
Improvement to application of PSO algorithm on TSP

problems

Tianyu Li

Wuhan University, Wuhan, Hubei, 430072, China

2020300004027@whu.edu.cn

Abstract. In the field of swarm intelligence algorithms, particle swarm optimization algorithms

have the ability of fast search and are widely used in lots of application scenarios because they

are easy to implement. Therefore, different improvements have been made for their various

properties. In this paper, aiming to accelerate its convergence speed, we further improve the

existing hybrid particle swarm algorithm by using the idea of self adaptive and simulated

annealing, examining its performance by solving Travelling salesman problem. It demonstrate

that the relevant improvements can optimize the algorithm performance and have better

convergence speed when iteration value was set 30, 50, or 70 by making comparions between

the experiment results of both algorithm. The code used in this article is available on github.

The experimental results show that the optimization proposed in this paper can optimize the

algorithm to a certain extent at 30, 50, and 70 iterations, mainly because the improved algorithm

can keep the convergence speed stable in more iterations.

Keywords: PSO algorithm, Genetic algorithm, self-adapted, Travelling salesman problem

1. Introduction
Since particle swarm algorithms have been proposed, improvements for various aspects of them such as
control of convergence rate, balance between local and global search have emerged, e.g. Garg [1]
proposed GA-PSO for constrained optimization problems where the PSO algorithm module operates
towards improving the vectors while the GA module is used for modifying the decision vectors using
the genetic operators to take advantage of their common strengths for solving the nonlinear design
optimization problems. In addition, Zhan et al. [2] proposed a parameter adaptive control strategy for

PSO, which utilizes Sigmoid mapping so the weights can be constantly changed with continuous
iteration and state evolution, and different strategies are adopted at different stages of the algorithm
operation. In this paper, on the basis of the previous research results, the hybrid particle swarm algorithm
is added with an adaptive module to realize that it can stably maintain the convergence speed in the case
of short iteration number setting, so as to get the better solution faster, and it is applied to the TSP
problem to test its performance. At present, the convergence speed of various swarm intelligence
algorithms is relatively satisfactory after continuous improvement, and how to integrate their advantages
to make them work well in a wide range of application scenarios is a more important issue in the future.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/74/20240446

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

97

2. Related work

2.1. Introduction to PSO algorithm

Particle Swarm Optimization (PSO for short) is a computational method in computational science that
optimizes a problem by continuously iterating over the candidate solutions given a measure of merit.
The algorithm optimizes the problem by setting a group of candidate solutions (particles) and moving
these particles in the search space according to a simple mathematical formula that updates the positions
and velocities of all particles. The motion of each particle is influenced by its local optimal position, but
it is also guided to the global optimal position in the search space, and this global optimal position is
also updated with better positions found by other particles [3],with the following basic formula:

 Vid
t+1 = ωVid

t + c1r1 × (Pid
t − Xid

t) + c2r2 × (Gd
t − Xid

t) (1)

 Xid
t+1 = Xid

t + Vid
t+1 (2)

which,

𝑉𝑖𝑑
𝑡 denotes the velocity of the i-th particle in the t-th iteration in the d-th dimension;

ω is the inertia weight;

𝑃𝑖𝑑
𝑡 is the individual extreme value of the i-th particle in the d- th dimension;

𝐺𝑑
𝑡 is the global extreme value;

𝑐1 and 𝑐2 are the positive constants that regulate the relative importance of the individual extreme
value and the global extreme value;

𝑟1 and 𝑟2 are the random numbers generated randomly on the interval [0,1].

The velocity formula can be divided into three parts. The first part indicates the degree of influence

of the current velocity and direction on the next moment. The second part indicates the influence of the

optimal position in the particle history information on the next moment at the current moment. And the
third part indicates the influence of the optimal position in the particle history information on the next
moment for all particles up to the current moment. Obviously, the basic idea of the PSO algorithm is to
use the information of individuals and populations to continuously learn and adjust, while parameters

such as ω, 𝑐1, 𝑐2,𝑟1, 𝑟2, are reflected as the algorithm has flexibility.
In practical use, the particle swarm optimization algorithm has the advantages of faster search and

simple parameter setting, but it also has the shortcomings of weak global search ability and the fact that
the diversity of the population will be reduced at the later stage of the algorithm. In response to its
shortcomings, many improvements have been proposed by previous authors, and one of the ideas is to
combine it with genetic algorithms, where the introduction of genetic operators can enhance the

information exchange between particles and increase the diverse characteristics of the population, and
then it is no longer limited to the local optimum [4].

