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Abstract. Medical image segmentation is crucial in the fields of computer vision and medical 
image processing. Its difficulty lies in precisely extracting regions of interest from images, such 
as blood vessels, tumors, or other anatomical structures, which is especially important in retinal 
images and skin pathology images. However, factors like noise, low contrast, and the complexity 
of target structures in medical images severely affect the accuracy of segmentation.Despite 
significant progress made by deep learning models such as U-Net in medical image segmentation, 
their performance still needs improvement when dealing with medical images with complex 
contexts and long-range dependencies. To tackle these challenges, we introduce a new deep 
learning model named GSANet.The GSANet model retains the advantages of U-Net while 
incorporating two innovative modules to enhance its performance in handling challenging 
medical image segmentation tasks. We assess the GSANet model's performance on two 
demanding medical image segmentation tasks, DRIVE and ISIC2018. Experimental findings 
illustrate that the GSANet model achieves significant performance enhancements on these tasks, 
surpassing the current state-of-the-art methods.The success of the GSANet model can be 
attributed to its effective design and implementation. GSANet excels in handling medical image 
segmentation tasks with complex contexts and long-range dependencies, leading to superior 
performance. Our research highlights the superiority of the GSANet model in medical image 
segmentation tasks, opening up new possibilities for further improvements in the performance 
and accuracy of medical image segmentation. 
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1.  Introduction 
Medical image segmentation [1, 2] is a critical research problem in the fields of computer vision and 
medical image processing. However, medical image segmentation faces numerous challenges, 
particularly in dealing with issues like noise, low contrast, and the complexity of target structures, all of 
which can negatively impact the accuracy of segmentation results. 

In recent years, deep learning has made significant advancements in medical image segmentation 
tasks. U-Net’s [3] impressive performance on many problems, however, there is still room for 
improvement when dealing with challenging medical image tasks, and the acquisition and processing of 
medical images may introduce various biases that need to be properly addressed during the segmentation 
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process. Specifically, U-Net may not fully capture complex contextual information and long-range 
dependencies in the images, leading to reduced segmentation accuracy. 

To address these issues, we propose model called GSANet. This model adopts the U-shaped 
architecture and introduces several innovative modules to overcome the limitations of U-Net. These new 
modules include the Graph Self-Attention (GSA) module and the Global Interaction Block. The GSA 
module effectively captures long-range dependencies and complex contextual information in the images, 
while the Global Interaction Block enhances the model's representational capacity by complementing 
and integrating features. Moreover, the attention block improves segmentation accuracy by allowing the 
model to focus more on key information in the images. 

We evaluate the GSANet model on the DRIVE dataset and ISIC2018 dataset. Our experimental 
results demonstrate that by using GSANet, our model achieves significant performance improvements 
on these tasks. 

The primary contributions of this paper are outlined as follows:  
1. Our model leverages the strengths of U-Net while introducing novel modules, including the Graph 

Self-Attention (GSA) module, Cross Update Block, and Attention Block. These modules address the 
limitations of U-Net in handling challenging medical image tasks. 

2. The experimental results demonstrate significant performance improvements achieved by our 
model on these challenging medical image segmentation tasks. These findings validate the effectiveness 
of our designed modules and highlight the superiority of our model. 

In the subsequent sections, we provide an elaborate description of our proposed deep learning model 
and its innovative modules. We then present the experimental setup, results, and discussions, followed 
by conclusions and future research.  

2.  Related work 

2.1.  Unet 
U-Net has been widely used for various image segmentation tasks since its introduction in 2015.The key 
innovations of U-Net lie in its symmetric encoder-decoder architecture and skip connections. The 
symmetric encoder-decoder architecture allows the network to learn features at different resolution 
levels, while skip connections enable the network to reuse features from low-resolution levels at higher-
resolution levels. These two design aspects together allow the network to retain fine-grained details of 
the images while also capturing contextual information. 

While U-Net has exhibited strong performance across numerous medical image segmentation tasks, 
there remains potential for enhancement in addressing challenging medical image tasks. For instance, 
U-Net may not provide satisfactory results when dealing with medical images that contain complex 
contextual information and long-range dependencies. This is mainly because the skip connections in U-
Net may not effectively capture long-range contextual dependencies, and its encoder-decoder 
architecture may encounter difficulties in capturing complex contextual information. Therefore, 
improving U-Net to better address these challenging tasks remains an important research question in the 
field of medical image segmentation. 

