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Abstract. Cyber attackers continually develop sophisticated techniques to create deceptive 

phishing websites, resulting in financial losses and the exposure of personal information. As a 

result, there is a growing demand for phishing detection solutions that are practical for everyday 

use. However, current deep learning-based models offer good accuracy and generalization but 

require extensive computational resources, making them impractical due to long training times 

and slow inference speeds. To overcome the limitation, we propose AccuRapidGuard, a deep 

learning model that utilizes parallel CNN layers and an RNN layer with attention mechanism. 

Extensive experiments demonstrate that AccuRapidGuard not only achieves great performance 

with high accuracy, low false positive rates, and excellent generalization, but also provides 

outstanding efficiency, significantly reducing training time and inference speed compared to 

state-of-the-art baseline models. This combination of exceptional performance and superior 

efficiency positions AccuRapidGuard as a highly valuable and practical solution for phishing 

detection. 
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1.  Introduction  

With the rapid development of the internet, accessing knowledge and information has become 

significantly easier, greatly enhancing the convenience of our lives. However, this convenience has also 

led to a concerning surge in cyber attacks and frauds. Cyber attackers, equipped with advanced 

techniques, can create deceptive phishing websites that closely mimic legitimate businesses. Their goal 

is to unlawfully obtain users' personal identity data and financial account credentials, which they then 

propagate through email, links, social media, and other channels. These deceptive activities consistently 

result in significant financial losses. The latest Phishing Activity Trends Report from the Anti-Phishing 

Working Group (APWG) reveals a staggering 1,350,037 observed phishing attacks in the fourth quarter 

of 2022, setting a new record and marking the worst quarter for phishing that APWG has ever witnessed. 

Furthermore, APWG has noted a steep increase in the total number of phishing attacks, with an annual 

acceleration of over 150% from 2019 to 2022 [1]. 

To counter the threat posed by phishing websites, researchers have been diligently exploring various 

approaches to detect their legitimacy. The current prominent detection methods primarily fall into 

categories such as list-based, heuristic-based, visual similarity-based, machine learning-based, and deep 

learning-based techniques [2]. Among these models, particularly those based on machine learning and 

deep learning, there are some that achieve outstanding performances with high accuracy, low false 
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positive rates, and excellent generalization. However, few of them achieve high efficiency as well, with 

least training time, test time and inference speed, due to the nature of  extensive computational resources 

requirement of deep learning model. 

Moreover, from the user's perspective, there is a pressing need for a practical solution that can 

effectively detect phishing websites in daily use, offering both low latency and high accuracy. 

Therefore,an efficient solution that automatically and swiftly extracts valuable features from the URL 

of a suspicious website, enabling accurate detection of phishing websites, appears promising. 

In this paper, we propose a deep learning-based solution, named AccuRapidGuard, that exclusively 

extracts features from the URL of a suspected website, enabling precise legitimacy detection. 

Specifically, we employ parallel CNN layers with different convolutional kernel sizes to extract crucial 

character-level local features of varying scales from the URL. This design allows for the extraction of 

comprehensive local features while significantly reducing the training and inference time. These local 

features are then concatenated into a feature map. Subsequently, an RNN layer with an attention 

mechanism is utilized to extract contextual features based on the aforementioned local feature map. By 

collectively extracting the most significant local features, the input to the RNN layer contains minimal 

noise, resulting in relatively accurate contextual features. Additionally, the attention mechanism is 

employed to compute the importance of each attribute feature, thereby highlighting the key 

distinguishing features that differentiate phishing websites from legitimate ones and further enhancing 

the model's accuracy. Considering that the Gated Recurrent Unit (GRU) offers comparable efficiency 

to the Long Short-Term Memory (LSTM) while significantly improving computational speed[3, 4], we 

select GRU as the backbone of our RNN layer, which not only saves training and inference time but 

also ensures high detection accuracy from contextual features. Finally, we employ a Multi-Layer 

Perceptron (MLP) to determine the legitimacy of the website. 