2.2. PSO algorithm applied on TSP problems
In solving the TSP problem, given a set of cities and inter-city accesses and their lengths, our objective
is to determine the sequence of visits to a city that minimizes its cost. Therefore, when applying the tsp

algorithm, the author choose to make each particle represent a feasible solution (i.e., a sequence of visits).
For example, in a tsp problem with five cities, a particle xi = (1, 3, 2, 4, 5) means a visit sequence of 1-
3-2-5-4-1, and the fitness function is expressed in terms of the total travel length. Instread, the concept
of swap sequence is chosen to be introduced in the representation of the genetic operator with particle
update. Still taking the above example as an example, let its selected swap sequence swap=(1, 3) at the
time of update, that is, the current sequence of cities in the 1st and 3rd visit swap order to get the new
xi=(2, 1, 3, 4, 5). For the swap operation, when we compare two particles, the difference in their

sequences can be represented by multiple pairs of swap sequences, such as ss = ((1, 2), (3, 5), (7, 9)),
and for the swap sequence to perform the swap operation is equivalent to the swap operator to take place.
In addition, when reproducing the variation operation of the original paper, it can also be represented by

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/74/20240446

98

the exchange sequence, i.e., the occurrence of variation in the tsp problem can be represented as a
randomly generated exchange of access order in a sequence.

3. Methodology

3.1. The idea of self-adaptive parameters
All parameters of the hybrid particle swarm algorithm in the original paper are given before the
algorithm is run and do not change throughout the iterative process [5]. However, considering that
particle swarm optimization has different requirements at different stages of the algorithm's operation,

the idea of adaptivity is used to reduce the influence of individual optima and global optima in the early
stage, so that the algorithm can explore more extensively in the solution space. In the latter stage, the
increasing importance of the individual optima and the global optima can also help accelerate the
convergence speed.

To achieve this improvement, the initial values for 𝑟1 and 𝑟2 are given, and at each algorithm iteration
they are recalculated by using the exponential function based on the current number of iterations and
the initial values, ensuring they can continuously increase with the iteration.

3.2. The idea of simulated annealing

A round of iterations of simulated annealing can be briefly described as generating a new solution from
the current solution space by a generating function, calculating its difference from the objective function
corresponding to the current solution, judging whether the new solution is accepted, and replacing the
current solution according to the given criteria. In this algorithm, this idea is applied to the exchange
operation using the criterion that when the fitness value of new access order obtained by performing the
swap operation is inferior to that of the one before swap, the new solution will not be rejected directly,

but will be accepted with a certain probability. By introducing the simulated annealing idea, the particles
can have a greater probability of jumping out of the local optimal solution and have a stronger global
optimization ability.

And about the probability function, the former part is related to the current number of iterations,
while the latter part is related to the relative difference between the fitness of the current solution and

the new solution, both of which are calculated using an exponential function of the form e∧(−i ∕ j).

3.3. Program flow chart

Figure 1 reflects the basic framework of the improved algorithm. The first two steps initialize each
parameter, enter the loop from the lowest three steps, continuously iteratively perform mutation and
cross-operation, calculate the fitness of the new solution, and judge whether to accept it until the end
condition is met.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/74/20240446

99

Figure 1. Program Flow Chart

4. Experiments

4.1. Overview of conditions

In the configuration of experimental conditions, the specified parameter cities generated by random
seeds is selected in the given range of 100*100 as the conditions for TSP problems to find the shortest
path. The algorithm of original paper is used as baseline [4], comparing with our improved algorithm at
three iteration counts of 30, 50 and 70.

4.2. Results

4.2.1. 30 iterations result
Improved algorithm generation optimal: 2864.65. Original algorithm generation optimal: 3110.04. The
optimal value above shows that improved algorithm performs better when iteration was set 30.

