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Abstract. In recent years, fairness-aware learning has been increasingly investigated. 

Researchers are trying to train accurate but fair classifiers. Yet, most existing methods rely on a 

fully- annotated dataset, which is an unrealistic assumption, since majority of the sensitive 
attributes of data remained unlabelled.  This paper thoroughly explores this problem, namely 

Fairness - Aware Learning on Partially Labeled Datasets (FAL-PL) and Confidence-based Group 

Label Assignment (CGL), which is an innovative attempt to address FAL-PL. We conduct 

experiments by altering the hyperparameter, epoch, and the parameter, group-label ratio of CGL 

and discover that this method’s results are easily affected by slight changes in the epoch and 

group-label ratio. Such unstableness reveals CGL’s lack of robustness. We propose 2 

modifications to further enhance CGL – 1. Co- teaching Method for Classifier Training: We 

use the co-teaching method, which employs two models for training. We create these models 

by tweaking parameters and epochs in the original CGL model.  After training, we choose the 

better-performing classifier based on accuracy. 2. Reducing Impact of False Pseudo Labels: 

We've noticed an issue with the CGL method – random false label assignments can lead to errors. 

When two outcomes have similar probabilities, CGL might assign the wrong label. To address 

this, we propose a new parameter, w, based on Gini impurity. It measures similarity 

between probabilities and acts as a weight, minimizing the influence of unreliable labels during 

the training stage of final fair model   f. 
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1.  Introduction 

As neural networks become more mature and developed, it becomes widely applied to real-world 
applications across various domains and has become pervasive in our daily lives [1,2]: facial 
recognition, object detection, video surveillance, social media content moderation and among others. 

It is inevitable that such a technology could make mistakes. However, certain social groups experience 
a larger proportion of these mistakes, e.g. females with darker skin tones have higher error rates that 
lead to more misidentification or false accusations [3]. The potential of these techniques to perpetuate 
biases and even exacerbate social discrimination is undoubtedly problematic and should be carefully 
addressed by making machine learning models more fair. 

To enhance the fairness of current NNs, many existing methods implement various concepts 
and perspectives [4], but most rely on group labels and the assumption of the entire dataset being 
perfectly labeled. Such an assumption is unrealistic [5-8] because, in a dataset e.g. a collection of 

images of human faces, sensitive attributes like gender and ethnicity remain unlabeled or hidden for 
a large portion of the data due to privacy and regulatory considerations. Labelling all of them requires 
an unimaginably large amount of human labour and effort, making it too costly and resource-consuming 
to be a suitable solution. How to provide unbiased yet accurate labels for unlabelled data continues 
to be an ongoing question that fairness-aware machine learning constantly investigates [9]. 

Contribution.  We name the overall problem: Fairness - Aware Learning on Partially Labeled 
Datasets (FAL-PL). Through a more nuanced and refined approach, we reproduced and thoroughly 

explored the original CGL method. In pursuit of better addressing FAL-PL, our paper’s contribution 
can be concluded to 3 points: 

1.   Manipulation of Variables: We changed the amount of epochs that the group classifier 𝑔 and 
fair model  𝑓 is trained for. Rather than solely using the original quantity, 50 epochs, we recorded the 
results for 5, 10, 20 and 50 epochs. From this alteration, we identify that even the simplest hyperparameter 

(epoch) has a significant impact on both accuracy and fairness. 
2.   Flaws in CGL: We discovered that the epoch’s impact is also deeply intertwined with the 

parameters within CGL (group-label ratio). This underscores the considerable sensitivity of CGL itself, 
revealing its lack of robustness and susceptibility to alteration in response to method adjustments. 

3.  Potential Modifications for Improvement: We aspire to make CGL more robust, and be able to 
perform well across a range of scenarios. Additionally, we aim for a weaker relationship between the 
selection of hyperparameters and the method's own settings. Based on above intuitions, we provide 2 

adjustments that can be applied on CGL to strive for enhanced overall improvement. CGL randomly 
assigns labels for a portion of the data, leaving room for possible mistakes. Incorrect labels are then 

passed on, impacting the training of the final fair model 𝑓. We propose:  1) assign a weight to each 

label according to its confidence when passed into the loss function of model 𝑓 and 2) implement 

co-teaching, and train group classifier 𝑔1 and 𝑔2 simultaneously, to create a more mature final model. 

