

Empirical study on functional defects in multi-window
Android systems

Sisi Chen
Nanjing University of Information Science and Technology, 219, Ningliu Road,
Nanjing, Jiangsu, China

Abdeparture@gmail.com

Abstract. This study focuses on the performance, user experience, and security issues of mobile
applications in the multi-window mode of the Android operating system. Using automated
testing tools, the research evaluates the functionality of different types of applications in multi-
window mode. The results indicate that most applications can run in the floating window and
split-screen modes, while the picture-in-picture mode is primarily used in video and conferencing
applications. However, the floating window mode has multiple window limitations, the picture-
in-picture mode has functional restrictions, and the split-screen mode encounters interface
adaptation issues. Security-related applications employ a black screen protection mechanism, but
face limitations in screenshot operations. The researchers advocate for further research and
improvements in the multi-window mode to enhance user experience and security.

Keywords: Android, Multi-window, GUI, Functional Testing

1. Introduction
In recent years, with the widespread use of multifunctional large-screen devices and the continuous
pursuit of diversified experiences by users, operating systems have played an increasingly vital role in
providing multi-window collaborative modes. Android, as a crucial component of a comprehensive
intelligent ecosystem, thoroughly considers the role of mobile applications in the Internet of Things. Its
uniqueness lies in its compatibility with various multi-window modes, including picture-in-picture (PIP),
freeform (FF), and screensplit (SS) modes, which not only provide users with a more convenient usage
experience but also create more diverse application scenarios for developers.

However, while the introduction of multi-window modes greatly enhances user operational
experiences and application diversity, it also brings about certain anomalies and defects. Specifically,
we focus on two categories of issues: firstly, front-end design anomalies, including misalignment of
application interfaces and adaptation issues under multi-window mode; secondly, runtime anomalies,
particularly those that may result in black screen situations. The existence of these issues not only
impacts user experience but may also pose serious security risks for specific domains such as finance
and security.

Building upon existing work, this paper aims to fill these research gaps by conducting a series of
empirical studies to delve into the abnormal issues of mobile applications in the multi-window mode of
the Android system. Specifically, we collect a series of typical Android system application software to
construct our research samples. Subsequently, we use event traversal scripts to simulate three different

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240413

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

288

multi-window modes in the Android system, namely PIP, FF, and SS modes. Finally, we detect front-
end design anomalies for ordinary applications and evaluate the black screen protection mechanism for
special categories of applications, such as banking applications that are security-sensitive.

Through these research steps, our objective is to provide in-depth understanding and analysis of the
abnormal issues of mobile applications under the multi-window mode of the Android system, offering
valuable information to developers and researchers on how to improve application design and ensure
security. The results of this study not only contribute to optimizing the application experience of the
Android system in multi-window scenarios but also provide robust support for the further development
of intelligent ecosystems.

2. Multi-window in Android
Android is an open-source system designed for mobile devices. To facilitate the development of the
Android system and its application ecosystem, the Android Open-Source Project (AOSP) was
established by the Open Handset Alliance led by Google. AOSP incorporates three different multi-view
modes. In the picture-in-picture (PIP) mode, users can simultaneously display a small window of an
application on the screen, allowing them to perform other operations without interrupting the primary
task. In the freeform (FF) mode, application windows can be freely resized and repositioned, providing
users with greater flexibility to adapt to different work scenarios. Additionally, the split-screen (SS)
mode divides the screen into multiple areas, each of which can accommodate different applications
simultaneously, enabling users to process multiple tasks or content in parallel.

However, the introduction of multi-window modes presents challenges on both user experience and
security. The simultaneous operation of multiple applications on one screen may result in interface
layout conflicts, resource competition, and performance issues. Addressing these challenges requires a
comprehensive consideration of design, technology, and user expectations to ensure effective
implementation of multi-window interaction in the Android system.

