering in code generation. 

This paper seeks to address the shortcomings in existing work by conducting empirical research to 

explore how different prompting methods can guide the behavior of large language models in code 

generation tasks. Our research is divided into several steps. First, an overview of the development of 

large language models and their role in code generation will be provided. Second, it will delve into the 

characteristics and applications of Chat Generative Pre-trained Transformer (ChatGPT). Subsequently, 

the concept and methods of prompt engineering and analyze its role in code generation will be 
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introduced. Finally, an experimental design to systematically evaluate the effects of various prompting 

methods in code generation tasks will be proposed. 

Through this research, the use of prompt engineering methods in code generation tasks and exploring 

the effects of different prompting methods from multiple perspectives will be systematically investigated. 

By quantitatively analyzing and experimentally comparing these methods, we summarize the impact of 

various prompt attributes on the quality of generated code, providing a deeper understanding and 

guidance for prompt engineering in code generation tasks. Furthermore, we aim to drive the 

development of prompt engineering in the field of natural language generation, offering more accurate 

and efficient methods for practical applications. 

2.  Background 

2.1.  LLM and ChatGPT 

Large Language Models (LLMs) have become a vital research direction in the fields of artificial 

intelligence and Natural Language Processing (NLP) [1]. They are employed for understanding and 

generating natural language text. ChatGPT (Chat Generative Pre-trained Transformer) is a 

representative LLM developed by the OpenAI team. Built upon the Transformer architecture [2], 

ChatGPT is an evolution of GPT-1 [3], GPT-2 [4], and GPT-3 [5]. Before the advent of GPT, traditional 

NLP models relied on extensive annotated data for supervised training, often encountering issues related 

to data quality and generalization to new tasks. To address these problems, GPT-1 used unsupervised 

learning as the pre-training objective for supervised models, employing a left-to-right generative 

objective for pre-training, followed by supervised fine-tuning for downstream tasks. Building upon this 

architecture, GPT-2 increased the model's scale and improved its zero-shot learning capabilities. GPT-

3 further expanded the model's parameters to 175 billion and introduced Few-Shot learning and In-

Context Learning capabilities through simple task examples. Subsequently, GPT-3.5, trained with 200 

billion parameters, introduced ChatGPT, which rapidly gained millions of users. 

2.2.  Prompt Engineering 

As the design of pre-training and fine-tuning becomes increasingly complex, researchers seek 

lightweight, versatile, and efficient methods. Prompt engineering has emerged as a discipline that 

focuses on developing and optimizing prompts for Large Language Models (LLMs) to enhance their 

applicability in various scenarios and research fields. 

Prompt engineering is an emerging field that, as people explore different prompting methods, has 

spawned practical techniques. In addition to the methods mentioned earlier, Zero-shot-CoT [6], with the 

simple phrase "Let's think step by step," has been widely applied in prompting. The emergence of CoT 

has also inspired the use of code as an intermediate reasoning step, leading to the development of 

Program-Aided Language Models (PAL Models) [7]. By introducing code into prompts, ChatGPT is 

guided to use code for computation and reasoning, making it easier to arrive at correct answers. The 

upcoming experiments are based on these excellent methods to investigate their performance in code 

generation tasks. 

3.  Study Design  

The text of your paper should be formatted as follows: 

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240367

70



 

Figure 1. Flow chart of the experiment 

Before conducting experiments, the experimental procedure was designed as illustrated in Figure 1. 

Initially, in the experiment preparation phase, the necessary Python libraries were installed, and the 

environment variables for the Azure OpenAI API were configured to set up the experimental 

environment. In Step 2, based on the research objectives, three prompt-sensitive code tasks were selected. 

In Step 3, mainstream prompt techniques were employed to construct different prompts for each task, 

ensuring the ability to guide ChatGPT in generating code that meets the requirements. Following that, 

in Step 4, the OpenAI API was invoked to utilize ChatGPT for code generation. For each constructed 

prompt, a batch of different code examples was generated. In Step 5, the generated code examples were 

executed to verify if they could run smoothly and meet the basic requirements of the tasks. In Step 6, 

based on the results of quality assessments, quantitative standards were formulated. In Step 7, statistical 

methods and charts were employed to analyze the experimental data. 

4.  Implementation and Comparison 

In order to explore the impact of different prompt attributes on the quality of generated code in code 

generation tasks, this experiment involved a total of five different prompt methods applied to three 

prompt-sensitive code generation tasks, namely Snake Game, Sokoban Game, and Tetris Game. Figure 

2 displays the outcomes of various prompt methods. Taking the prompt code for the Snake Game as an 

example, we will provide a detailed explanation of the prompt process for each group. 
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Figure 2. Results of running 5 cue groups in 3 code tasks, each column for each group of results, each 

row corresponding to each code task 

4.1.  Direct Prompt 

In this initial prompt group, this group simply outlines the code task without providing any specific 

additional descriptions. Taking the Snake Game as an example, our prompt is as follows: "Using the 

Python language to help me fulfill the requirements of writing a Snake game, please provide a code 

example." In the Snake Game, the generated results only include the concept without specific code. In 

the Sokoban Game, the generated code is incomplete and still requires the developer to fill in the missing 

parts. In the Tetris Game, although code is provided, it contains errors and cannot run successfully. In 

our experimental results chart, a vertical comparison reveals that this is the only group with no successful 

outcomes, and the purpose of this group of experiments is to establish a baseline for evaluating the 

quality of generated code. 