The main contributions of our work are summarized as follows: 

a) We propose a deep learning-based model named AccuRapidGuard that simultaneously achieves 

high accuracy and low latency. By leveraging the strengths of both CNN and GRU, we can 

extract comprehensive features from the suspected URL, enabling the model to make accurate 

classifications while ensuring a limited runtime. 

b) We have built a large-scale dataset with over 500,000 URL samples, consisting of a set of benign 

URLs crawled from Common Crawl and a set of phishing URLs obtained from PhishTank. The 

dataset is regularly updated, with dead websites being removed to maintain its relevance. 

c) We conducted extensive experiments, comparing our model with four baseline models to 

demonstrate its superiority. The results showed that our model outperformed the others in terms 

of both latency and accuracy, with the lowest runtime and the second highest accuracy. 

2.  Overview of Proposed Model 

2.1.  Motivation 

By analyzing the existing approaches, we conclude that most of current methods suffer from the 

following drawbacks: 

a) Dependency on third-party services: such as blacklists, whitelists, search engines, etc [2]. This 

dependency can introduce latency, instability, and reliance on external sources, which may not 

adequately address new and emerging phishing attacks. 

b) Dependency on handcrafted features and expert knowledge: Heuristic-based methods and 

machine learning-based methods may rely on the accuracy of expert knowledge, rules, and 

manually designed feature extraction techniques, leading to  false positives and false negatives 

in phishing detection[2, 5]. 

c) Training and inference time: Training and using a model for inference based on deep learning 

methods with high accuracy and generalization ability can be time-consuming, requiring 

extensive computational resources. And the need for accessing external services for list-based 

and heuristic-based methods can introduce extra inference time[6]. 
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Given these limitations, our objective is to address these challenges by introducing a deep learning-

based model that operates independently of third-party services and expert knowledge. This model will 

have the ability to automatically extract features from raw datasets, thereby eliminating the need for 

manual feature engineering. Additionally, we aim to mitigate the training and inference time by 

optimizing the model's architecture, allowing for efficient computations without compromising accuracy 

or generalization. We firmly believe that such a comprehensive model, free from the aforementioned 

drawbacks, will prove invaluable for practical use in the realm of phishing detection. 

2.2.  Problem Definition 

To abstract the problem of phishing detection, we formulate it as a binary classification with suspected 

URLs as inputs. In training dataset 𝑇 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}, 𝑖 = 1,2, ⋯ , 𝑛, where 𝑥𝑖 represents a suspected 

URL and 𝑦𝑖 ∈ {0,1} stands for its label and 𝑛 is the number of URLs in dataset 𝑇. when  𝑦𝑖 = 1, it 

represents a phishing URL. On the other hand, when 𝑦𝑖 = 0, it signifies a legitimate one. The aim of 

proposed method is to compose a network 𝑓, obtaining all predicted label  𝑦𝑘̂ = 𝑓(𝑥𝑘) for every 𝑥𝑘 in 

𝑇 and calculate the loss function ∑𝐿(𝑦𝑘 , 𝑦𝑘̂) for backpropagation to find the best weight parameters. 

 

Figure 1. AccuRapidGuard 

2.3.  Model design 

In order to achieve our aim, we proposed a deep learning-based model consisting of CNN, RNN and 

Attention module named AccuRapidGuard. The layers of the model are well organized, resulting of high 

performance of accuracy and low training and inference cost. Fig.1. depicts the structure of proposed 

model. 

a) Embedding layer. To mitigate the potential larger attack surface caused by unknown characters 

in URLs, we collect all characters that appear in the training, validation, and testing sets to strive 

for a comprehensive vocabulary. Only the characters that do not appear in the dataset will be 

considered as unknown characters and represented as < 𝑢𝑛𝑘 >. All characters in the vocabulary 

are encoded and then embedded into k-dimensional vectors in the embedding layer. The 

character embedding matrix starts with random initialization and is learned during the end-to-

end optimization process. In this way, the representation of each character is stored in the 

embedding matrix 𝐸 ∈ ℝ𝑀×𝐾, where 𝑀 equals the size of vocabulary and each row corresponds 

to the embedding vector of a character. Consequently, a URL is represented as a matrix 𝑋 ∈
ℝ𝐿×𝐾, where L is the padding length of URLs and each row of 𝑋 represents a character in URL. 

b) CNN layer. Convolutional Neural Networks (CNNs) are designed to extract local features by 

utilizing rolling convolutional kernels, and are commonly applied in handling classification 

problems. According to the research conducted by C.Alexis et al. [7], The convolutions capture 

n-gram features from tokens (characters), where the length of the n-gram varies to capture both 

short-term and long-term relationships. In other words, these convolutional layers capture 

different lengths of n-gram features by using convolutional kernels of varying sizes. The size of 
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each kernel determines the length of the n-grams it can capture. By applying multiple kernels of 

different sizes, the convolutional layers can simultaneously capture n-gram features of different 

lengths. This provides the ability to encode important relationships and semantic information 

across different ranges in the text and filter non-important local noise. In proposed work, we 

employed a parallel CNN layer with three CNN modules with different kernel size show in Fig.2.  

