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Abstract. In this paper, we proposed a robust, adaptive bird eye view descriptor for loop closure 
detection and long term mapping in 3D point cloud. Loop closure detection plays a crucial role 
in SLAM context, enhancing the quality and the accuracy of constructed point cloud map. While 
visual-based loop closure detection methods are vulnerable against perceptual and lightness 
variances, LiDAR-based methods are robust against such variance. Therefore, to construct our 
BEV descriptor, we accumulate and register each LiDAR scan to form a key-frame, and develop 
an algorithm to radially and azimuthally partition and encode the key-frame into a 2D BEV pixel 
image. Then, similarity scores between every BEV descriptor are calculated to find the best 
candidate for loop closure. The best candidate is further validated through ICP-based geometric 
verification, and its newly established restriction is the used for pose graph optimization to 
improve the quality of the point cloud map. In our experiments, we compare our loop closure 
detection method with Scan Conext, a state-of-art global descriptor, on public dataset (KITTI) 
and our private dataset (collected with a Livox solid-state LiDAR). The results of both datasets 
show that our proposed descriptor has stronger adaptability in different types of environment 
(both indoor and outdoor) and LiDAR, with a greatly improved accuracy and overall 
performance. 

Keywords: BEV descriptor, Loop closure detection, 3D LiDAR scans, SLAM (robots), Place 
recognition. 

1.  Introduction 
Mobile robots, while working under real life conditions, must be capable of navigating and locating 
themselves in large, unknown environments. To do so, these robots are required to map their current 
environments to localize themselves in it, which is known as the SLAM (Simultaneous Localization and 
Mapping) problem [1]. A typical SLAM system consists of two modules: odometry and mapping, which 
are used to approximate the robot's current location and map its current environment. However, in such 
system, localization inevitably drift with time due to the sensor error accumulation [2]. Loop closure 
detection, a process which the robot detects and recognizes its returning to previously visited locations, 
plays a vital role in the fields of SLAM and robotic application. It helps eliminate the accumulated drift 
due to sensor errors, increasing the accuracy of localization and ensures more reliable navigation in 
autonomous driving [3]. Further, it can potentially enhance the process of re-localization within pre-
build high-resolution map, facilitating immediate recovery from tracking failures and seamless 
reconstruction of the high-resolution map. This enhanced map can subsequently be utilized in diverse 
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applications such as virtual reality (VR), augmented reality (AR), and motion/mission planning in 
autonomous driving [4]. In multi-robot collaboration, loop closure detection may contribute to aligning 
and associating sensory data from concurrent environment and merging two pre-build maps from two 
individual robots [5]. 

Loop closure detection methods for mobile robots can be primarily divided into visual-based and 
point cloud-based methods. Visual method is more frequently used in SLAM context for its low cost 
and widespread availability. By comparing visual features and semantic information between two visual 
images, it is able to determine whether an active loop closure has occur [6]. However, mere visual-based 
method cannot obtain the geometric and structural information of the environment, and is sensitive to 
environmental changes: lighting conditions, shadows, and seasonal changes can all alter the results of 
visual-based loop closure detection [7][8][9]. Hence, in search of a more stable and robust method for 
loop closure detection, there is a prevailing preference to utilize the point cloud data, often acquired by 
LiDAR [10]. Such method primarily focuses on developing and matching descriptors from geometric 
and structural information in current environment [9]. Nevertheless, there are still three inherent issues 
that existing point cloud-based method need to overcome. First, it must require a high resolution LiDAR 
scanner to operate, which is a currently high-cost sensor. Second, as shown in Figure 1, the point density 
in each LiDAR scan decreases along with increasing distance, meaning the density of a typical point 
cloud varies with distance, hence the descriptors might have varying accuracy. Finally, the numerous 
point data in a typical point cloud largely expands the cost of time for processing and computing point 
cloud information [3]. Hence, in order to achieve real-time and seamless loop closure, the point cloud-
based method must implement an efficient and less time-consuming algorithm to transform point cloud 
data into distinctive descriptors. 

To solve these technical challenges, in this study, we design a robust Bird's Eye View (BEV) 
descriptor that is invariant with point cloud densities, scanning pattern, and noise variance between 
different kind of LiDAR scanners. To achieve real-time and seamless loop closure detection, we further 
introduce an efficient algorithm that transforms point cloud data into such descriptors and retrieves 
possible candidates for loop closure through these descriptors. In conclusion, the main contribution of 
this work can be summarized as below: 

• We integrate a robust BEV descriptor into a LiDAR-inertial-based odometer and form a complete 
SLAM system, suitable for long-term localization and mapping. The implementation is lightweight 
through a single C++ and is readily integrable to any existing SLAM framework. 

• We evaluate our algorithm under multiple scenarios, both indoor and outdoor. Sufficient 
experimental results verify the effectiveness of our method. 

• We extensively evaluate our method on both public and private datasets, and on different types of 
LiDAR scanner to demonstrate the adaptability of our proposed descriptor. The performance of our 
method is compared to a state-of-art descriptor, Scan Context [8], and exhibits a considerable 
improvement. 