4.2.  Guide words 

Building upon the Direct Prompt group, this group added Python code prompts, specifically "import," 

at the end of the task prompts. The result was that the Snake Game could run but still exhibited issues. 

The problem lies in the fact that the Snake Game lacks movement speed, relying solely on keyboard 

inputs for movement, and the restart function using the spacebar after death does not function correctly. 

In the Sokoban Game, the game can be successfully launched, but it fails to continue running. Similarly, 

in the Tetris Game, there are missing functionalities, and the game stops after a few blocks have 

descended. In the results chart, it can be observed that compared to the Direct Prompt group, this group 

was able to generate complete program code and run the program successfully, with a noticeable 

improvement. 

4.3.  Zero-shot CoT 

This experimental group employed the Zero-shot-CoT Prompt method, which involves adding "Let's 

think step by step" at the end of the Direct Prompt group's prompts. In the generated results, the Snake 

Game could run, but its basic functionality was not fully completed, as it could not consume the food. 
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The Sokoban Game exhibited results consistent with the group that used the original prompts. The Tetris 

Game only completed a portion of the task. From both the complexity of the generated code and the 

final execution results, this group closely resembled the group that used the original prompts. 

4.4.  Role 

This group employed the role-playing Prompt technique, where ChatGPT assumed the role of a Python 

game developer, guided by prompts such as: "I want you to play the role of a Python game developer. I 

will provide you with the game requirements, and you will develop the game." In terms of the generated 

results, the Snake Game developed by this group appeared to be the most refined. Unlike other groups 

with missing functionalities, the Snake Game exhibited no issues with movement speed and the restart 

function. The Sokoban Game was operable within a basic visual interface, offering playability. The 

Tetris Game, in particular, was the only group that could continuously stack blocks in the interface and 

complete a full game sequence. In terms of code complexity, this group was notably more complex 

compared to previous task groups. They defined more functions, especially in the Sokoban task, where 

the code volume experienced a significant increase. When compared vertically to other groups, this 

group demonstrated the highest code generation quality and the best execution results among all groups. 

4.5.  PAL group 

In the Prompting, this group described the game's thought logic and added some simple code prompts 

within the steps, thus employing the PAL (Program-Aided Language Models) Prompting method. 

Initially, a description of the rules was incorporated into the Prompt: "You can move the snake using 

the arrow keys or the WASD keys. Your goal is to make the snake eat the food. Each time the snake 

eats the food, it grows longer and you earn points. If the snake collides with the game boundaries or 

itself, it will die, and the game will be over." Subsequently, some brief code snippets were added, as 

depicted in Figure 7.  

Based on the results generated from these three task groups, the Snake Game had the best 

performance. The generated code exhibited flawless execution and closely resembled the results of the 

Role-Playing group, even completing the scoring functionality as an additional feature based on our 

prompts. However, the results for the other tasks were less satisfactory. While the Sokoban Game 

managed to display the game interface, subsequent operations were not feasible. The Tetris Game, on 

the other hand, experienced difficulties running due to certain code errors. On the whole, the 

performance of the PAL group exhibited instability. 

 

problem = f""" 

Write a snake game 

""" 

prompt = f""" 

Your task is to use the Python 

language to help me complete 

the requirements in the triple 

quotes. Please provide a code 

example. 

Requirements: 

```{problem}``` 

""" 

response = 

get_completion(prompt) 

print(response) 

prompt = f""" 

Your task is to use the Python 

language to help me complete 

the requirements in the triple 

quotes. Please provide a code 

example. 

Requirements: 

```{problem}``` 

import 

""" 

 

response = 

get_completion(prompt) 

print(response) 

prompt = f""" 

Your task is to use the Python 

language to help me complete the 

requirements in the triple quotes. 

Please provide a code example. 

Let's think step by step to ensure 

we get the final result. 

Requirements: ```{problem}``` 

""" 

 

response = 

get_completion(prompt) 

print(response) 

Figure 3. Prompts for Direct 

prompts group 

Figure 4. Prompts for guide 

words group 

Figure 5. Prompts for the zero-

shot group 
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messages =  [   

{'role':'system', 'content':'I want you to play the 

role of a Python game developer. \ 

I will provide you with game requirements, and 

you will develop the game.'},     

{'role':'user', 'content': prompt}  ] 

 

prompt = f""" 

Your task is to use the Python language to help 

me complete the requirements in the triple 

quotes.  