2.2.  Graph Convolutional Network (GCN) 
Graph Convolutional Network (GCN) [4] is a neural network tailored for graph data. GCN's core 
concept revolves around efficiently integrating neighboring information of nodes within the graph via 
graph convolutional operations, thereby capturing intricate dependencies inherent in the graph structure. 
In this process, graph nodes are regarded as carriers of signals, and graph edges represent the paths for 
signal propagation. GCN achieves local signal propagation and integration on the graph by defining 
graph convolutional operations. In the original GCN model, graph convolutional operations are defined 
as a linear combination of node features and their neighboring node features. Specifically, given a graph 
𝐺 = (𝑉, 𝐸), where 𝑉 is the set of nodes and 𝐸 is the set of edges,for each node 𝑣! ∈ 𝑉, its feature ℎ! is 
updated as the weighted average of its neighboring node features: 
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             ℎ!" = ∑ 𝑤!##∈%(!) ℎ#                     (1) 

where 𝑁(!) is the set of neighboring nodes of node 𝑣!,and 𝑤!#is the weight of the edge between node 
𝑣!and node 𝑣#which controls the influence of different neighboring nodes on the current node. 

However, traditional GCN may struggle to handle medical images with complex feature distributions 
and noisy interference. This is because traditional GCN only considers first-order neighbor information 
of the graph, neglecting higher-order neighbor information. Additionally, traditional GCN does not take 
into account node-specific information, which could lead to information loss. Moreover, when the graph 
structure is very complex or the graph scale is large, the effectiveness of GCN may be compromised. 
Therefore, improving GCN to better address these issues is also an important research question in the 
current context. 

3.  Method 

 
Figure 1. A brief description of our proposed model 

As shown in Fig 1, our GSANet model is based on the U-Net architecture and introduces two innovative 
modules: Graph Self-Attention (GSA) and Global Interaction Block (GIB). These modules are 
integrated into the U-Net encoder to address the limitations of U-Net in handling complex image 
contexts and long-range dependencies. The GSA module captures long-range dependencies and 
complex contextual information in images, while the GIB module enhances the model's representation 
capabilities by integrating global, local, high-level, and low-level features. This design aims to improve 
the model's understanding of internal image structures and its robustness to input biases, optimizing 
performance in challenging tasks such as medical image segmentation. 

3.1.  Graph Self-Attention 
For the first time, we introduce the Graph Self-Attention (GSA) module, as shown in the Fig 2 which is 
based on the self-attention mechanism [5] of Graph Convolutional Networks (GCN), to effectively 
capture long-range dependencies and complex contextual information in the image. In the GSA module, 
we first calculate a similarity matrix based on the input feature map, which measures the similarity 
between each pair of pixels. The computation of this similarity matrix can be described using the 
following equation: 
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Figure 2. A brief description of Graph Self-Attention block 
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This formula essentially uses a Gaussian kernel function [6] to compute the similarity between each 
pair of pixels and normalizes it. Subsequently, this similarity matrix is used to update the feature map. 
The new feature of each pixel is a weighted sum of its neighboring features, where the weights are 
determined by the similarity matrix. This updating process can be described by the following formula: 

 ℎ!" = ∑ 𝑆!#%
#*+ ℎ#

   
(3) 

This formula effectively performs a weighted sum of features, where the weights are determined by 
the similarity matrix. This mechanism allows each pixel to receive information from the entire image, 
efectively capturing long-range dependencies and complex contextual information. 

 
Figure 3. A brief description of Global Interaction Block

 

3.2.  Global Interaction Block 
In our research, we found that the simple attention mechanism did not fully utilize the global and local 
information in the image, as well as the high-level and low-level features. Therefore, we proposed a new 
module called Global Interaction Block (GIB). This module combines the attention mechanism and 
cross-update strategy, which can use global and local information, as well as high-level and low-level 
features at each level. The design philosophy of the GIB originates from the concept of inductive bias. 
In the GIB, our inductive bias is to let the model learn and use global and local features, as well as high-
level and low-level features simultaneously. This design enables the model to learn and predict on 
multiple scales, thereby improving the model’s generalization ability and performance. In the GIB, we 
first process the feature image through the self-attention mechanism to extract global and local feature 
information. Then, we use a cross-update strategy to fuse these feature information together. Specifically, 
we use a soft attention mechanism to average the global features and local features by weight, generating 
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a new feature map. Finally, this new feature map is fused with the original feature map to generate the 
final output feature map. Let there be feature maps G and E, both with dimensions of C × H × W , where 
C represents the number of channels, and H and W are the height and width of the feature maps, 
respectively. First, we flatten the feature maps G and E to C ×N, where N = H ×W, resulting in Gflat 
and Eflat. Subsequently, we compute the matrix multiplication of Eflat and Gflat and perform softmax 
normalization along the last dimension to obtain the class-specific feature Fc: 