 
Figure 1. Point density varies from distance 
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2.  Relative Work 
Loop closure detection methods, as mentioned previously, are categorized into visual-based and LiDAR-
based methods.   

2.1.  Visual-based Methods 
Visual methods are more commonly used for loop closure detection in SLAM frameworks [8] [11] [12] 
[13]. However, unlike LiDAR-based methods, visual based loop closure detection are usually less robust 
against perceptual changes. FAB-MAP [8] proposed by Cummins et al. approaches to the problem by 
proposing a probabilistic generative model of place appearance. Although it does successfully account 
for perceptual aliasing in surrounding--low probability of revisiting due to indistinctive appearance, 
visual representation is still vulnerable to weather/lightness changes [14], limiting its real life 
performance. In contrast, our point cloud representation remains invariant under environment changes. 
Hence, the descriptor that we proposed is adaptive to different environment. SeqSLAM [15] from 
Milford et al. achieves loop closure detection with a far improved performance from FAB-MAP through 
sequential place recognition. Rather than determining a sole optimal match for a given image, SeqSLAM 
examines the best match location within every local navigation sequence, which proves to be resilient 
against environment changes. SRAL [16] fuses different features such as colors and lightness from an 
environment to represent its long-term appearance and transforms loop closure detection into a single 
regularized optimization problem. 

2.2.  LiDAR-based Methods 
Since LiDAR sensor only extracts geometric information from its surrounding, most LiDAR-based 
methods exhibit strong resilience against environment and perceptual changes. LiDAR-based methods 
rely on key-point descriptors, in which nearby points of selected key-points are separated into different 
cells, and surrounding cells are then encoded into a histogram based on a shared pattern. However, most 
of these key-point descriptors are originally devised for 3D model part matching [8] and hence revealed 
limitations when used in loop closure detection context. The conditions of a point cloud deviate much 
from those of a 3D model. For instance, the density of a 3D model remains constant throughout the 
model, yet that of a point cloud varies through distance. Moreover, since derived from a real life 
environment, a point cloud contains more noises than a model. Both suggests that key-point descriptors 
are not suitable to use for loop closure detection. Scan Context [8] by Kim et al. is a non-histogram 
based descriptor from LiDAR scans. It transforms the 3D point cloud from various LiDAR scans into 
2D visual representations through partitioning the ground areas into different bin based on point cloud 
top view azimuthal and radial direction. Then, these visual representations are being compared to 
determine whether loop closure has occur. However, such method stands on the strong assumption that 
the vehicle has no notable changes in the z-axis, which makes the descriptor sensitive to changes in roll 
and pitch angles. Our method is adaptive projection, which can be use in multiple extreme conditions 
such as in crowded urban areas, on a handheld device, in aerial mapping with large motions. SegMatch 
[17] developed a loop closure detection through deep learning and object segmentation. The training 
process of the network requires large datasets and hardware support (GPU acceleration). The method 
that we proposed requires only a workable CPU with no other specific needs for hardware to operate. 

In this paper, we propose a robust and adaptive LiDAR-based descriptor that transforms a point cloud 
into a BEV image, which is then used to search for possible candidates of loop closure. Our method can 
be applied to variant SLAM contexts, unaffected by changes in environments or types of LiDAR sensors. 
The process of BEV image generation is inspired by Scan Context [8], which also increases the 
descriptor's resilience against azimuthal changes. In detail, our proposed method consists of three major 
component: BEV image generation that preserves the geometric and structural information of point 
cloud key-frames, retrieval that searches and verifies for possible loop closure candidates, and pose 
graph optimization according to the loop closure detection results. 
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3.  Method 
In this section, we describe how to construct an adaptive BEV descriptor from a 3D point cloud. First, 
we introduce the LiDAR odometry to extract point cloud key-frames. Next, we apply plane projection 
and space partition on the key-frames to generate our BEV descriptor. Finally, descriptor-based 
candidate retrieval and geometric verification are proposed for a complete loop closure detection 
pipeline. The overall pipeline of our method is depicted in Figure 2. 

3.1.  LiDAR-Inertial Odometry 
Since our proposed method performs loop closure detection on point cloud key-frames, a LiDAR 
odometer is required to register point cloud from each LiDAR scans to the current key-frame. Then, a 
new key-frame is generated when a certain number of sub-frames accumulates. By combining data from 
different sensors, we can get a clearer picture of environment and thus output key-frames with a higher 
accuracy. Among the various methods available, we've picked the Extended Kalman Filter (EKF) to 
merge information from LiDAR and IMU sensors. Using EKF helps us map the environment more 
accurately and deal with difficult situations better. This is mainly because the EKF can handle complex 
calculations by simplifying them step by step, especially when we assume the errors are normally 
distributed. 