Please provide a code example. 

 

Requirements: ```{problem}``` 

""" 

 

response = 

get_completion_from_messages(messages, 

temperature=0) 

print(response) 

problem = f""" 

Write a Snake game. 

The rules of the Snake game are as follows: 

Move the snake up, down, left, or right using 

the arrow keys or WASD keys to make it eat 

food. Every time the snake eats food, its length 

increases and it earns points. If the snake hits 

the game border or itself, it dies and the game 

ends. 

 

Game design ideas: 

import pygame 

import time 

import random 

 

pygame.init() 

window_width = 800 

window_height = 600 

snake_block = 10 

snake_speed = 15 

def Score(score) 

def our_snake 

def message 

""" 

Figure 6. Prompts for role group Figure 7. Prompts for PAL group 

 

Based on the experimental results outlined above, this study conducted the following quantitative 

analyses of different prompting attributes: 1) Runtime Performance: Based on whether the generated 

code from each group could run successfully, we categorized it into four classes: runnable and playable, 

runnable but not playable, not runnable, and no code provided. We assigned scores of 3, 2, 1, and 0 to 

these categories in ascending order and then calculated the statistics. 2) Functional Performance: For the 

generated code that could run, we evaluated the completion of functional aspects of the code tasks, such 

as movement operations and restart functionality. We established different standards for the 

completeness of functionality, including incomplete, partially complete, mostly complete, and fully 

complete. 

As shown in Figure 8, when comparing the data for the five groups, the Role group exhibited higher 

performance in both performance metrics compared to the other groups, with a significant advantage in 

functional performance. Apart from the Direct Prompt group, the differences in data among the other 

groups were relatively small. 
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(a)Score comparison for each cue group  (b) Combined performance for each cue group 

Figure 8. Comparison among cue groups 

In order to illustrate the comprehensive performance of each group, a combination of runtime and 

functional performance data was plotted in Figure 8(b). The figure demonstrates that the Role group 

consistently exhibited significantly higher average performance than the other groups. The narrow 

spread of the Role group's data points indicates its relatively stable performance with minimal 

fluctuations. 

Overall Assessment: Based on the aforementioned metrics, this study conducted a comprehensive 

evaluation of different Prompt methods, ranking their effectiveness in code generation tasks. Comparing 

both runtime and functional performance, the Role group achieved the highest performance, followed 

by the Guide Words group and the PAL group. The Zero-shot group performed the least effectively. 

The performance of these three groups was relatively similar. 

Through the analysis presented above, we can draw conclusions about the sensitivity of different 

prompting attributes in code generation tasks and provide quantitative insights for the utilization of 

different methods. 

5.  Discussion 

Footnotes should be avoided whenever possible. If required they should be used only for brief notes that 

do not fit conveniently into the text. 

5.1.  Results Analysis 

Based on the experimental results, the following outcomes were summarized: 

1) Prompt Attributes Affect Generated Results: During the experiments, it was evident that 

different prompting attributes significantly influenced the quality and functional performance of the 

generated results in code generation tasks. 2) The superiority of the Role-playing Prompt Method: 

The Role-playing Prompt method performed exceptionally well, generating high-quality code with 

strong functional performance. In code generation tasks, guiding the model from the perspective of a 

specific role, such as a developer, helped achieve code closer to the expected result. 

5.2.  Future Directions 

Based on the experiments and results analysis presented above, we intend to make improvements and 

explore the following areas in this research: 

1) Improvements in Experimental Design: While the Role-playing Prompt method performed well, 

there is room for improvement and exploration of additional Prompt methods and further optimization 

of Prompt architectures. In similar tasks, more refined Prompt designs, incorporating key code snippets 

and guiding words, could help generate more accurate and functional code. Additionally, due to the 

limited samples of code tasks and prompting attributes, coupled with significant variations in code, the 
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evaluation dimensions for generated results were limited, and there was a margin for error. To address 

this, more samples should be added to establish more detailed and accurate evaluation metrics and 

standards. 2) Exploration of Multiple Prompt Attributes: Given that this experiment considered only 

single attributes' impact, combining various prompting attributes is also an avenue for exploration. 

Combining different prompting attributes may have the potential to maximize code quality and 

functional achievement. 

6.  Conclusion 

This study conducted empirical research to investigate the impact of different prompting attributes on 

code-generation tasks. By employing various Prompt methods in code generation tasks, we assessed the 

performance in terms of runtime and functional capabilities. The experimental results highlighted the 

significant influence of prompting attributes on the quality of generated code. Among the tested Prompt 

methods, the Role-playing method consistently outperformed others, consistently delivering the highest-

quality generated code and excellent functional performance. Additionally, we noted the potential of the 

PAL method but acknowledged the need for careful Prompt construction to ensure logical coherence 

and suitable code prompts. Our research contributes to a better understanding and enhancement direction 

on the Prompt Engineering in code generation tasks. 
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