3. Approach

3.1. Study Design

Figure 1. Workflow of the Experimental Study

Experimental Tools
UIAutomator2 and Weditor are two crucial tools for the Android platform, utilized for automated

testing and UI element positioning. UIAutomator2, provided by Google, is an automated testing
framework enabling developers to script in Python for the automated execution of Android application
tests. Weditor is a UI element analysis tool typically used with UIAutomator2. It provides a visual
interface that aids developers in identifying and analyzing UI elements of applications, simplifying the
scripting of test scripts.
Experimental Objectives

The primary objective of this experiment is to assess the performance and user experience of different
applications (Apps) in FF mode, SS mode, and PIP mode within the Android operating system.
Additionally, the study evaluates the impact of the black screen protection mechanism in multi-window
mode on security-related applications, such as banking apps, and other applications.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240413

289

3.2. Implementation
Experimental Devices and Environment

The testing was conducted on an oppo reno10 Android13 smartphone, with the test scripts running
on a computer equipped with the following specifications: CPU: Intel(R) Core(TM) i7-10750H CPU @
2.60GHz (12 CPUs), ~2.6GHz; Memory: 32768MB RAM. Furthermore, the experiment involved the
installation of the Python environment with the UIAutomator2 library and Weditor, effective ATX-
Agent connection testing, and the installation of the target applications.
Experimental Subjects

In the selection of experimental subjects, we refer to the software store rankings, which is a common
standard for verifying application popularity. We try to choose apps with a high-user-base to facilitate
the identification of potential front-end design anomalies in commonly used apps.

Furthermore, we consider different types of applications, such as social media, video playback,
instant conferencing, online payments, etc. This help to ensure diversity by the inclusion of applications
from different domains Additionally, attention was paid to the source of the applications, we choose
apps from different countries

Table 1. Performance of Tested Apps in Various App Stores

App App Store (Downloads) Apple Store
(Rating Count)

Google Play
(Rating Count)

Tencent Video 159.3 billion 21,539,438 /
Bilibili 32.6 billion 4,637,067 /
YouTube / 961,131 140,806,191
PayPal / / 2,971,113
Alipay 122.8 billion 1,039,992 73,368
Zoom / 137,436 3,871,383
Tencent Meeting 7.1 billion 216,317 /
QQ 132.3 billion 2,127,362 211,228
WeChat 119.6 billion 6,963,399 /
X / 422,499 20,625,008

4. Evaluation

4.1. Experimental Procedure

Figure 2. Design of the Experimental Procedure.

Step 1: Installation of the UIAutomator2 library using Python and deployment onto the test smartphone.
Activating the screen recording function. Additionally, ensuring that the ATX-Agent is correctly
installed and testing the connection status.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240413

290

Step 2: Opening the test App.
Step 3: Testing whether the three multi-window functions can be initiated successfully.

Figure 3. Launch Process of Multi-Window Mode

Table 2. Testing of Apps in Three Multi-window Modes

Tested Apps FF PIP SS

Video Apps
Tencent Video Y Y Y
Bilibili Y Y Y
YouTube N N Y

Payment Apps PayPal Y N N
Alipay Y N Y

Meeting Apps
Zoom Y Y Y
Tencent
Meeting Y Y Y

Social Apps
QQ Y N Y

WeChat Y N Y
X Y N Y

Importing the UIAutomator2 library
import uiautomator2 as u2

def connect(self, device_name="(device
serial number)"):
 self.device_name = device_name
 self.device =
u2.connect(self.device_name)
 print("Connection successful")

def start_syst_screenRecord(self,
video_name="test"):
 try:
 self.device.swipe(1065, 290, 730,
290)
 self.device(description='Screen
recording').click()
self.device(resourceId="com.oplus.screenre
corder:id/iv_status_view").click()
 except Exception:
 print("Screen recording button not
found")

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240413

291

Step 4: Comparative functional testing of applications in multi-window mode.
1. Interface Adaptability: Does the application's interface layout differ in multi-window mode

compared to the regular mode? Can it effectively adapt to different screen sizes and resolutions?
2. Functionality Accessibility: Are certain functions disabled or restricted in multi-window mode?