 

Figure 2. Structure of CNN Layer 

The advantages of the design is: (1) It can capture multiple useful local features from raw URLs, 

which guarantee a comprehensive feature extraction of both short-term and long-term 

relationships. (2) It can reduce the running time, obtaining a low latency while keeping a high 

effective feature extraction, which helps it achieve outstanding performance. 

c) RNN layer. RNN excel in processing sequential data, and effectively address the challenge of 

capturing the dependencies between preceding and subsequent elements within a sequence. it 

possesses the ability to retain and utilize information from the past when performing 

computations on the current input, allowing for effective modeling of sequential relationships. 

Given that the inputs are URL texts and we aim to extract contextual and structural features, it 

is appropriate to utilize RNN module in this task. 

Based on the experiments conducted by Kyunghyun et al.[4] and Junyoung et al.[3], the Gated 

Recurrent Unit (GRU) offers comparable efficiency to the Long Short-Term Memory (LSTM) 

while significantly improving computational speed, we apt to utilize GRU in  

AccuRapidGuard to shrink latency. As a matter of fact, the contextual and structural feature 

extraction is based on the output feature map from aforementioned CNN layer which contains 

the important relationships and semantic information from raw URL and fewer non-important 

local noise, facilitating the efficiency and accuracy of contextual and structural feature 

extraction Consequently. 

d) Attention mechanism. Furthermore, we embedded attention mechanism in AccuRapidGuard. By 

introducing attention mechanism, the focus on key features in model have been effectively 

enhanced. The attention mechanism enables AccuRapidGuard to dynamically learn and adopt 

key features from different phishing URLs. It automatically adjusts weights of features and 

emphasizes those closely associated to phishing behavior while disregarding features with little 

impact on classification results. This improvement leads to higher detection rates and accuracy 

in identifying phishing attempts. 
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Table 1. Information of Datasets 

Dataset Label Train Validation Test All 

DS1 
Phishing 220991 27624 27624 

564434 
Benign 230556 28819 28820 

DS2 
Phishing 607425 76162 75775 

1559362 
Benign 640064 79774 80162 

3.  Experiment 

3.1.  Datasets 

To ensure the generalization and stability of the experimental models, we used two different datasets 

consisting of real-world URLs. 

The first dataset, DS1, was constructed by us. We utilized a web crawler program to scrape the latest 

556,305 phishing URLs from the PhishTank website. We then filtered out any URLs that were 

inaccessible or contained errors, resulting in 276,239 phishing URLs that met the experimental 

requirements. The benign URLs were obtained from Common Crawl, and after data cleaning and 

processing, we retained a total of 288,195 benign URLs. 

The second dataset, DS2, is a larger publicly available dataset from an experiment led by Tao et al. 

[8]. It comprises a total of 1,559,362 URLs, including 759,362 phishing URLs and 800,000 benign 

URLs. Also, the phishing URLs and benign URLs were obtained from PhishTank and Common Crawl 

respectively, too. 

Each dataset was divided into training, validation, and test sets in an 8:1:1 ratio. Detailed information 

has been summarized in Table I. 

3.2.  Baselines 

There are three state-of-the-art deep learning-based models as baselines in this experiment. The first one 

is PDRCNN [9] which employs first a bidirectional LSTM networks and then  a CNN module. The 

second is BiGRU [8] which consists of a bidirectional GRU layer. The last one is CNN-Fusion [10], a 

lightweight convolutional model with one-layer CNN in parallel with varying kernel sizes. 

3.3.  Evaluation Metrics 

We will primarily evaluate the proposed model and baseline models from two aspects: performance and 

efficiency, which are two distinct aspects when evaluating a model. 

a) Performance refers to how well a model accomplishes its intended task or objective based on 

the model's ability to produce accurate and reliable results. It measures the effectiveness of the 

model in achieving the desired outcomes. In the context of a classification model, performance 

metrics such as accuracy, precision, recall, and F1 score are used to assess how accurately the 

model classifies the data. 

b) Efficiency relates to how effectively a model utilizes computational resources, such as time, 

memory, and processing power, to achieve its objectives. It measures the speed, resource 

utilization, and scalability of the model. Efficiency is often evaluated based on factors such as 

training time, testing time, and inference speed. 