 
Figure 2. Method Overview. First, LiDAR scans are registered through an odometer based on extended 
kalman filter, and accumulates to form key-frames. Then, the ground plane is detect to project the points 
from the key-frame. Key-frames after plane projection will be partitioned and encoded to generate BEV 
descriptors. Candidates of loop closure are retrieved by their descriptor, then the final candidate is 
validated through ICP-based geometric verification. Once loop closure is triggered, its provided 
restrictions will be used for pose graph optimization. 

3.1.1.  State Definition. The state vector, x, is formulated as: 

 x = [𝐩! 𝐑! 𝐯! 𝐛"! 𝐛#!]  (1) 

Where: 
p represents the position of the LiDAR in a global reference frame. This is the 3D location given by: 

 𝐩 = [𝑥, 𝑦, 𝑧]     (2) 

Here, x, y, and z denote the coordinates in the east, north, and up directions, respectively. 
R describes the orientation of the LiDAR in the global frame, represented as a rotation matrix: 

 𝐑 = [
𝑟$$ 𝑟$% 𝑟$&
𝑟%$ 𝑟%% 𝑟%&
𝑟&$ 𝑟&% 𝑟&&

] (3) 

Each element 𝑟'( of the matrix represents the cosine of the angle between the respective axes of the 
LiDAR’s local frame and the global frame. 
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v indicates the linear velocity of the LiDAR in the global frame: 

 𝐯 = .𝑣) , 𝑣* , 𝑣+0  (4) 

This showcases how fast the vehicle is moving and in which direction. 
𝐛" stands for the accelerometer bias, which can drift over time and impact the accuracy of 

acceleration measurements: 

 𝐛" = [𝑏"! , 𝑏"" , 𝑏"#]  (5) 

𝐛# represents the gyroscope bias, accounting for drifts that affect angular velocity measurements: 

 𝐛# = [𝑏#! , 𝑏#" , 𝑏##]  (6) 

3.1.2.  Process Model. Building upon the state vector x defined earlier, which includes the position p, 
orientation R, velocity v, accelerometer bias 𝐛", and gyroscope bias 𝐛#, the process model predicts the 
next state based on the current state and control inputs. 

For LiDAR-Inertial odometry using EKF, the primary control inputs are the IMU measurements. 
These measurements, particularly angular velocities from the gyroscope and linear accelerations from 
the accelerometer, can be influenced by the biases 𝐛" and 𝐛#, respectively. 

Given state vector x at time t, the state’s evolution to time 𝑡 + Δ𝑡	is predicted using the IMU readings. 
The accelerations a (adjusted for 𝐛") and angular velocities 𝜔 (adjusted for 𝐛#), usually provided by 
the accelerometer and gyroscope, are integrated to estimate changes in position, velocity, and orientation. 

 

𝐩,-., 	= 	𝐩, + 𝐯,Δ𝑡 +
$
%
𝐚,Δ𝑡%

𝐕,-., = 𝐯, + 𝐚,Δ𝑡																			
𝐑,-., = 𝐑,Δ𝐑(𝜔,Δ𝑡)													
𝐛,-., = 𝐛,																																

  (7) 

Here: p represents the position. v denotes the velocity. R is the rotation. b represents the two biases.   
a is the acceleration from the IMU. 𝜔 is the angular velocity from the gyroscope. Δ𝐑 (·)is a function 
that provides the rotation matrix increment given an angular velocity. Small angle approximations or 
Rodrigues’ formula [18] can be used to obtain this incremental rotation. The predicted state is denoted 
as . 

3.1.3.  Measurement Model. Upon obtaining the predicted state, , from the process model, we utilize 
the LiDAR scan data in conjunction with the previously constructed point cloud map to establish a 
measurement model to obtain updated state 𝐱̄,. The initial value of 𝐱̄, is the predicted state . 

For a given LiDAR point,	/𝐏', in the LiDAR’s body frame, we first transform this point to the global 
frame: 

 	0𝐏' = 	0𝐑̄,	/𝐏' + 	0𝐩̄,  (8) 

Subsequently, the nearest plane with plane normal vector 𝐮'	  and centroid	0𝐪' corresponding to this 
point is identified, and a point-to-plane residual is constructed: 

 
𝐳' 	= ℎ(𝐱̄, , 	/𝐏')

															= 𝐮'!(0𝐏' − 	0𝐪')
																																				= 𝐮'!(0𝐑̄,	/𝐏' + 	0𝐩̄, − 	0𝐪')

   (9) 

To continue, the Jacobian 𝐇, is computed by differentiating the state variables and is then evaluated 
at the current estimate  of the state: 

tx̂

tx̂

tx̂

tx̂
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 𝐇, = [−𝐮'!0𝐑D ,⌊2𝐩'⌋∧, 𝐮'! , 0$×&, 0$×&, 0$×&]  (10) 

Considering all n LiDAR measurement points collectively, the residuals 𝒛'  and the Jacobian matrix 
𝐇, are amalgamated as: 

 𝒛, = ℎ(𝐱̄, , 	/𝐏) 	=

⎣
⎢
⎢
⎡ℎ(𝐱̄, , 	

/𝐏	𝟏)
ℎ(𝐱̄, , 	/𝐏	𝟐)