4.2.2. 50 iterations result path map

Figure 2. 50 iteration of improved algorithm

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/74/20240446

100

Improved algorithm generation optimal: 2712.17
Improved order of access: [71 28 59 29 54 77 70 27 11 15 37 40 36 60 17 72 68 12 4 76 2 7

52 0 30 14 49 47 10 20 9 26 55 75 19 25 3 16 41 5 61 13 74 38 32 78 79 51 69 1 57 24 64 65 58
50 45 34 67 35 53 8 63 42 21 33 23 31 18 6 39 22 56 73 66 48 44 46 43 62]

Figure 3. 50 iteration of baseline algorithm

Baseline generation optimal: 2955.52. Baseline order of access: [51 20 75 8 5 15 53 37 11 55 76
32 63 56 7 62 44 46 43 47 26 66 65 73 18 57 35 4 60 68 67 45 64 24 22 49 41 13 19 23 30 40 25 59
36 39 33 71 31 27 74 61 3 79 34 14 21 29 16 52 12 28 50 69 0 42 2 77 17 72 48 54 10 70 58 6 1

38 9 78].
The comparison between optimal value and the access of order reflects that improved algorithm

performs better under the condition of 50 iterations.

4.2.3. 70 iterations result path map

Figure 4. 70 iteration of improved algorithm

Improved algorithm generation optimal: 2158.07. Improved order of access: [71 1 7 26 10 23 58 77

15 37 25 78 74 19 2 76 36 60 20 68 32 39 22 51 0 79 69 70 54 66 64 34 72 65 4 57 45 52 28 50 56
73 30 63 62 46 24 12 67 40 17 44 3 61 42 75 11 21 31 16 49 43 47 59 13 5 8 9 53 18 6 14
27 48 29 33 55 41 35 38].

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/74/20240446

101

Figure 5. 70 iteration of baseline algorithm

Baseline generation optimal: 2710.74. Baseline order of access: [51 20 75 8 5 15 53 33 11 6 76
7 63 56 32 62 44 46 29 47 26 48 68 73 66 57 35 4 60 36 67 45 64 24 13 78 41 58 19 72 30 40 25 79
65 39 18 31 49 27 74 61 9 59 34 14 21 3 16 52 23 28 50 69 0 42 2 71 17 22 77 54 10 70 12 43 1
55 38 37].

The comparison between optimal value and the access of order reflects that improved algorithm
performs better under the condition of 70 iterations.

4.2.4. 70 iteration process diagram
As Figure 6 shows, when iteration value was set 70, the convergence speed of baseline algorithm slows
down after 15 iterations, while the improved algorithm keeps the speed relatively stable.

Figure 6. Line chart of 70 iterations’ fitness value

5. Conclusion
The above experimental results and Figure 2-6 show respectively that the improvements we have made
can optimize the algorithm to a certain extent at 30, 50, 70 iterations, and it is mainly because the
improved algorithm can maintain the convergence speed stable for more iterations. However, the

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/74/20240446

102

algorithm can still be further improved. The first is judgment about the end of the loop. Currently, only
the number of iterations is used, and new judgment conditions related to fitness can be added in the
future. And the second is that the performance of the improved algorithm will decrease when the given
number of iterations is too large, further research is needed in this aspect.

References
[1] Harish Garg.A hybrid PSO-GA algorithm for constrained optimization problems[J].Applied

Mathematics and Computation,2016,274(C).
[2] Zhi-Hui Zhan, Jun Zhang, et al..Adaptive Particle Swarm Optimization[J]. IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics),07 April 2009,39(6).

[3] Bonyadi, M. R.; Michalewicz, Z. (2017). "Particle swarm optimization for single objective
continuous space problems: a review". Evolutionary Computation. 25 (1): 1–54.
doi:10.1162/EVCO_r_00180. PMID 26953883. S2CID 8783143

[4] Wei Wang, Tianhong Wu, Yingzi Jiang, et al. (2020). Hybrid Particle Swarm Algorithm for
TSP Problems. China New Telecommunications, 22(9), 126–127.
https://doi.org/DOI:10.3969/j.issn.1673- 4866.2020.09.100.

[5] Wang, F., Zhang, H., Li, K., Lin, Z., Yang, J., & Shen, X. L. (2018). A hybrid particle swarm

optimization algorithm using adaptive learning strategy. Information Sciences, 436, 162-177.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/74/20240446

103

