
Efficiency in constraint: A comparative analysis review of

FCN and DeepLab models on small-scale datasets

Haojie Yang

School of Mathematical Seiecnces, Shanghai Jiao Tong Universiy, Shanghai, China

tauyoung@sjtu.edu.cn

Abstract. Semantic segmentation, crucial in computer vision, differentiates objects within

images and finds applications in autonomous vehicles, medical imaging, and assistive

technology. It typically employs neural networks for pixel-wise image classification. Key

advancements in this field are attributed to Fully Convolutional Networks (FCN) and DeepLab

models, known for their high performance with extensive datasets. However, the challenge arises

when these models are applied to smaller datasets. Our research presents a concise overview of

seminal work in machine learning and semantic segmentation, followed by an exploration of

FCN and DeepLab architectures. The study primarily focuses on evaluating these models’

efficacy on a smaller dataset. Results, summarized in tables and figures, indicate that FCN-16

outperforms others in limited-data scenarios, while DeepLab shows reduced effectiveness. This

finding is significant for applications with constrained data resources, providing a direction for

future research in semantic segmentation under such conditions.

Keywords: FCN, DeepLab, CRF

1. Introduction

Computers play a significant role in human society. People do all kinds of work with their computers,
one of which is to process images and pictures from the real world. Computer vision is about how
machines “see” and process what they see. In fields like auto driving, the auto needs to analyze and
build a model of the surrounding environment in order to stay in the lane and avoid any possible crashes.
The “analyze” procedure includes image processing, which extracts information from the images
collected by the camera. Moreover, the auto needs to recognize which part of the image is the road,

pedestrians, other automobiles, etc., and behave based on the recognition result. There is a subject called
semantic segmentation to handle this recognition task.

Semantic segmentation is based on another technology named machine learning. Machines can learn
the strategy to deal with all kinds of tasks, and recognizing objects is one of them.

One way for machines to learn is by feeding a large amount of data with labels and rewarding the
agent if it gets the correct label from the data or punishing the agent if the label is wrong. The agent
would adjust the strategy to maximize the correct rate and get as many rewards as possible. When the
training is complete, the agent has learned how to label new and unseen data with high accuracy. This

is called supervised learning and is very common in applications like handwriting recognition, optical
character recognition, junk mail detection, and many others.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/75/20240501

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

19

Although machines can automatically learn the strategy when given proper data, we must still help
them build the learning model. This is about “how to learn strategies” rather than “how to solve
problems.” One widely applied model is the neural network, inspired by the human’s neural system
connection. Superficial nodes, called “neurons” in the neural network, connect with each other like

neurons do in a living creature. Data flows through the network and gets processed in each layer
(Forward Propagation) until they reach the last layer and get the answer.

Deep learning is a branch of machine learning based on the neural network. The word “deep” in deep
learning usually means multiple layers in the network. Earlier works showed that linear perceptron
cannot be a universal classifier, while a network with a non-polynomial activation function and a hidden
layer of infinite nodes can. As we usually lack the resources to store and train on an infinite network, a
more practical way is to replace the hidden layer with multiple layers of finite nodes. It has been applied
in many fields, like computer vision.

Semantic segmentation aims to segment the image and classify each part of an image. That is to say,
to assign different labels to every pixel of an image so that pixels of the same label share some familiar
visual characters. Back to the auto driving example, the auto needs to process every frame as fast and
accurately as possible. If the segmentation takes too long, a car crash may occur before the auto realizes
what is wrong. If the segmentation recognizes something falsely, the auto may run into a dead end while
still thinking itself in the lane. The most advanced segmentation algorithms are all based on deep
learning, and here, we would like to investigate some of them and see how they perform on relatively

small datasets.

2. Related Works

2.1. Multilayer Perceptron

A Multilayer Perceptron (MLP) is a type of feedforward neural network that consists of fully connected
neurons, each employing a nonlinear activation function. Typically, an MLP is structured with at least
three layers: an input layer, one or more hidden layers, and an output layer, where each layer is fully
interconnected with its preceding and subsequent layers. This means that every node within one layer
connects with every node in the adjacent layers.

Figure 1. MLP structure

In this architecture, each node is assigned a specific value, and every connection between nodes is
associated with a weight. The values of a given layer are computed based on the values of the preceding

layer and the weights of the connections between them. For computational purposes, the values of a
layer can be represented as a vector 𝑣𝑖, and the connection weights as a weight matrix 𝑊𝑖. Consequently,

the values for the next layer are derived through matrix multiplication, expressed as 𝑣𝑖+1
′

= 𝑊𝑖 ⋅ 𝑣𝑖.