⋯
ℎ(𝐱̄, , 	/𝐏	𝒏)⎦

⎥
⎥
⎤
  

  (11) 

 𝑯, =

⎣
⎢
⎢
⎡−𝐮$

!0𝐑̄,⌊2𝐩$⌋∧, 𝐮$! , 0$×&, 0$×&, 0$×&
−𝐮%!𝐺𝐑̄,⌊2𝐩%⌋∧, 𝐮%! , 0$×&, 0$×&, 0$×&

. . .
−𝐮8!0𝐑̄,⌊2𝐩8⌋∧, 𝐮8! , 0$×&, 0$×&, 0$×&⎦

⎥
⎥
⎤
   

Lastly, the pose is optimized to minimize these residuals. As a result, we obtain the updated state 𝐱̄, 
of the LiDAR observation model. 

3.1.4.  State Update. After deducing the prior pose estimate 𝒙T9 and the associated covariance 𝐩T9 under 
the constant velocity model assumption, we incorporate n valid measurements from the latest LiDAR 
frame. Utilizing this data, we form a Maximum A Posteriori (MAP) estimation to enhance the precision 
of our current state estimate. The optimization problem can be formulated as: 

 			𝐱$
;'8(∥ 𝐱,⊟ 𝐱V, ∥𝐏=$

% + ∑ 	8
'>$ ∥ 𝑧' −𝐇' ⋅ (𝐱,⊟𝐱̄,) ∥𝐰%

% ) (12) 

Given n valid LiDAR measurements, we consolidate them as 𝐇t = [𝐇1T, 𝐇2T, . . . , 𝐇nT]T  and 𝐖t =
diag(𝒘1, 𝒘2, . . . , 𝒘8		

). The Kalman gain, 𝐊t, which represents the weight of the measurement relative 
to the state prediction, is then computed as: 

 𝐊, = 𝐏D,𝐇,!(𝐇,𝐏D,𝐇,! +𝐖,)@$  (13) 

Lastly, the Kalman gain 𝐊, is employed to procure the optimal updated state 𝐱, and its associated 
covariance matrix 𝐏t: 

          𝐱, = 𝐱V, ⊞𝐊,(𝑧, − ℎ(𝐱V, , 	/𝐏))  (14) 

 𝐏, = (𝐈 − 𝐊,𝐇,)𝐏D,  

The updated state 𝐱t offers a more accurate representation of the system’s current state by combining 
prior knowledge and current measurements, thus refining the overall pose estimation. 

3.2.  BEV Descriptor 

3.2.1.  Ground Plane detection. To achieve an adaptive and robust descriptor to changes in roll and pitch 
angle, we first perform ground plane detection for each key-frame of the entire 3D point cloud. First, 
we divide the key-frame point cloud into various voxels of certain sizes (e.g., 1m). For each voxel, we 
want to find a best fitting plane 𝜋	with crosspoint c and a normal vector n for the group of points xA (i =
1,… , N). Therefore, the problem is to mathematically solve: 

 	B,8,∣∣8∣∣>1						min ∑ 	E
'>1 ((𝑥' − 𝑐)!𝑛)2 (15) 

Notice that is the value of n will not affect the domain of n, hence solving c is equivalent to finding 
a point that minimizes the sum of squares of the distances from other points to it, which happens to be 
the definition of the centroid. Then, to solve n, let yi = xi − c, the expressions becomes: 
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 	8,∣∣8∣∣>$					FAG ∑ 	E
'>$ (𝑦'!𝑛)% = 	8,∣∣8∣∣>$					FAG 𝑛!(𝑌𝑌!)𝑛 (16) 

Where Y is a 3 × N matrix from the concatenation of vector 𝑦'	 . By the definition of scatter matrix, YYH 
here is the scatter matrix of points x'	 . Denote YYH as S and with constraint 𝑛!𝑛 =1, apply Lagrange 
multiplyer to find the local minimum of the Lagrange function: 

 ℒ(𝑛, 𝜆) ≡ 𝑓(𝑛) − 𝜆(𝑛!𝑛 − 1)  (17) 

Finally, when the eigenvector and eigenvalues of the matrix S are assigned to n and 𝜆 respectively, 
the function is able to satisfy: 

 Sn = 𝜆n  (18) 

Where f(n) is able to reach its local extremum. 
From the foregoing processes, we calculate the point scatter matrix S for each voxel: 

 𝑥̄ = $
E
∑ 	E
'>$ 𝑥'; 𝑆 = ∑ 	E

'>$ (𝑥' − 𝑥̄)(𝑥' − 𝑥̄)!  (19) 

Apply eigendecomposition to matrix S, and let 𝜆k denote the K-th largest eigenvalue. According to 
the plane criterion principle proposed by STD [9]: 

 𝜆& < 𝜎$ and	𝜆% > 𝜎%  (20) 

where 𝜎$ and 𝜎% are pre-set hyperparameters. Using this criterion, we can determine if the points within 
a voxel can form a plane. Subsequently, we initialize a plane by selecting any such voxel and search for 
its neighboring voxels. If the neighboring voxels are on the same plane (has the same plane normal 
direction within a threshold distance), they are included into the expanding plane. 