For instance, certain applications might limit the use of specific functions in the floating window or
split-screen mode.

3. User Experience: Do users have different experiences in regular and multi-window modes? Are
there any additional conveniences or limitations?

Table 3. Interface and Functionality Accessibility of Tested Apps

Test Cases FF PIP SS

Video Apps
Interface Layout Y Y N
Basic Player Functions Y Y Y
Advanced Player Settings Y N Y

Payment Apps
Interface Layout Y / N
Payment Function Y / Y
Balance Inquiry Y / Y

Meeting Apps

Interface Layout Y Y N
Video/Audio Switch Y Y Y
Advanced Meeting
Functions Y N Y

Social Apps Interface Layout Y / N
Send/Receive Messages Y / Y

4.2. Result and Analysis
1. Applicability of Multi-Window Interfaces, Functionality, and User Experience

From Table 2, it is evident that the majority of applications can successfully initiate the floating
window mode and split-screen mode in multi-window mode. Comparatively, the picture-in-picture
mode is primarily utilized in video and meeting applications. This is due to the necessity of displaying
video content or meeting screens simultaneously on the screen, with the picture-in-picture mode
facilitating the visibility of video or meeting windows while performing other tasks.

Table 3 reveals that the interface issues in the FF mode mainly arise from the overlap between the
FF small window and the main interface, causing obstructions to certain functions and inadvertent
touches. Additionally, conflicts occur between common operations, such as the back button, among
multiple windows in the FF mode. The issues in the picture-in-picture mode primarily stem from
functional restrictions. In this mode, most applications limit the operational functions, such as bilibili
and Tencent Video players, typically retaining only basic functions like play and pause while omitting
advanced functions such as speed adjustment, bullet screen display, volume adjustment, and quality
selection. This may restrict user interaction capabilities and functional choices. The issues in the split-
screen mode primarily pertain to interface adaptation. Test results indicate that the majority of
applications do not undergo page adaptation in the split-screen mode, leading to misalignment of
interface elements and abnormal displays. Furthermore, the split-screen mode currently does not support
screen rotation, potentially causing inconvenience for users when switching screen orientations.

In the multi-window mode, we observed functional conflicts in meeting apps. When users engage in
multiple meetings, discussions, or use other functions simultaneously, the sound of the second
application may be preempted, rendering the user unable to hear sound, thereby impacting the normal
user experience. Conflicts also arise from a range of external devices. For instance, when an app in
multi-window mode activates the camera function, opening another application may lead to the camera
image being preempted.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240413

292

2. Black Screen Protection Issue in Multi-Window
During screen recording operations, security-related applications demonstrate proactive black screen

protection mechanisms. This implies that when users conduct screen recording or screenshots in multi-
window mode, these applications can identify potential sensitive information and promptly initiate black
screen protection. This measure plays a crucial role in maintaining the security and privacy of user data,
without hindering the screen recording operation. This proactive security feature helps ensure the
confidentiality of user data.

However, in the multi-window environment, this black screen protection may either be insufficient
or excessive, consequently affecting various aspects such as multi-window interfaces, functionality, and
user experience. Some applications, such as Alipay, expand the scope of protection during black screen
protection, obscuring main screen functions and affecting user experience. On the other hand, some
security-sensitive applications, such as banking apps, do not provide sufficient black screen protection,
resulting in a failure to black out in a timely manner.

In this regard, we recommend further research and improvement of the screenshot mechanism to
better balance security and user experience. One possible approach is to transform the screenshot
restriction strategy into a black screen protection mechanism similar to that of screen recording
operations. This implies that in multi-window mode, applications can identify potential sensitive
information and apply black screen protection during screenshots, instead of completely blocking the
screenshot operation. This would help ensure the security of user data while allowing users the flexibility
to take screenshots.