2.  Related Work 

Group Fairness Fair-Training.  Various approaches for addressing Fairness-training have been 
developed over the years. The main focus of this paper is on group fairness which stresses the fairness 
of a model. Many of these methods fall under three categories: Pre-processing [10-13] in- processing, 
and post-processing. The difference between the three is the timing at which the fairness technique is 
injected. These methods however all lack considerations for when training datasets are not fully 
labeled. CGL creates an auxiliary group classifier that assigns random labels to replace predictions 

with confidence below a threshold value 𝝉 while keeping the pseudo labels with higher confidence than 
the threshold. This approach is able to achieve satisfactory performance in both accuracy and fairness 
and enhances results when applied on top of existing fair-training methods. 

Fairness with Noisy Labels. There has not been many studies on dealing with fairness in the case 

of imperfect sensitive attributes, e.g. noisy group labels. Issues that occur with the current work are 
that they either assess the difference in the case of proxy variables (e.g. surname) [14,15] or they purely 
focus on noisy group labels [16,17] which cannot be extended into the Fair-PG setting this paper is 
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based on. There have been works that involve fair training with no information on protected attributes.  
Such works include a distributionally robust optimization (DRO) based approach [18],using an 
adversary to locate high-loss regions and re-weight them[19]. At the same time, there also exist de-
biasing methods which attempt to solve the bias problem with no labels denoting bias. CGL has a 

key advantage over the brought-up methods which is CGL considers scenarios with partially annotated 
group labels. 

Semi-Supervised Learning. The core of semi-supervised learning (SSL) is to learn a model with a 
few labeled samples and many unlabelled samples. The aim is to use the partially annotated training 
set to predict future attribute labels as accurately as possible, it is unclear if  the predicted label can be 
directly applied to achieve group fairness in the test set. Additionally, the recent SSL methods are unable 
to be directly plugged in into the fairness problem as they seek augmentation methods instead of the 
pseudo- labeling strategy CGL takes. On top of that, CGL is similar to another approach UPS. This 

strategy withdraws pseudo-labels for those with low confidence labeled as opposed to replacing 
them with random labels. Throughout a series of experiments performed [CGL]  it has been proven 
that by providing random labels, CGL outperforms the withdrawing label strategy UPS. 

3.  Method 

This section formally defines the overall problem that this paper attempts to address and the fairness 
metric used to quantify and measure the results. Also, it explains the CGL method which this paper is 

built upon. 

3.1.  Problem Formulation & Fairness Metric 

Under the FAL-PL scenario, there is an input feature 𝒙 with 𝒏 images, where 𝑥𝑘 ∈  𝒙 ⊂  ℝ𝑑. It is 

divided into a group-labelled set 
𝐷𝑙 = {𝑋𝑘, 𝑆𝑘}𝑘=1

𝑛𝑙
 with   representing the number of images and  𝑺𝒌  ∈

{0, 1, . . . , 𝑛S  −  1} representing sensitive attributes, e.g. gender, skin tone. There are target labels {𝒚𝒌 }, 
with 𝒚𝒌  ∈ {0, 1, . . . , 𝑛y  −  1}. In this paper, we generalize the sensitive attributes and target labels into 

binary variables, making 𝒏𝐒  =  𝒏𝐲 =  𝟐. Due to the existence of unlabelled data, our goal is to train a 

group classifier g that precisely assigns pseudo labels and finally, to create a fair classifier 𝒇, that can 

accurately predict target label 𝒚 according to an input 𝒙 while remaining unbiased against any sensitive 

attribute 𝑺. 
Following the CGL method [20], our method takes on the same fairness metric, Equality of 