Following this matrix multiplication, the resultant values must undergo a process termed “activation”
via an activation function. Drawing from linear algebra, it is understood that the multiplication of a
vector by several matrices is equivalent to multiplying the vector by the product of these matrices.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning

DOI: 10.54254/2755-2721/75/20240501

20

Without a nonlinear activation function, an MLP would regress to the functionality of a single-layer
perceptron.[1] The inclusion of a nonlinear activation function is therefore essential for the MLP’s
ability to classify nonlinear data. Commonly utilized activation functions include the sigmoid function

𝜎(𝑧), the hyperbolic tangent function tanh(𝑧), and the rectified linear unit (ReLU) function relu(𝑧).
This non-linearity is crucial to prevent the MLP from simplifying into a linear model, enabling it to
tackle complex classification tasks effectively.

𝜎(𝑧) =
1

1+ e−𝑧

tanh(𝑧) =
e𝑧 − e−𝑧

e𝑧 + e−𝑧

relu(𝑧) = max(0, 𝑧)

The real value of a layer is 𝑣𝑖+1 = 𝜙(𝑣
𝑖+1

′
), where 𝑣

𝑖+1

′
 is the result of the matrix multiplication.

The values in the output layer are activated by another function, softmax, to normalize the values and
imply the probability that the input data belongs to each class. The maximum value suggests that the
input will most likely belong to this class.

The feedforward network is commonly trained by the backpropagation method. Each time the
network gives a prediction, it will adjust the weights of each connection based on the error between the

predicted probability and the reference probability. We denote the error of the 𝑗-th node from the output

layer in the 𝑛-th input data by 𝑒𝑗
𝑛. The overall error is

𝑒𝑛 =
1

2
∑(𝑒𝑗

𝑛)
2

𝑗

Using gradient descent, the change in each weight 𝑤𝑖𝑗 is

Δ𝑤𝑗𝑖
𝑛 = −𝜂

𝜕𝑒𝑛

𝜕𝑣𝑗
𝑛 𝑦𝑖

𝑛

where 𝑦𝑖
𝑛 is the 𝑖-th output of the previous neuron on the 𝑛-th data. 𝜂 is the learning rate and has to be

selected wisely. A small learning rate may cause the algorithm to be slow, as more steps are needed to
converge, and a large learning rate may cause the weight to oscillate, as the weight may step over the
converging point.

The derivative of an output layer node can be simplified to

−
𝜕𝑒𝑛

𝜕𝑣𝑗
𝑛 = 𝑒𝑗

𝑛𝜙′(𝑣𝑗
𝑛)

where 𝜙′ is the derivative of the activation function.
The derivative of a hidden layer node is

−
𝜕𝑒𝑛

𝜕𝑣𝑗
𝑛 = 𝜙′(𝑣𝑗

𝑛)∑−
𝜕𝑒𝑛

𝜕𝑣𝑘
𝑛𝑤𝑘𝑗

𝑛

𝑘

This depends on the weight change of the 𝑘-th nodes, which represent the output layer. So, to change
the hidden layer weights, the output layer weights change according to the derivative of the activation
function. Thus, this algorithm represents a backpropagation of the activation function.[2]

2.2. Convolutional Neural Network

The Convolutional Neural Network (CNN) is a type of feedforward network that distinguishes itself by
incorporating at least one convolutional layer within its hidden layers. This layer, along with fully

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning

DOI: 10.54254/2755-2721/75/20240501

21

connected layers akin to those found in Multilayer Perceptrons (MLPs) and pooling layers to downscale
data dimensions, allows CNNs to efficiently process the two-dimensional structure of input data.
Consequently, CNNs exhibit superior performance in tasks such as image and voice recognition when
compared to other deep learning models. The inspiration for this architecture stems from the neural

connections within the animal visual cortex, where individual neurons respond to stimuli within a
restricted area, with the perceptual fields of various neurons overlapping to encompass the entire visual
field.