3.2.2.  BEV Image Generation. Our BEV Image Generation method is inspired by Scan Context [8], 
which azimuthally and radially partitions the point cloud and transforms geometric shape of the point 
cloud around a local key point into an pixel image. Since Scan Context assumes that all LiDAR points 
lay on a plane perpendicular to the z-axis, its proposed descriptor is less resilient against disturbance in 
row and pitch angles. Our method effectively addresses this problem by selecting the best-fit plane as a 
reference. Given a frame of point cloud P = {p$, p%, . . . , pI} and its best-fit plane 𝜋 with crosspoint c 
and a normal vector n, we first projects the various points in the point cloud onto the ground plane by 
calculating the Euclidean distance d between the point and the plane: 

 D(pA) = nH(pA − c),	where i = 1,2, . . . , N  (21) 

To project the points onto the plane, we rotate the point cloud frame until the z-axis of its local 
coordinate coincides with the normal vector of the plane. After such transformation, the z-coordinate of 
every point within the frame will become the calculated point-to-plane distance. Using the key point 
c = (𝑥‾, 𝑦‾), each projected point (𝑥'	, 𝑦'	)is transformed into polar coordinates (ri, θi) with respect to the 
key point and the plane by: 

 ri = |(xi − x‾)2 + (yi − y‾)2, 𝜃' = atan2(yi − y‾, xi − x‾)  (22) 

After projection, our goal is to partition the scan into	𝑁a angular intervals and 𝑁r radial segments. A 
starting vector 𝐯start parallel to the plane and centered at c is defined. Since we have to split the scan into 
𝑁a angular intervals, it is then rotated in increments of angles 𝑑𝜃 = 2J

E&
 to cover a complete angular range. 

For each rotation, the angular interval is then split into radial segments with a constant width Kmax
E'
,, where 

Rmax is the maximum LiDAR range. The points on the plane are categorized into the bins formed by 
these angular intervals and radial segments, as shown in Figure 3.(a). 
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After scan partitioning, a single value is assigned to each bin. For the cell that belongs to the radial 
segment i and angular interval j, its value is calculated by: 

 𝜙(B(i, j)) = 	𝐩∈N(A,P)
		FRS 	 D(𝐩)	  (23) 

where p is a point that falls into the bin B(i, j) after partitioning and D(p) outputs the Euclidean distance 
between the point p before projection and the ground plane. As for empty bins, we assign a zero to them. 

The bins are further visualized on a 2D pixel image, where each pixel represents a bin in the scan. 
The column and row of the pixels are categorized by the partitioned angular intervals and radial 
segments. As illustrated in Figure 3.(b), the assigned value of each bin is used as the corresponding pixel 
value, and each pixel is further assigned a color by its value, according to a preset color bar. 

 
Figure 3. Process of BEV image generation. The partitioning of a point cloud is shown in (a), and the 
pixel image derived from the radial partitioning is shown in (b). Color of each pixel corresponds to a 
maximum point-to-plane distance according to the color bar on the right. 

3.3.  Retrieval 

3.3.1.  Database Construction and Update. The BEV pixel images generated from point cloud key-
frames are used to search for possible candidates of loop closure. The pixel image, with N rows, M 
columns, and specific pixel values, corresponds to a N×M matrix. We here apply L$ normalization row-
wise to the matrix, which yields a N×1 matrix. The N×1 matrix derived from each key-frame is then 
treated as a point in a N-dimensional space, which allows us to construct A k-D tree from these N-
dimensional points. Using such data structure to conduct candidate searches can largely reduce 
computational time. 

The construction process involves these key steps: 
Choosing Splitting Axis: At each level of tree construction, the axis along which the data is split is 

determined. This decision can be based on criteria like alternating dimensions or selecting the axis with 
the highest variance. 

Finding Splitting Value: After selecting the splitting axis, a splitting value is determined. This value 
is typically the median of the points projected onto the chosen axis. 

Creating Subtrees: The data is divided into two subsets based on the splitting value. Subtrees are 
then created for each subset, and the construction process recurs on these subtrees. 

To ensure the database’s relevance, a regular update mechanism is employed. Every 50 seconds, the 
k-D Tree database is refreshed by reconstructing the k-D Tree using the latest point cloud frame. The 
newly obtained N×1 matrix is treated as a new N-dimensional point, and the k-D Tree is modified to 
incorporate this point while preserving its hierarchical structure. 

The update procedure encompasses these main steps: 
Finding Insertion Point: The existing k-D Tree is traversed to identify the appropriate leaf node 

where the new point should be inserted. 
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Expanding the Tree: Once the target leaf node is located, the k-D Tree is expanded to accommodate 
the new point. This ensures that the k-D Tree’s balance and structure are maintained. 