Opportunity (EqualOpp) [21]. This metric centers around ensuring that individuals qualifying for an 
outcome have an equal chance of being correctly classified for that outcome. For example, when 
predicting whether a person committed a crime among a group of criminals, the result should remain 

unaffected by sensitive attributes like gender and ethnicity. EqualOpp is met when ∀ 𝑆0, 𝑆1 ∈ 𝑆, 𝑦 ∈
𝑌, 𝑃(𝑌 = 𝑦|𝑆 = 𝑆0, 𝑌 = 𝑦) = 𝑃(𝑌 = 𝑦|𝑆 = 𝑆1 , 𝑌 = 𝑦), meaning that the probability of an input feature 

being classified as y is the same, regardless of sensitive attribute being S0  or S1. The level of unfairness 
can be measured by a slight modification of the fairness metric, which we denote as Disparity of 
EqualOpp (DEO). 

∆(𝑓, 𝑃, 𝑦)  = max
𝑆0,𝑆1

|𝑃[𝑓(𝑥) =  𝑦|𝑆 =  𝑆0, 𝑌 =  𝑦] −  𝑃[𝑓(𝑥) =  𝑦|𝑆 =  𝑆1, 𝑌 = 𝑦] |  

By taking the maximum (𝛥𝑀) and average (𝛥𝐴)  of this value across different attributes, we develop 
a more robust measurement of overall fairness by explicitly demonstrating the worst, most unfair 

scenario and the average level of unfairness. 

∆𝑀(𝑓, 𝑃) =  max
𝑦

∆(𝑓, 𝑃, 𝑦) , ∆𝐴(𝑓, 𝑃) =  
1

|𝑌|
∑ ∆(𝑓, 𝑃, 𝑦)

𝑦∈𝑌
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3.2.  Overall Process 
Our proposed method uses the CGL method as a foundation. According to the CGL method, a dataset 
is first separated in to 2 portions, one labeled group and one unlabelled group. Within the labeled group, 
it is partitioned into a training set (labeled dataset 1) and a validation set (labeled dataset 2). A group 

classifier 𝒈 is trained on these two sets of labeled data. When dealing with the pseudo labels that 

classifier 𝒈 generates, the method makes uses of a hyperparameter 𝝉 .  𝝉. determines whether a pseudo 

label is kept or replaced by a random label: if the pseudo label’s confidence level is larger than 𝝉. it is 
kept; otherwise a label is randomly assigned according to probability. In the end, all unlabelled data 

becomes labeled, and the fair model  𝒇. can be trained on this fully labeled dataset with another base fair- 
training method. 

 

Figure 1. Overview of the CGL method. 

After successfully reproducing the CGL method, we manipulate the amount of epochs  executed. 
Concurrently, we vary the group label ratios to observe the optimal results and compare with the original 
CGL results. This reveals CGL’s internal potential for better overall performance. 

4.  Experiment 

In this section, we first specify our experimental settings and present the results. We next systematically 
analyse the correlation among performance (accuracy and fairness), hyper-parameters, and parameters 
in CGL to support our claim on the necessity of robustness improvement. 

4.1.  Experimental Setting 

4.1.1.  Dataset 
CelebA. A dataset containing over 200,000 celebrity face images. Each is annotated with various 
attributes such as gender, age, presence of glasses, facial expression, and more. These annotations make 
the dataset valuable for tasks like facial recognition, attribute recognition, and generative modelling. 

UTKFace. A dataset that contains over 20,000 face images, each annotated with labels for age, 
gender, and ethnicity. The dataset covers a wide range of ages, genders, and ethnicities, making it 
valuable for training and evaluating models that can predict these attributes from facial images. 

UCI Adult.  A tabular dataset where  information is organized into rows and columns: each 
row corresponds to a specific observation or record; each column represents a different attribute or 
feature of that observation. It contains information about individuals from the U.S. Census, including 
attributes such as age, education, marital status, occupation, and income level. 