In the convolutional layer, a set of feature maps is generated by applying a convolution kernel to the
input image. This operation involves an element-wise multiplication followed by a summation,
effectively reducing an area of the kernel’s size in the input to a single numerical value. Consequently,
the dimensional footprint of the matrix diminishes with each pass through a convolutional layer. A layer
of Rectified Linear Units (ReLU) is commonly employed as the activation function to introduce non-

linearity.
Although fully connected feedforward neural networks can be used to learn features and classify data,

this architecture is generally impractical for larger inputs like high-resolution images, as the network
would have too many neurons and weights. Convolution reduces the number of free parameters,
allowing the network to be deeper.[3]

The input image, potentially vast in size, often contains adjacent pixels that are similar and likely
depict the same object. To abstract a more generalized representation of the image, pooling layers are

utilized to condense the outputs of neuron clusters at one layer into a single neuron in the subsequent
layer. Max pooling, the most prevalent form of pooling, reduces data volume by 75% by selecting the

maximum value from every 2 × 2 pixel area. Concluding the process, several fully connected layers
assume the role of classifying the image, employing a methodology similar to that of the MLP. This
structured approach enables CNNs to efficiently handle complex pattern recognition tasks, leveraging
their unique architecture to achieve remarkable performance in various applications.

3. Methods

3.1. Fully Convolutional Network
The Fully Convolutional Network (FCN), developed by Jonathan Long, Evan Shelhamer, and Trevor
Darrell at the University of California, Berkeley, represents a significant advancement in the field of
semantic segmentation. An FCN is characterized by its exclusive reliance on convolutional operations,
which may include subsampling or upsampling, to process input data. This architecture distinguishes

itself from conventional Convolutional Neural Networks (CNNs) by omitting fully connected layers.
However, it is noteworthy that fully connected layers can be conceptualized as convolutions with kernels
spanning the entire input area. Consequently, a CNN can be transformed into an FCN through a process
of fine-tuning, facilitating a seamless transition that leverages the strengths of convolutional processing
for semantic segmentation tasks.

The sizes of fully connected layers are pre-defined, forcing a CNN model to only accept fixed-size
images. The FCN removes these fully connected layers and thus takes images of arbitrary sizes.

Moreover, the FCN utilizes 1× 1 convolutions and trans-convolutions to restore the original size of the
image, making an end-to-end pixel-to-pixel prediction.[4]

The Fully Convolutional Network (FCN) integrates information from earlier layers to achieve a

comprehensive understanding of the image. This approach ensures the retention of finer details, enabling
the generation of precise segmentation boundaries. Through this method, FCNs effectively balance the
need for a global perspective with the preservation of local nuances, facilitating accurate and detailed
semantic segmentation.

3.1.1. The architecture FCN. The FCN starts by convolutionizing existing classification architectures.

Many networks, including AlexNet, VGG 16, and GoogLeNet, can be used as the backbone of FCN.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning

DOI: 10.54254/2755-2721/75/20240501

22

The VGG 16 performs best among these networks, and here we will review the architecture of VGG 16

first.The input layer takes a colorful image in the size of 224 × 224 × 3.

• Block 1
a) Convolutional layer fc1_1 and fc1_2. Each layer convolutes the result from the last layer with

64 3× 3 kernels to produce a 224× 224× 64 feature map.

b) Max pooling layer pool1. It downsamples the image by 2× 2 and produces a 112× 112× 64
feature map.

• Block 2
a) Convolutional layer fc2_1 and fc2_2. They are similar to convolutional layers 1 and 2 but

enlarge the number of kernels to 128 and produce a 112× 112× 128 feature map.

b) Max pooling layer pool2. It downsamples the image by 2× 2 and produces a 56× 56× 128
feature map.

• Block 3
a) Convolutional layer fc3_1 and fc3_2. They again enlarge the number of kernels to 256 and

produce a 56× 56× 256 feature map.

b) Max pooling layer pool3. It downsamples the image by 2× 2 and produces a 28× 28× 256
feature map.

• Block 4
a) Convolutional layer fc4_1 and fc4_2. They further enlarge the number of kernels to 512 and

produce a 28× 28× 512 feature map.
b) Max pooling layer pool4. It downsamples the image by 2× 2 and produces a 14× 14× 512

feature map.

• Block 5
a) Convolutional layer fc5_1 and fc5_2. This time, they keep the number of kernels 512

unchanged and produce a 14× 14× 512 feature map.

b) Max pooling layer pool5. It downsamples the image by 2× 2 and produces a 7× 7× 512
feature map.