4.3. Limitations
This study was conducted using only one smartphone, limiting our comprehensive understanding of the
multi-window performance of different device models, manufacturers, and hardware specifications. [9]
Different smartphones may exhibit varied behaviors and performance in multi-window mode. We tested
a limited number of applications, including video, payment, meeting, and social applications. This
cannot represent the performance of all types of applications in multi-window mode. Other types of
applications may have different adaptations and functional support. Our testing primarily focused on
specific versions of the Android operating system. Different versions of Android may exhibit variations
in support and implementation of multi-window mode. Therefore, future research could consider a wider
range of Android versions. The continuous updates and evolution of applications may result in the
resolution or improvement of problems or limitations identified during testing in subsequent versions.
Our testing did not account for variations in application versions, which may impact the continuity of
test results.

5. Related Work
Automated testing plays a crucial role in Android application development. Many studies have been
dedicated to developing automated testing tools for effectively detecting errors and defects in
applications. Tools such as UIAutomator, Espresso, and Appium have been widely used for automated
testing. To conduct tests on various apps, an automated testing method was designed [1] to replace
purely manual testing. Considering the dynamic and unstable behavior of real-world Android
applications, a multi-level comparison standard was referenced [2] to optimize the testing method under
multi-window mode. Ultimately, tools were selected to assist in completing the automated testing.
Through extensive GUI testing, it was observed that traditional model-driven GUI testing focused on
code coverage and model coverage [3]. Optimization efforts for GUI testing primarily revolved around
improving its precision [4] and performance [5], lacking further validation regarding the effects on real
user experience. In terms of test cases, [6, 7] focused on preference testing in Android applications,
primarily exploring the influence of user preferences on application functionality. These studies aimed
to analyze how user preference settings affect application functionality and user experience. Meanwhile,
[8] focused on testing content input generation, aiming to study how test cases effectively cover various
aspects of the application. However, none of these studies work on the multi-window environment.In

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240413

293

contrast, this study focuses on the empirical investigation of functional defects in Android applications
in a multi-window environment. By conducting an in-depth analysis of issues in this specific domain, it
addresses the shortcomings of past research, making the methods for identifying and resolving
functional defects in practical applications more targeted.

6. Conclusion
With the continuous evolution of screen design and the increase in mobile phone functionality, the use
of multi-window mode is becoming increasingly common. However, this also brings more attention to
usability and design defects in multi-window mode. In this context, this paper conducted functional and
security testing of three types of applications under three multi-window modes, documenting some of
the current issues in multi-window mode and proposing possible solutions. Through in-depth research
and improvement, a better understanding and resolution of application challenges in multi-window
mode can be achieved, thereby providing a better user experience and higher security.

References
[1] Linares-Vásquez M, Bernal-Cárdenas C, Moran K, et al. [C]//2017 IEEE International

Conference on Software Maintenance and Evolution (ICSME). IEEE, 2017: 613-622.
[2] Baek Y M, Bae D H. Automated model-based android gui testing using multi-level gui

comparison criteria[C]//Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. 2016: 238-249.

[3] Su T, Meng G, Chen Y, et al. Guided, stochastic model-based GUI testing of Android
apps[C]//Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering.
2017: 245-256.

[4] Gu T, Sun C, Ma X, et al. Practical GUI testing of Android applications via model abstraction
and refinement[C]//2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019: 269-280.

[5] Gu T, Cao C, Liu T, et al. Aimdroid: Activity-insulated multi-level automated testing for android
applications[C]//2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2017: 103-114.

[6] Pan M, Lu Y, Pei Y, et al. Preference-wise Testing of Android Apps via Test Amplification[J].
ACM Transactions on Software Engineering and Methodology, 2023, 32(1): 1-37.

[7] Lu Y, Pan M, Zhai J, et al. Preference-wise testing for android applications[C]//Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 2019: 268-278.

[8] Zheng H, Li D, Liang B, et al. Automated test input generation for android: Towards getting there
in an industrial case[C]//2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP). IEEE, 2017: 253-262.

[9] Kowalczyk E, Cohen M B, Memon A M. Configurations in Android testing: they
matter[C]//Proceedings of the 1st International Workshop on Advances in Mobile App
Analysis. 2018: 1-6.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/73/20240413

294