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240376

143



 

(a)                                                                                        (b) 

 

(c)                                                                                        (d) 

Figure 3. Accuracy and loss curves of AccuRapidGuard 

Table 2. Performences on DS1 

Model Test accuracy Precision Recall F1-score Test loss 

AccuRapidGuard 0.983 0.980 0.987 0.984 0.044 

PDRCNN 0.981 0.979 0.983 0.981 0.050 

CNN-Fusion 0.985 0.984 0.986 0.985 0.061 

BiGRU 0.982 0.989 0.976 0.983 0.046 

Table 3. Performances on DS2 

Model Test accuracy Precision Recall F1-score Test loss 

AccuRapidGuard 0.997 0.997 0.996 0.997 0.011 

PDRCNN 0.998 0.999 0.996 0.998 0.016 

CNN-Fusion 0.995 0.996 0.994 0.995 0.030 

BiGRU 0.997 0.997 0.996 0.997 0.013 

 

To depict the comprehensive performance of these models and assess the efficiency of 

AccuRapidGuard, we employ the following evaluation metrics using the third-party module scikit-learn: 

accuracy, precision, recall, F1-score, loss, training time, test time, and inference speed. These metrics 

provide a holistic view of the model's performance, offering intuitive insights into its classification 

ability, generalization capability, training effectiveness, and real-world performance. 

Accuracy, precision, recall, F1-score, inference speed can be calculated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3) 
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𝐹1 = 2 ×
𝑇𝑃 × 𝐹𝑃

𝑇𝑃 + 𝐹𝑃
(4) 

𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑆𝑝𝑒𝑒𝑑 =
𝑀

𝑇
(𝐼𝑃𝑆) (5) 

Where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁  represent true positives, ture negatives, false positives, false negatives 

respectively, and M represents the number of URLs in test set while T represent test time. 

Table 4. Efficiency on DS1 

Model 
Training 

time(s) 

Training time radio 

to AccuRapidGuard 

Test 

time(s) 

Inference 

speed(IPS) 

Inference speed 

radio to 

AccuRapidGuard 

AccuRapidGuard 158.521 1.000 0.810 69.683 1.000 

PDRCNN 700.768 4.420 3.029 18.636 0.267 

CNN-Fusion 262.082 1.653 1.118 50.481 0.724 

BiGRU 626.432 3.952 2.726 20.703 0.297 

 

(a)                                                                                        (b) 

Figure 4. Traning time and inference speed on DS1 

3.4.  Results 

In this section, we will provide an explanation of the experimental results obtained from our approach, 

assessing its performance and efficiency, and comparing it against other baseline models. 

a) Performances.  

The accuracy and loss learning curves of AccuRapidGuard on datasets DS1 and DS2 are illustrated 

in Fig.3. Upon observing the figures, it becomes evident that the training and validation losses converge 

to a stable point, exhibiting minimal generalization gap. This convergence signifies a favorable fit of the 

models. Detailed evaluation metrics for the performance of AccuRapidGuard and the baseline models 

are summarized in Table 3 and Table 4.  

Analyzing the test results on dataset DS1, it is apparent from Table 3 that AccuRapidGuard delivers 

exceptional performance in recall and loss, outperforming the baselines and achieving values of 0.987 

and 0.044 respectively. Accuracy, F1-score, and precision also showcase commendable results, with an 

accuracy of 0.983, a F1-score of 0.984 (slightly lower than CNN-Fusion), and a precision of 0.98. 

Similarly, examining the test results on dataset DS2, Table 4 reveals that AccuRapidGuard maintains 

its leading position in recall and loss, attaining high value of 0.996 and low value of 0.011 respectively. 

Furthermore, AccuRapidGuard secures the second-best performance in accuracy, precision, and F1 

score, with all three metrics reaching 0.997, with negligible differences to the highest values(slightly 

lower than PDRCNN). This indicates that even on a large-scale dataset, AccuRapidGuard accurately 

predicts the labels of test samples and demonstrates robust generalization to unseen data. 