• Fully connected layers
a) Fully connected layer 1. It takes 7× 7× 512 neurons and outputs 4096 neurons.
b) Fully connected layer 2. It takes 4096 neurons and outputs 4096 neurons.

c) Fully connected layer 3. It takes 4096 neurons and outputs 1000 neurons.

Every convolutional layer and fully connected layer is activated by a ReLU function. The last layer
is normalized by SoftMax.

The FCN discards the final classification layer and replaces all fully connected layers with

convolutional layers. Then, append a 1× 1 convolutional layer with as many channels as classes,
followed by a deconvolution layer to upsample the output back to the size of the original image. The

convolutional layer can take input in any size. Suppose that the image is ℎ× 𝑤, and the number of

classes is 𝑛.

• Convolutional layer fc6. Using kernels of 7× 7 and dropout, it produces a
ℎ

32
×

𝑤

32
× 4096 feature

map.

• Convolutional layer fc7. Using kernels of 1× 1 and dropout, it produces a
ℎ

32
×

𝑤

32
× 4096 feature

map.

• Convolutional layer fc8. Using kernels of 1× 1, it produces a
ℎ

32
×

𝑤

32
× 𝑛 feature map.

• Transpose convolutional layer. In order to restore the original size, the feature map is upsampled by
32 times and produces a ℎ× 𝑤 × 𝑛 feature map.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/75/20240501

23

3.1.2. The variations of FCN. In the network architecture previously described, the feature map is
upsampled by a factor of 32, leading to its designation as FCN-32. However, directly upsampling by a
factor of 32 often results in diminished accuracy. A proposed solution to this issue involves the
integration of outputs from different convolutional layers. Instead of a singular 32-fold upsampling, the

process begins with the result of the pool5 layer being upsampled by a factor of two, aligning its
dimensions with those of the pool4 layer’s result. These results are then combined and subsequently
upsampled by a factor of 16, a technique referred to as FCN-16.

Advancing this concept, the combined output from the FCN-16 stage is upsampled once more by a
factor of two, matching the dimensions of the pool3 layer’s result. Following another summation, this
output is upsampled by a factor of eight. This iterative refinement culminates in FCN-8, which stands
as the most precise iteration of the Fully Convolutional Network, effectively balancing resolution
enhancement with the preservation of segmentation accuracy.

3.2. The DeepLab family
DeepLab, a novel model family within the realm of semantic segmentation, was developed by Liang-
Chieh Chen, alongside his colleagues at UCLA and Google. This team has achieved notable success in
visual recognition, representation, and deep learning. Originating from the Fully Convolutional Network

(FCN) concept, the DeepLab family has introduced four iterations – versions 1, 2, 3, and 3+ – between
2015 and 2018. Each version built upon its predecessor, incorporating advancements from recent image
classification innovations to enhance semantic segmentation and stimulate further research in the
domain. These developments underscore the evolution of deep convolutional neural networks in
semantic segmentation.

3.2.1. DeepLabv1. DeepLab first came out in 2016[5]. DeepLabv1 amalgamates two established

methodologies: Deep Convolutional Neural Networks (DCNNs) and fully connected Conditional
Random Fields (CRFs). Semantic segmentation networks, evolving from image classification networks,
typically employ a backbone network that has proven effective in image classification tasks. For instance,

as early as 2014, the VGG network, utilizing 3 × 3 convolution kernels, surpassed AlexNet, establishing
itself as the premier solution for image classification. Both DeepLabv1 and FCN leverage the VGG-16
as their backbone network for feature extraction and granular classification.

A pivotal innovation in DeepLabv1 is the introduction of dilated convolutions. This technique
involves expanding the convolutional filters’ field of view through a dilation rate[6], thereby broadening
the contextual scope considered by the filter. This approach mimics an upsampling operation but

maintains the same parameter count, thereby avoiding increased computational costs. It achieves this by
omitting pixels between the targets of the upsampled filter. The application of atrous convolution allows
the network to manage the reduced spatial resolution inherent in deep feature extractors while producing
a larger output matrix and circumventing the need for aggressive upsampling. Although the output from
DCNNs constitutes a segmentation map, the precise localization of features necessitates further
refinement, achieved through the application of fully connected CRFs to enhance performance.

