

Development and application of intelligent judicial trial

assistance system based on generative artificial intelligence

and machine learning technology

Yaohao Lian1,2,*, Yining Yang1,3

1Hebei University of Economics and Business, Hebei, 050000, China

22052653670@qq.com
33195587298@qq.com
*corresponding author

Abstract. The intelligent judicial trial assistance system is an intelligent auxiliary judicial trial

tool based on generative artificial intelligence and machine learning technology. It can achieve

auxiliary functions such as case upload, trial result prediction, and legal document generation

through automated, digital, and informational means. It utilizes technologies such as Recurrent

Neural Networks (RNN) and Long Short-Term Memory networks (LSTM) to train generative

models for generating trial recommendations and assisting in decision-making. Through in-depth

research on the working principles and optimization paths of the intelligent judicial trial

assistance system, the best applicable path for the system in judicial trial practice is explored. By

establishing optimized models, risks and biases are minimized to the greatest extent.

Keywords: Intelligent judiciary, Machine learning, Generative artificial intelligence, Deep

neural networks, Model training.

1. Introduction

With the accelerating process of information society, facing the high cost of information acquisition,

low efficiency, uncertainty of trial results, and the issue of insufficient judicial resources due to "high

case volume and few personnel" in the traditional judicial trial process [1], this project aims to promote

the construction of informatization in the judicial field through the development of a well-functioning

intelligent judicial trial assistance system. At the same time, it accelerates the construction process of

the innovative "AI + Legal Studies" model, providing more convenient and fair judicial services to all

sectors of society. It offers judges an interpretable decision-making process, increasing the scientific

and legal integrity of judicial trials. Meanwhile, it optimizes resource allocation, enhances the efficiency

of judicial resource utilization, alleviates the situation of "high case volume and few personnel" faced

by China's judiciary, and improves the work efficiency and public service level of judicial organs [3].

2. Implementation Path Planning

2.1. Functional Path Planning

（1）User Registration and Login:

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/75/20240542

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

223

Users (such as judges, legal personnel, etc.) need to register and log in to the system to ensure the

independence and security of each user. This system primarily uses Python's Flask framework and

requests library to implement user registration and login functionality based on HTTP POST.

（2）Case Upload:

Users need to upload or input basic information about a case, such as case type, legal provisions,

involved parties' information, evidence materials, etc. This data is collected and organized by the system

as a basis for subsequent analysis, mainly through Flask server, SQLAlchemy, Spacy, and NLTK

technologies to implement uploading, processing, extracting, and saving case information to the

database.

（3）Data Processing and Preprocessing:

The system processes and preprocesses the case data uploaded by users, such as data cleaning, feature

extraction, data encoding, etc., as preparation for subsequent machine learning model training. Using

pandas and scikit-learn libraries to read, load, process, and prepare case data, loading data into pandas

DataFrame from SQLAlchemy database, then splitting, cleaning, and processing the loaded case data.

Continuing with feature selection and preprocessing, separating features and target variables from the

dataset, encoding categorical variables, extracting useful characteristics from text columns, and finally

splitting the dataset into training and test sets.

（4）Prediction Model Generation:

The preprocessed data can be used to build and train prediction models using XGboost and scikit-

learn, to implement functions such as case outcome prediction, case duration prediction, key influencing

factors identification, and case trend prediction. Through the implementation of prediction functions,

users can have a more reasonable expectation of the case judgment. Case outcome prediction, case

duration prediction, and key influencing factors identification can be well implemented using the

XGboost model, while case trend prediction requires the use of time series model ARIMA, which

necessitates preprocessed data containing time information and being sorted by time.

（5）Generation of Trial Suggestions and Assistance in Decision Making:

By training the model with a large amount of historical case data, conducting model learning, and

using this as the basis for generating trial suggestions and assisting in decision-making. Utilizing

Seq2Seq models, attention mechanisms, RNN, and LSTM for the construction of generative models,

first creating two inputs, one for the encoder and one for the decoder, using embedding layers for vector

embedding of these two inputs. Then, creating an LSTM encoder to receive the embedded encoder input

and generate two hidden states. Next, using an LSTM decoder, taking the encoder's hidden states as

initial states, receiving the embedded decoder input, and decoding new outputs. Following this, using

an attention layer, which receives outputs from both encoder and decoder, by calculating attention

weights, to decide which part of the input sequence to focus on more, producing attention results. Finally,

connecting the decoder's output and attention results, passing them through a fully connected layer to

output the desired result and define the model. To train the model, data preparation is needed, including

input data of cases (such as case details) and relevant target data (such as expected judgment outcomes).

Using a suitable dataset to train the attention mechanism, during the training process, the model will

attempt to learn how to produce the correct judgment outcomes from input cases, adjusting model

parameters to achieve this goal. Once the model is trained, given new case inputs, the model will

generate judgment suggestions based on previous training, providing references for generating trial

suggestions and assisting in decision-making for users.

（6）System Learning and Optimization:

To optimize the system based on user feedback and actual case outcomes, a cyclic feedback system

is needed. This system collects actual case outcomes and user feedback, using this information as new

data to train and optimize the prediction models. By creating a Deep Neural Network (DNN) and training

and optimizing it using the Deep Q-Learning (DQN) algorithm, the network initially predicts the

maximum potential reward of the next state and updates the model's valuation of the current state and

action accordingly. If we reach the end state, then the reward is what has already been obtained.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning

DOI: 10.54254/2755-2721/75/20240542

224

Otherwise, we add a discounted maximum potential reward as our target value. Then the network

optimizes by matching predictions and targets.