In this paper, we focus on the UCI Adult dataset since tabular data is less explored in the CGL paper 

and more efficient to be analyzed. Notice that CelebA and UTKFace is more complicated than UCI    
Adult, and we believe the issue we discover in UCI Adult should be more severe on them. 
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4.1.2.  Base Fair-Training Methods 
We employ 2 state-of-the-art in-processing methods: MMD-based Fair Distillation (MFD) and 

FairHSIC to train the final fair model  𝒇 .Both methods use additional fairness-aware regularization terms 
as the relaxed version of the targeted fairness criteria. 

4.2.  Implementation Details 
Our experiments were conducted on the UIC Adult dataset, with the baseline methods MFD and 

FairHSIC. Similar to the CGL experiment, we trained the group classifier 𝒈 on different levels of 
initial group-label ratio (1%, 5%, 10%, 25%, 100%), yielding different accuracies and fairness. For each 

group-label ratio, we also altered the amount of epochs executed (5, 10, 20, 50), to examine how 𝒈 

performs differently when trained for a different amount of cycles. For each scenario, we record and 
plot out the fairness and accuracy, accordingly. 

4.3.  FINAL RESULTS 

 

  (a)FairHSIC Results                                                           (b)MFD Results 

Figure 2. Results on UIC Adult. The accuracy (%) fairness (M) of each scenario of two CGL-based 
methods under varying group ratio levels (sv) and different training epochs. Darker colour means better 
results. Under different sv, the performance fluctuates differently under varying training epoch, 

indicating the strong correlation between sv and epoch. 

4.3.1.  Study On The Results 
Fairness. A discernible pattern illustrating the connection between fairness and the number of epochs 
employed is not evident, primarily due to the presence of outlier data and contradictory trends that 
emerge as the epoch count escalates. Sometimes a downward trend is presented, while for the other 

times, and more commonly, an slight upward trend is shown. Similarly, no clear trend is exemplified 
between the amount of epochs and the group-label ratio. Interestingly, the results at epoch = 20 seem 
to outperform the ones when epoch is set to be 50, underscoring CGL’s capability of achieving better 
fairness when it is trained for a different amount of epochs. 

Accuracy. As the amount of epochs ran increase, there tends to be an upward trend in accuracy 
regardless of group-label ratio and method. Notably, this effect is accentuated when the group-label 
ratio is lower, resulting in a more pronounced accuracy boost. Overall, the highest accuracy is achieved 
when the group-label ratio is highest and epoch amount largest. 

Correlation. In both cases, a slight modification in the hyper-parameter, epoch, or the parameter, 
group-label ratio results in rapid changes in the accuracy and fairness. This implies that CGL is actually 
more sensitive than their paper suggests. In fact, we notice a strong correlation between the effects of 
hyper-parameters (e.g., epochs) and parameters in CGL (e.g., group ratio levels) on the accuracy and 
fairness of the trained models, which impedes the direct application of CGL on downstream tasks. To 
make the mode more easily applied to different problems, it is necessary to enhance its robustness 
through a better design of the method. 
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5.  Future Work 

We take the existing CGL approach and modify the variables. After manipulating the number of epochs 
executed and the group labeled ratio, we observe optimal results when compared to the original CGL 
method. We think CGL has the potential for even better performance. We suggest introducing parameter 

𝒘 as a weight to the pseudo label and integrating it into the outermost part of the loss function. Co- 
teaching may also be a useful addition to training the model for a better result. 

5.1.  Overall Process 

We implement co-teaching to collaboratively train group classifier 𝒈𝟏 and 𝒈𝟐, in order to result in 

a more thoroughly developed and mature classifier 𝒈 that can provide labels more fairly and precisely. 
Also, we remove the initial threshold 𝝉  that determines whether a pseudo label is remained or replaced 

by a random label; instead we use a parameter 𝒘 to assigned to each label prior inputting them into the 

training of final fair model  𝒘. 

 

Figure 3. Overview of our proposed method. 