3.3.2.  Similarity Calculation. As each point cloud key-frame was previously encoded into a N-
dimensional point from the k-D tree database, we search k (e.g., k = 50) near neighbor point from the 
tree, each of which representing a possible loop closure candidate for each key-frame. We then calculate 
the similarity score between each candidate and the target key-frame. Here, we use the N×M matrix 
before encoding rather than the N×1 matrix for calculation on both candidate and target to ensure the 
accuracy of loop closure detection. Since angular partitioning is applied to each point cloud key-frame, 
our proposed BEV descriptor is extremely sensitive to azimuthal changes. To ensure a robust detection 
method, we must have to apply column-wise shifting to the candidate matrix in consideration of 
azithumal angle variations. Since the matrix is N by M, we decide to shift the matrix for M times. 𝐵T 
and 𝐵U represent the matrix before and after each shift. To shift the matrix: 

 𝐵V(𝑖, 𝑗) = 𝐵T(𝑖, 𝑗 + 𝑘), 𝑤ℎ𝑒𝑟𝑒	𝑘 = 0,1,2, . . . , 𝑀 − 1 (24) 

For each shift, we calculate the similarity score between the shifted candidate matrix and the target 
matrix for once. For the calculation of the similarity score, we decide that a higher similarity score 
indicates a higher similarity between two BEV descriptors. Thus, the similarity function is: 

 𝐒(𝐵, , 𝐵BU) = 1 − ∑ 	'>E,(>W
'>$,(>$

∣∣/$(',()@/()(',()∣∣
E×W×K*&!

  (25) 

where 𝐵, represents the target descriptor and 𝐵BU represents the candidate descriptor after k shifts. Here, 
we mathematically derive the deviation of the shifted candidate descriptor from the target descriptor, 
and subtract the result from 1 to obtain a similarity score less than 1. After calculating similarity scores 
for all the shifted candidate descriptors, the highest similarity score will be assigned to the candidate. 
This assigned score will be used to compare with that of the other k candidates, and the final candidate 
𝐶2 for loop closure is selected by highest assigned similarity score: 

 𝐶2 = arg	max	 𝐒(𝐵, , 𝐵B)  (26) 

3.3.3.  ICP-based Geometric Verification. We use Iterative Closest Point (ICP) algorithm, a commonly-
used algorithm for geometric alignment of two 3D point clouds, to geometrically verify whether a true 
loop closure has occur. The algorithm determines an optimal transformation that minimizes the 
disparities between corresponding points. However, unlike ICP used as an odometer, ICP used in our 
loop closure geometric verification finds the best transformation between the target key-frame and the 
candidate key-frame with the highest similarity score, rather than a target and a source point cloud. Apart 
from finding the translation vector and rotational matrix, we here compare the percentage of overlapping 
regions between two candidate point clouds (𝑁T) after transformation: 

 𝑁T =
E+,-'.&/
E01*

× 100%  (27) 

where 𝑁TXYZ["\ is number of overlapped points and N]^F  is the number of total points, to a pre-set 
parameter	𝜎	(e.g.,	𝜎 = 50%) to determine whether a loop closure has occur. The percentage is obtained 
from dividing the numbers of overlapping points after transformation over the number of total points. If 
the percentage exceeds 𝜎, a valid loop closure has occur between the two candidate point cloud frames. 

3.3.4.  Pose Graph Optimization. The pose graph consists of nodes that represent individual lidar point 
cloud scans. Two consecutive nodes, representing consecutive time steps, are linked by a transformation 
based on odometry information. This transformation includes a translation vector t and a rotational 
matrix R, typically obtained from LiDAR odometry. 

The pose graph optimization process begins with an initial estimation of the poses of each LiDAR 
point cloud scan. Constraints are established between consecutive nodes based on odometry 
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transformations. Given consecutive nodes i and j, the transformation 𝐓'(	 from node i to node j is 
represented by the translation vector 𝐭'( 	and the rotational matrix 𝐑'(. The constraint equation is given 
by: 

 𝐓'( = [
𝐑'( 𝐭'(
𝟎! 1

]  (28) 

The goal of pose graph optimization is to minimize the discrepancy between the estimated poses and 
the constraints. The optimization objective can be defined as minimizing the sum of squared error terms 
between the estimated transformations and the constraint transformations: 

 𝑚𝑖𝑛∑ 	',( ∥ 𝐓'( − 𝐓'(_]9 ∥`%   (29) 

where 𝐓'(_]9	is the estimated transformation between nodes i and j. 
Once a loop closure is detected between nodes i and k, a new constraint is added between these nodes. 

The transformation 𝐓'U is obtained using ICP, yielding translation	𝐭'Uand rotation 𝐑'U. 

 𝐓'U = [𝐑'U 𝐭'U
𝟎! 1

] (30) 

After adding loop closure constraints, the optimization objective is updated to include these new 
constraints. The optimization problem is solved again to refine the poses of all nodes, considering both 
odometer and loop closure constraints. 