Figure 2. Atrous convolution with a 3 × 3 kernel and different rates. Blocks in color are taken into

consideration.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning

DOI: 10.54254/2755-2721/75/20240501

24

Conditional Random Fields (CRFs) are composed of interconnected nodes, each assigned a label
influenced by its immediate neighbors. They are frequently employed to mitigate noise and accentuate
boundaries within noisy segmentation maps. By applying CRFs iteratively to the output of Deep
Convolutional Neural Networks (DCNNs), the segmentation map becomes progressively refined,

achieving clearer boundaries near object edges. In the context of DeepLabv1, approximately ten
iterations of CRF application are sufficient to produce a segmentation map of adequate accuracy.
However, it’s important to recognize CRFs as a post-processing technique; this architecture does not
support end-to-end and real-time prediction capabilities.

3.2.2. DeepLabv2. The second iteration of DeepLab, introduced in 2017 by the original authors, marked

a significant enhancement by substituting the VGG backbone with ResNet and incorporating Atrous
Spatial Pyramid Pooling (ASPP) within the convolutional layers.

Long before the advent of deep learning, spatial pyramids were a cornerstone algorithm in computer
vision, serving as a fundamental technique for numerous algorithms, such as SIFT, to maintain
consistent scale. The introduction of the Spatial Pyramid Pooling (SPP) network brought the concept of
spatial pyramids into convolutional networks, with DeepLabv2 advancing this by introducing an atrous
variant of the SPP module.

The SPP module enables the network to encapsulate features of varying scales into fixed-size feature
maps, somewhat akin to the “bag of words” approach. However, instead of merely aggregating elements,
it involves assigning elements within new feature vectors in varying proportions based on their scale.
For instance, one eigenvalue may represent the global scale, two eigenvalues the larger scale, and three
eigenvalues the smaller scale. Consequently, a fixed-size feature map comprising six values is obtained.
In the actual ASPP module, as illustrated, four different scales are defined by varying atrous rates (6,
12, 18, 24), allowing for a comprehensive encoding of features across multiple scales.[7]

Figure 3. Atrous Spatial Pyramid Pooling (ASPP)

In the architectures of FCN and DeepLabv1, the input dimension is constrained to 224 × 224 to

align with the predetermined connectivity of the fully convolutional layer, which is 28 × 28 × 1024.
The introduction of the Spatial Pyramid Pooling (SPP) module enables our network to accommodate
inputs of varied sizes without necessitating modifications to the fully convolutional layer. This flexibility
is partly due to the atrous convolution employed by the SPP module, which additionally confers the

benefits of an expanded field of view and reduced computational demand. A notable distinction between
versions 1 and 2 of DeepLab is the implementation of a new multiscale structure. Unlike its predecessor,
DeepLabv2 circumvents the need to process computational features at different scales by applying
parallel processing to images scaled at 1.0, 0.75, and 0.5, thereby facilitating multiscale feature fusion.
The efficacy of this design is debatable, as executing identical computations thrice inevitably prolongs

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning

DOI: 10.54254/2755-2721/75/20240501

25

both inference and training times. However, its effectiveness in enhancing performance on the PASCAL
dataset is unequivocal, underscoring its value in improving semantic segmentation outcomes.

3.2.3. DeepLabv3. The implementation of atrous convolution and spatial pyramid pooling significantly

contributed to the successes of DeepLabv1 and v2, prompting the authors to further investigate this
approach, particularly focusing on the Atrous Spatial Pyramid Pooling (ASPP) module. DeepLabv3
continues to utilize the ResNet backbone. Unlike in v2, where ASPP amalgamated features of four
different scales into a single fixed-size feature, the unique characteristics of atrous convolution presented
challenges in capturing both minuscule local features, such as tiny edges, and extensive global features.

To encompass a broader spectrum of information, DeepLabv3 introduced a redesign of the ASPP

module to incorporate a separate global image pooling channel for global features. This is then combined
with the ASPP via a 1x1 convolutional cascade, enabling the network to utilize fine-grained details.
Additionally, the ASPP module was enhanced by integrating batch normalization post-convolution and
pre-ReLU.[8]

The approach to multi-scale methods in DeepLabv3 also deviates from that of DeepLabv2.
Recognizing the inefficiencies in the training process of DeepLabv2, the authors opted to apply multi-
scale techniques during inference instead. Consequently, during training, the network employs only the

original image scale rather than three. At inference, the network processes the input image at six different
scales – 0.5, 0.75, 1.0, 1.25, 1.5, and 1.75 – averaging the outputs to refine the results.