5.1.1.  Confidence -Weighted Labels 

CGL’s reliance on randomly assigned labels is rather risky, incorrect labels continue to have negative 
impacts when inputted into the final training stage of fair model f. Our approach is to give up on 
assigning random labels when the confidence level of a pseudo label is below the threshold and to 
construct a new parameter w by the two probability values returned from the classifier and normalize it 
so that its value is between 0 and 1. 

The calculation formula for parameter 𝒘  is: w =   1 −  2 ∗  [2 ∗  p1 ∗  p2] , where " p1 " 

represents the probability of one prediction and " p2" represents the probability of the other (p1 +  p2 =
 1). It should be noted that the parameter "w" signifies the distance between the two probabilities. When 
"w" is closer to 1, the difference between the two probabilities is greater (for instance, one being 0.9 
and the other being 0.1). This indicates that the classifier has higher confidence in the prediction 
with the larger probability. Conversely, when w approaches 0 (e.g., 0.5 and 0.5), the two 
probabilities are closer together, showing how the classifier is unable to differentiate effectively 
between the two predictions. 

This mathematical method we chose is called the Gini Impurity (GI). It must be noted that GI is a 

very "sensitive" parameter. In our solution, a probability pair of (0.999, 0.001) corresponds to a GI of 
about 0.996, while a probability pair of (0.9, 0.1) corresponds to a GI that quickly drops to 0.64. 
Such a characteristic of GI helps achieve our goal of accurately assigning false labels since the 

reduced confidence in the results predicted by the classifier is drastically amplified on the parameter 𝒘. 
During the training of the subsequent fair model f, this weight can be multiplied in the outermost 

layer of its loss function.  Consequently, predictions with lower confidence (indicating challenges in 
distinguishing original images due to unclear features or diminished image quality) will exert a minor 
influence on the equitable model's training. 
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5.1.2.  Co-Teaching 
Co-teaching [22] is a deep learning paradigm that was specially developed to combat noisy labels. The 
core essence of the method involves training two deep neural networks at the same time and allowing 
them to teach each other. In each batch of data, the network chooses the low-loss sample to be useful 

knowledge. Subsequently, the two networks will communicate with one another and backpropagate the 
data chosen by the other network then update itself.  We believe the same can be    done for CGL. By 
replacing g and g’ as the two models we can train model g into a better version of itself. As a result, 
when the new dataset provided by the resultant model g is inputted into fair classifier f, we perceive a 
fairer and more accurate result. 

6.  Conclusion 

With use of a confidence threshold, CGL effectively and accurately assigns pseudo labels to the 
unlabeled portion of a dataset, so later a classifier can be trained on this fully-labeled dataset, nurturing 
outcomes with higher quality. Yet, through a series of comprehensive experiments, we investigate the 
impact of varying hyperparameters, epochs, and the critical parameter, group-label ratio, on the 
performance of CGL. Our findings reveal that CGL's results are susceptible to slight changes in these 
parameters, indicating a lack of robustness in the method. It becomes evident that ensuring the stability 

of fairness-aware learning in partially labeled datasets is a complex challenge. 
To enhance the robustness of CGL, we propose two significant modifications.  
First, we introduce the co-teaching method for classifier training, employing two models with 

tweaked parameters and epochs. Following training, we select the superior classifier based on accuracy, 
thus enhancing the reliability and stability of the learning process. 

Second, our modification addresses a notable issue in the CGL method – the potential impact of 
random false label assignments, which can lead to errors. When two outcomes have similar probabilities, 
CGL may assign the incorrect label. To mitigate this issue, we propose a novel parameter, denoted as w 

which relies on Gini impurity to gauge the similarity between probabilities. This parameter serves as a 
weighting factor, diminishing the influence of unreliable labels during the training phase, ultimately 
contributing to the robustness and accuracy of the final fair model f. 

Ultimately, the goal of this research is to train fair and accurate classifiers, contributing to the 
advancement of social equity and inclusiveness. By addressing the challenges associated with partially 
labeled datasets and improving the robustness of fairness-aware learning methods, we hope to make 
meaningful strides towards creating more equitable and inclusive machine learning models. 
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