4.  Experiment 

Table 1. Experimental parameters 

Parameter Value Description 
v 1 (m) Plane voxel size 
R!"# 40 (m) Maximum LiDAR range 
𝑁" 20 Number of angular intervals 
𝑁$ 20 Number of radial segments 
𝜎1 0.01 Plane judgement threshold 
𝜎2 0.05 Plane judgement threshold 
k 50 Number of loop closure candidates 

Table 2. LiDAR comparison from each dataset 

 Type Price FOV Scan rate 
(pts/s) 

Range (~0.80 
reflectivity) 

Point cloud 
density Weight 

Livox mid-360 Solid State $749  360° * 
59° 200k 70 m 6 lines 265 g 

Velodyne HDL-
64E 

Mechanical 
Spinning $75,000  360° * 

26.8° 1.3M 120 m 64-lines < 13000 
g  

 

Table 3. Selected dataset sequences for experiment 
 

  KITTI   Private  
Sequence Index 00 02 05 08 ID2 OD2 OD3 OD4 
Total Length (m) 3714 4268 2223 3225 621 957 1733 2333 
# of Nodes 4541 4661 2761 4071 528 802 1196 1923 
# of True Loops 790 309 493 332 275 84 559 426 
Route Dir. on revisit Same Same Same Reverse Reverse Same Same Same 
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In this section, we evaluate our loop closure detection method on both open and private datasets with 
different scenarios (indoor and outdoor unstructured environment) to verify the effectiveness and 
adaptability of the method. In each experiment, we compare our method with state-of-the-art 
counterparts Scan Context [8] and VoxelMap proposed [19] by Yuan et al. on their default paramenters. 
All experiments are carried out on the same system with an Intel i5-12600kf @ 3.7 GHz with 32 GB 
memory. 

4.1.  Dataset Preparation 
We use the KITTI odometry dataset and a private dataset for the validation of our method. The two 
datasets are chosen considering both LiDAR and scenario diversity to ensure the method’s adaptability 
under varying circumstances. Basic parameters of the two LiDARs used in both datasets are shown in 
Table 2. Characteristics of both datasets are summarized in Table 3. 

1) KITTI odometry dataset: Developed by the Karlsruhe Institute of Technology (KIT) and the 
Toyota Technological Institute at Chicago (TTIC), KITTI odometry dataset provides a collection of 
synchronized sensor data in open urban environment, including grayscale stereo images, mechanical 
LiDAR scans, and accurate GPS/INS ground truth information. We evaluate our method on four 
sequences with the highest number of loop occurrence from the eleven sequences having the ground 
truth of pose (from 00 to 10), namely KITTI00, KITTI02, KITTI05, and KITTI08. While the other three 
sequences have loops in the same direction, only KITTI08 has reverse loops. LiDAR data from the 
dataset is obtained from a Velodyne 64-ray mechanical spinning LiDAR. 

2) Private Dataset: We select four sequences from our dataset: one indoor and three outdoor 
sequences. The dataset was collected around summer of the year 2023, originating from a typical 
residential quarter within Minhang district of Shanghai. LiDAR and IMU data from the dataset are 
collected on a pre-built robotic vehicle as shown in Figure 4.(b), equipped with a HEXMAN MARK-2 
chassis, a Livox Mid-360 solid state LiDAR and a built-in IMU. The indoor sequence, ID2, has a total 
length of 621 m, is recorded at the underground parking lot of the residential quarter. The outdoor 
sequence, OD2, has a total length of 957 m, is recorded at the interior of the residential quarter; the rest 
two outdoor sequences, having a total length of 1423 m and 1955 m respectively, are both recorded at 
the peripheral area of the residential quarter. The trajectories of all sequences are shown in Figure 5. 

We set the experimental parameters as shown in Table 1. For KITTI dataset, we evaluate the 
performance of our proposed method on loop closure detection by the precision-recall curve, compared 
with Scan Context, another state-of-art point cloud descriptor. Then, given the constraints from detected 
loop closures, accuracies of the trajectories before and after pose graph optimization will be compared. 
Our private dataset will not be evaluated through the above two measures due to the lack of ground truth; 
it will rather serve as an additional validation of the adaptability of our proposed method under varying 
LiDAR types and environments. 

 
Figure 4. Recording platform with sensors (a) from KITTI dataset [20] and (b) our private dataset 
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Figure 5. Trajectories of the four sequences, aligned with their corresponding point cloud and satellite 
image. In (a), the path of sequence ID2 is a semi-loop with its reverse loop. In (b) and (c), the paths of 
sequences OD2 and OD3 are all full loops. In (d), the path of sequence OD4 consists of a smaller loop 
and a larger loop. 