DeepLabv3’s advancements in benchmarking metrics signify a point of optimization where adding
Conditional Random Fields (CRF) post-processing steps became redundant. As a result, CRF was
omitted in DeepLabv3 and subsequent versions. Employing multi-scale and flip techniques, alongside
the generation of expansive feature maps through reduced output strides, effectively mitigates prediction
uncertainties, enhancing the network’s final output accuracy.

3.2.4. DeepLabv3+. DeepLabv3+ is the most up-to-date version of the DeepLab family, presented in

2018[9].
Encoding has become a foundational concept in semantic segmentation, with prominent frameworks

such as FCN, U-Net, and E-Net embracing this strategy. These models initially leverage a backbone
network to compress the image into a compact feature vector, followed by the employment of a
ConvolutionTranspose layer to develop a decoder network that upsamples the features. Convolution

transpose serves as the inverse of convolution, distributing values from a singular point across a broader
area rather than aggregating multiple inputs into one. The decoder’s objective is to devise a methodology
for reconstructing the information lost during the encoding phase. However, in DeepLabv1 and v2, the
authors critiqued the reliance on the encoder-decoder paradigm, positing that atrous convolution, with
its capability for high-resolution processing, could similarly facilitate upsampling effects while
minimizing information loss. Despite this, the decoder structure, particularly convolution transpose,
remains prevalent in other network designs due to its straightforward implementation. Consequently,

DeepLabv3+ assimilates a nuanced comprehension of the encoder-decoder framework to further
enhance model performance, bridging the gap between theoretical critique and practical application in
the evolution of semantic segmentation technologies.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/75/20240501

26

Figure 4. The Encoder-Decoder structure in DeepLabv3+

The encoder component of DeepLabv3+ is derived from the original DeepLabv3 network,

comprising both the backbone DCNN and the Atrous Spatial Pyramid Pooling (ASPP) module. Inputs
to the decoder include the output from the ASPP and an intermediate feature output from the backbone
network, with the decoder employing convolution and bilinear upsampling to incrementally enhance the
resolution of the output by a factor of eight. Interestingly, the DeepLabv3 study revealed that
incorporating global pooling (image-level feature fusion) within the ASPP module, when used alongside
the decoder, actually detracted from the model’s performance on the Cityscapes dataset. This
observation might indicate that the functional fusion strategies employed in DeepLab have reached a

point of saturation, where additional integrations fail to contribute to performance improvements. It
suggests the possibility that the network architecture could be excessively tailored to the PASCAL
dataset, potentially leading to overfitting concerns.

4. Evaluation

4.1. The Dataset and Evaluation Indicators

This article primarily examines the performance of various models on relatively small datasets. Our
dataset comprises 367 pre-labeled images designated for training, alongside an additional 101 pre-

labeled images for testing purposes. Each image, originally sized at 480× 360, is resized to 224× 224
prior to undergoing training and testing. All models are developed using Keras, a comprehensive
framework tailored for deep learning applications.

Performance metrics, including loss and accuracy on the training set, are directly obtainable from the
code’s output. Furthermore, a separate set of metrics – prefixed with “val_” for validation loss and

accuracy – stem from the cross-validation process, serving as crucial indicators for assessing model
performance.

An additional key metric is the Intersection over Union (IoU), which quantifies the degree of overlap
between two areas; in this context, the overlap between the model’s predicted region and the pre-labeled
region. An IoU value approaching 1 signifies superior model accuracy.

4.2. Result

We have executed and analyzed three variants of the Fully Convolutional Network (FCN) model: FCN-
32, FCN-16, and FCN-8. Given the similarities within the DeepLab model family, DeepLabv3 was
selected as a representative example for comparison.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning

DOI: 10.54254/2755-2721/75/20240501

27

All models were trained using Google Colab equipped with a T4 GPU. Each model underwent 100
epochs of training, during which we monitored loss and accuracy on both the training and cross-
validation sets, in addition to the mean Intersection over Union (IoU). The outcomes are concisely
summarized in Table 1.