   𝐹, = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
-/012
3 ⋅//012
√1

) (4) 

Following this, we perform matrix multiplication of Fc and Eflat , and reshape it back to the original 
spatial dimensions C×H×W , resulting in the class-specific feature F : 

 𝐹 = 𝑅eshape(𝐹, ⋅ 𝐸23456 , (𝐶, 𝐻,𝑊))                   (5) 

Here, the reshaping operation is defined as follows: 

 𝐹ijk = 𝐹2345', , 𝑖 ∈ {1,2, . . . . , 𝐶}, 𝑗, 𝑘 ∈ {1,2, . . . . , 𝑁}        (6) 

Finally, we perform element-wise addition of the class-specific feature 𝐹 and the original feature 
map 𝐺 to produce the final output feature map 𝑂: 

 𝑂 = 𝐹 + 𝐺                 (7) 

4.  Experiments 

4.1.  Experimental Dataset and Parameter Settings 
The experiments utilized two medical image datasets, DRIVE [7] and ISIC2018 [8, 9], for retinal and 
skin pathology image segmentation tasks, respectively. These datasets contain complex medical images 
with unclear and blurry edges. To efficiently leverage limited data, we divided them into training and 
validation sets in a 9:1 ratio. Training and validation were conducted using the PyTorch framework, 
employing the SGD optimization [10] algorithm with an initial learning rate of 0.01. During training, 
the model was guided by the kl loss function [11]. 

Table 1. Model Evaluations 

Model Dataset DICE Miou 
Unet[3] DRIVE 81.31 81.60 

 ISIC18 72.14 74.55 
Unet++[12] DRIVE 82.44 82.63 

 ISIC18 78.32 75.12 
g-U-Nets[13] DRIVE 83.17 84.21 

 ISIC18 78.94 79.13 
TransUnet[14] DRIVE 84.16 85.35 

 ISIC18 81.66 83.51 

GSANet DRIVE 
ISIC18 

86.13 
83.74 

87.56 
84.18 

4.2.  Experimental Results 
Table 1 shows the performance of our GSANet model and other comparative models in terms of Dice 
coefficient and Miou on the DRIVE and ISIC2018 datasets. The results indicate that our GSANet model 
outperforms all other models, achieving the highest Dice coefficient and Miou on both the DRIVE and 
ISIC2018 datasets. This demonstrates that our model accurately identifies and segments the vascular 
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structures in retinal images and effectively recognizes the shapes of skin lesions, even when the 
boundaries between the lesion regions and the surrounding healthy skin are not well-defined. 

Through comparisons with other models, we observed that the GSANet model exhibits more 
significant advantages when dealing with complex images. This can be attributed to the effectiveness of 
the GSA and GIB modules in our model, which can extract and integrate both local fine details and 
global contextual information from the images, resulting in more accurate segmentation.  

 
Figure 4. comparison of different approaches by visualization. 

Moreover,from the visualization results in Fig 4, we can observe that the segmentation results of the 
GSANet model are very close to the Ground Truth. Our model accurately identifies and segments the 
target structures, even in cases where the boundaries of the target structures are unclear or mixed with 
background information. Even when other models struggle to segment the detailed parts, the GSANet 
model can still accurately delineate the boundaries of the target. By fully leveraging the global and local 
information of the images, as well as high and low-level features, this once again demonstrates the 
outstanding performance of our model in handling complex medical image data. 

5.  Conclusion 
In this study, we present a new model GSANet, dedicated to addressing the challenges in medical image 
segmentation. GSANet integrates the U-Net architecture with the innovative Graph Self-Attention (GSA) 
module and Global Interaction Block (GIB), demonstrating significant superiority over existing methods 
in handling complex medical tasks such as retinal and skin pathology image segmentation. The GSA 
module effectively captures long-range dependencies and complex contextual information in images, 
providing crucial support for understanding the structure and texture of medical images. Simultaneously, 
the GIB module enhances the model's understanding by integrating global and local feature information. 
While GSANet excels in medical image processing, there is still room for improvement. Currently, the 
model focuses on global and local information, and future research can delve deeper into exploring high-
level and low-level features to further enhance performance. 
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