4.2.  Precision Recall Evaluation 
The precision-recall curves for both our proposed BEV descriptor and Scan Context on KITTI odometry 
sequences are illustrated in Figure 7. From the results, our method outperforms Scan Context in most 
sequences. Both methods have a similar curve shape, yet our method has a slight increase in recall rate 
in all sequences except KITTI02. Like our method, Scan Context is sensitive to azimuthal variances; 
however, it mainly relies on vertical structure information as its bin encoding uses a maximum height, 
limiting its performance when the vertical height in the surrounding varies a little. In comparison, our 
approach relies on plane projection and replaces maximum height with maximum point-to-plane 
distance. This allows more variances in vertical structure and increases robustness of the descriptor 
against changes in pitch angle, ultimately enhancing its overall performance. According to Figure 6, the 
performance of our method on sequence KITTI02 is poorer than on any other sequence, probably due 
to sparse structures or occlusion issue of the loop closure in the scene [9] [21]. An example scene in the 
sequence is shown in Figure 6. 

 

Figure 6. An example scene in KITTI02 
sequence. Such highway scenes usually 
contain less geometric or structural 
information than urban scenes. 
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Figure 7. Precision-recall curves on four KITTI odometry sequences. 

To further compare the detection performance, we calculate the F1 scores on both methods over four 
sequences. The results in Table 4, consistent with the precision-recall curves, shows a higher score on 
our method than on Scan Context. In addition, our method improves the most over sequence KITTI08, 
indicating our method can effectively detect reverse loop closures with higher robustness to azimuthal 
changes. 

Table 4. F1 scores over four KITTI odometry sequences 

Method KITTI00 KITTI02 KITTI05 KITTI08 
Scan Context 0.8567 0.8509 0.8563 0.6731 
BEV(proposed) 0.9247 0.9024 0.8479 0.8057 

4.3.  Trajectory Accuracy Evaluation 
To demonstrate the improvement of mapping quality through our loop closure detection method, we use 
VoxelMap [19], a high accuracy odometer, to generate the trajectories of the four KITTI sequences. In 
contrast, we further use the constraints from detected loop closures in the sequences to correct the 
trajectories. As shown in Figure 8, we compare the original trajectories of four sequences mapped by 
VoxelMap, with the trajectories after correction by our method. The distance error between each 
trajectory and the ground truth is then calculated. From the results, the accuracies of the trajectories after 
correction by our method has notably improved. No signs of huge drifts or deviations from the original 
trajectories are shown in results, hence indicating that loop closures in the four sequences can be 
accurately detected through our proposed method and utilized to improve the quality and precision of 
long-term mapping. It is worth noticing that in sequence KITTI02, the start of the trajectory after 
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correction had experience a comparably large drift, probably due to the sparse structures on the highway 
scene as key points extracted in such scenes are scarce. This finding of a relatively poor performance on 
KITTI02 is consistent with the results in previous section. 

The average Root Mean Square Error (RMSE) of each trajectories is summarized in Table 5. The 
trajectories after correction by our approach produce a reduced average RMSE. The average RMSE of 
KITTI02 trajectory after correction decreases less significantly than that of the other three sequences. 
Therefore, our loop closure detection method can be integrated into SLAM context to provide accurate 
loop closure detection under varying conditions. 

Table 5. Average RMSE of trajectories before and after correction Unit: m 

Method KITTI00 KITTI02 KITTI05 KITTI08 
VoxelMap 3.2293 7.7210 1.7562 4.5893 
BEV(proposed) 0.8247 5.2420 0.5246 2.8239 

 
Figure 8. Trajectories (left) generated by VoxelMap compared to trajectories (right) after correction by 
our approach. The color bar on the right indicates distance error between the generated trajectory and 
the ground truth. Unit: m 

4.4.  Runtime Evaluation 
We record the computation time on KITTI05 for our method and Scan Context. For Scan Context, we 
test with its provided Python API with the default parameter. As shown in Figure 9, both methods’ 
computational time increases with the number of key-frames, possibly due to the construction of k-d 
tree for retrieval in both methods. Overall, our method has a more consistent computational time over 
time and a less computational time per frame than Scan Context. The difference on how we test the two 
methods (generically on ours and using an API for Scan Context) might account for our superiority, but 
an average computational time of less than 100 ms per frame is sufficient to verify our proposed 
descriptor as an efficient descriptor for loop closure detection. 
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Figure 9. Compuational time on KITTI05 of our proposed BEV method 

 
Figure 10. KITTI05 point cloud map before and after correction by our approach 

5.  Conclusion 
This paper proposes a adaptive and robust BEV point cloud descriptor. An effective BEV image 
generation process based on plane detection and projection and space partition is proposed to extract 
and preserve geometric information from each point cloud key-frames. Through radial and azimuthal 
partition, our descriptor exhibits resilience against changes in azimuthal and pitch angles. To speed up 
the querying and retrieval process, we further construct a k-d Tree database for searching possible loop 
closure candidates and compute similarity scores between the candidates. Compared with Scan Context, 
a state-of-art global descriptors, our method not only outperforms Scan Context in KITTI dataset but 
also demonstrate a great robustness and adaptability to both outdoor and indoor environment and to 
different, less costly LiDAR types. 
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