Table 1. The performance of different models

Model Loss Accuracy Val Loss Val Accuracy Mean IoU Running Time

FCN-32 0.6026 0.8238 0.6298 0.8173 0.3480 19min 25s

FCN-16 0.4177 0.8804 0.4550 0.8685 0.4276 20min 25s

FCN-8 0.5061 0.8556 0.5515 0.8416 0.3831 20min 25s

DeepLabv3 0.4929 0.8443 0.7718 0.7602 0.3422 16min 42s

Figure 5 illustrates the progression of loss and accuracy for each model throughout the training period.
Analysis of these graphs reveals that initially, all models exhibit a rapid convergence in terms of loss

and accuracy, which decelerates after approximately ten epochs. However, the FCN-32 model
demonstrates a markedly slower convergence rate in comparison. It requires about 20 epochs to
adequately learn image features before showing significant improvement. This slower rate of learning

may not be conducive to applications necessitating real-time training. Furthermore, the trend suggests
that with additional epochs, further convergence could be expected from the FCN-32 model.

Figure 5. Loss and accuracy for different models in the first 100 epochs

To our great surprise, FCN-16 has the best performance among all four models when running for the
same number of epochs, which is 100 in this case. It converges rapidly and is stable. Although we believe

it will continue to converge when running more epochs, it gives a satisfying output in barely tens of
epochs.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/75/20240501

28

The FCN-8 model exhibits unexpected behavior around the ninth epoch, where it regresses.
Subsequently, its training performance continues to fluctuate, with both loss and accuracy showing
instability. This inconsistency, coupled with its lower accuracy, renders it less effective than the FCN-
16 model, despite its capacity to encapsulate a broader perspective of the input.

The DeepLabv3 model, on the other hand, is a total disaster. The loss and accuracy on the training
data converge stably as expected, but on the validation set, they dance across everywhere. Predicting
future loss and accuracy is not easy, so early-ending conditions may be falsely triggered, leaving the
model not completely trained. Even if the model converges in the last, it would take many more epochs
than the FCN models.

4.3. Insights to the models

We initially anticipated that DeepLab models would outperform FCN models. However, our testing
revealed otherwise, indicating that newer generations of models do not always surpass their predecessors
in performance. Upon examining the theoretical underpinnings of these models, we identified several
factors potentially impacting DeepLab’s performance:

• Data size limitations. DeepLab models likely require more extensive datasets to leverage their full
capabilities. With smaller datasets, there may not be sufficient data for the model to stabilize its
learning process, potentially leading to the fluctuations observed.

• Parameter tuning. While most parameters within the model are adjusted during the training phase,
some, including learning and dilation rates, are preset within the model's architecture. Fine-tuning
these parameters could enhance performance. However, there is a risk that such adjustments may
only be beneficial for the specific dataset used and may not generalize well to others, reverting the
model to its baseline performance.

• Model complexity. The inherent complexity of DeepLab models, compared to FCN models, might
result in overfitting, particularly with smaller datasets. In such instances, a simpler model could be

more effective.

These insights suggest that while DeepLab models offer advanced capabilities, their optimal
application and performance are contingent upon careful consideration of dataset characteristics,
parameter settings, and model complexity.

5. Conclusion

The Fully Convolutional Network (FCN) models and the DeepLab family represent effective
frameworks for semantic segmentation, typically achieving high accuracy. Their performance largely
depends on the availability of extensive datasets. When constrained to smaller datasets, their behavior
diverges from expectations, particularly for models anticipated to excel.

Among them, the FCN-16 model emerges as the most effective, demonstrating the lowest loss and
highest accuracy and Intersection over Union (IoU) metrics. Its rapid convergence rate further
underscores its suitability for applications requiring real-time training. On the other hand, DeepLab
models exhibit suboptimal performance on smaller datasets. To unlock their full potential, it is advisable

to provide them with as much data as possible, highlighting the critical role of data volume in achieving
optimal model performance.

References

[1] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

[2] Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1998.
[3] Hamed Habibi Aghdam, Elnaz Jahani Heravi, Hamed Habibi Aghdam, and Elnaz Jahani Heravi.

Convolutional neural networks, 2017.
[4] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic

segmentation, 2015.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/75/20240501

29

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille.
Semantic image segmentation with deep convolutional nets and fully connected crfs, 2016.

[6] George Papandreou, Iasonas Kokkinos, and Pierre-André Savalle. Untangling local and global
deformations in deep convolutional networks for image classification and sliding window

detection, 2014.
[7] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille.

Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs, 2017.

[8] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation, 2017.

[9] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam.
Encoder-decoder with atrous separable convolution for semantic image segmentation, 2018.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/75/20240501

30