Based on these experimental results, it is conclusive that AccuRapidGuard exhibits strong 

performance and notable generalization capabilities. It surpasses state-of-the-art techniques in terms of 

recall and loss, while achieving accuracy, precision, and F1 scores exceeding 0.98, reaching the level of 

state-of-the-art methods. AccuRapidGuard satisfactorily meets the requirements of phishing detection. 
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b) Efficiency. 

Based on datasets DS1 and DS2, we conducted an analysis and evaluation of the efficiency of 

AccuRapidGuard, considering factors such as training time, test time, and inference speed. We 

calculated the ratios of training time and inference speed to AccuRapidGuard in order to obtain a 

quantitative assessment of the proposed model compared to the baselines. The specific information 

regarding the efficiency of AccuRapidGuard and the baseline models is summarized in Table 5 and 

Table 6, respectively, based on DS1 and DS2. Moreover, we have depicted the details of the efficiency 

evaluation metrics in Figures 5 and 6, providing an intuitive representation of the superior efficiency of 

AccuRapidGuard compared to the other baseline models. 

From Table 5, it can be observed that although the performance of these four models is nearly 

identical on DS1, the baseline models require significantly more training time to achieve the same level 

of accuracy, precision, recall, and F1-score as AccuRapidGuard. The training times of PDRCNN, CNN-

Fusion, and BiGRU are approximately 4.4 times, 1.6 times, and 4 times longer than that of 

AccuRapidGuard, respectively. This further emphasizes the exceptional efficiency of AccuRapidGuard 

in utilizing computational resources. Additionally, in terms of testing, the inference times of PDRCNN, 

CNN-Fusion, and BiGRU are 0.267, 0.724, and 0.297 times that of AccuRapidGuard, respectively, 

highlighting the high availability and strong generalization of AccuRapidGuard to unseen data. 

Furthermore, the ratios of training time and inference speed between AccuRapidGuard and the other 

baseline models remain relatively constant. Since the structure and ratios of training sets, validation sets, 

and test sets in DS1 and DS2 are similar, the efficiency of model training and testing is not strongly 

influenced by the specific characteristics of the data itself. 

Table 5. Efficiency on DS2 

Model 
Training 

time(s) 

Training time radio 

to AccuRapidGuard 

Test 

time(s) 

Inference 

speed(IPS) 

Inference speed 

radio to 

AccuRapidGuard 

AccuRapidGuard 1351.654 1.000 2.326 67.028 1.000 

PDRCNN 5752.747 4.256 9.218 16.916 0.252 

CNN-Fusion 2118.321 1.567 3.138 49.696 0.741 

BiGRU 5106.883 3.778 7.335 21.260 0.317 

 

(a)                                                                                        (b) 

Figure 5. Traning time and inference speed on DS2 

4.  Conclusion 

In conclusion, AccuRapidGuard presents a deep learning-based model for phishing website detection 

that achieves outstanding performance and efficiency. The model not only demonstrates comparable or 

superior accuracy to other state-of-the-art models but also exhibits exceptional efficiency, with reduced 

training time and significantly improved inference speed. This combination of high performance and 

efficiency makes AccuRapidGuard highly valuable in real-world applications. 

By efficiently extracting crucial local and contextual features from suspicious website URLs using 

parallel CNN layers and an RNN layer with attention mechanism, AccuRapidGuard ensures accurate 

classification within limited runtime. Its ability to deliver accurate results while requiring less training 
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time sets it apart from existing models. Additionally, the model's improved inference speed enables 

rapid and efficient detection of phishing websites, making it highly suitable for time-sensitive 

environments. 

The remarkable efficiency of AccuRapidGuard, coupled with its impressive performance, makes it 

a compelling solution for phishing website detection. Its practical value lies in its ability to achieve 

comparable or better accuracy than state-of-the-art models while reducing training time and improving 

inference speed. This breakthrough in efficiency enhances the model's usability and effectiveness, 

contributing to enhanced user security and minimizing potential risks. 

In summary, AccuRapidGuard represents a significant advancement in the field of phishing website 

detection. Its combination of superior performance, demonstrated by its accuracy, and outstanding 

efficiency, as evidenced by reduced training time and improved inference speed, positions it as a highly 

valuable and practical solution. AccuRapidGuard has the potential to make a substantial impact in the 

cybersecurity domain and holds promise for widespread adoption and deployment in various real-world 

scenarios. 
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