（7）Trial Conclusion and Case Archiving:

The system archives all case materials, prediction results, trial processes, and final outcomes for

future queries and learning. Creating an SQLite database and establishing a case table to save case

information, each record contains the case ID, name, judgment, etc., and a status bit to record whether

the case has been archived. Then, inserting a case record, marking a case as archived status. Following

this, using the Whoosh module to create a full-text search index, then adding case information to this

index for full-text searching.

Figure 1. Functional Path Diagram

2.2. Process Planning

Process One: New users need to register an account through the user interface. In the registration

endpoint, users are required to enter a username and password, then this information will be stored in

the database. At the login endpoint, users enter their username and password again, and the system will

verify whether these inputs match the information stored in the database. After logging in, users can

upload cases through the user interface.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning

DOI: 10.54254/2755-2721/75/20240542

225

Registration for new users:

import requests

import json

def register_user(username, password):

url = 'http://your_website.com/register'

headers = {'Content-Type': 'application/json',}

payload = {'username': username,'password': password, }

response = requests.post(url, headers=headers, data=json.dumps(payload))

if response.status_code == 200:

print('user registration succeeded!')

else:

print('user registration failure!')

register_user('MyUsername', 'MyPassword')
User login:

import requests

import json

def user_login(username, password):

url = 'http://your_website.com/login'

headers = {'Content-Type': 'application/json',}

payload = {'username': username, 'password': password,}

response = requests.post(url, headers=headers, data=json.dumps(payload))

if response.status_code == 200:

print('user login successful!')

else:

print('user login failure!')

user_login('MyUsername', 'MyPassword')
Process Two: Users select the type of case they are uploading (criminal, civil, administrative),

information about the people involved, evidence materials, legal provisions, and other case information.

The system will receive and save the case information uploaded by users; read and process the text data

in the file; perform natural language processing; use SQLAlchemy to save the processing results to the

database.

Initially, set up a simple Flask server to receive uploaded case information:

from flask import Flask, request

from werkzeug.utils import secure_filename

import os

app = Flask(__name__)

@app.route('/upload', methods=['POST'])

def upload_file():

if request.method == 'POST':

f = request.files['file']

filename = secure_filename(f.filename)

f.save(os.path.join("uploads", filename))

process_file(os.path.join("uploads", filename))

return 'File uploaded and processed successfully'

if __name__ == "__main__":

app.run(debug=True)
Then process the case information, read file content, and perform natural language processing

and saving to the database operations:

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/75/20240542

226

from sqlalchemy import create_engine, MetaData, Table

from sqlalchemy.orm import sessionmaker

import spacy

from nltk.corpus import stopwords

nlp = spacy.load("en_core_web_sm")

stop_words = set(stopwords.words('english'))

def process_file(filepath):

with open(filepath, 'r') as f:

text = f.read()

doc = nlp(text)

nouns = [chunk.text for chunk in doc.noun_chunks]

verbs = [token.lemma_ for token in doc if token.pos_ == "VERB"]

nouns = [word for word in nouns if word not in stop_words]

verbs = [word for word in verbs if word not in stop_words]

engine = create_engine('sqlite:///cases.db')

metadata = MetaData()

cases = Table('cases', metadata, autoload_with=engine)

Session = sessionmaker(bind=engine)

session = Session()

new_case = cases.insert().values(file_path=filepath, nouns=nouns, verbs=verbs)

session.add(new_case)

session.commit()

Process Three: After the system cleans and preprocesses the uploaded case data, it imports them into

the predictive and generative models. The system can generate predictions on the case outcomes,

duration, influencing factors, and trends based on the trained models, and generate trial suggestions and

assistance in decision-making tailored to the uploaded cases.

Process Four: The system archives the adjudicated case materials, trial process, and trial results, and

creates retrieval methods for later review and learning.

Perform case closure operations, setting the case to archived status:

import sqlite3

conn = sqlite3.connect('case.db')

c = conn.cursor()

sql_create = '''CREATE TABLE CASE(ID INT PRIMARY KEY NOT NULL,NAME

TEXT NOT NULL,VERDICT TEXT NOT NULL,DECISION TEXT,ARCHIVED INT);'''

c.execute(sql_create)

sql_insert = '''INSERT INTO CASE(ID,NAME,VERDICT,DECISION,ARCHIVED)

VALUES (1, 'Case A', 'Guilty', '10 years in prison', 0)'''

c.execute(sql_insert)

conn.commit()

sql_archive = '''UPDATE CASE set ARCHIVED = 1 where ID = 1'''

c.execute(sql_archive)

conn.commit()
Create a method for retrieving historical cases:

from whoosh.index import create_in

from whoosh.fields import *

from whoosh.qparser import QueryParser

schema = Schema(id=NUMERIC(stored=True), content=TEXT)

index = create_in("whoosh_index", schema)

writer = index.writer()

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning

DOI: 10.54254/2755-2721/75/20240542

227

writer.add_document(id=1, content='Case A Guilty 10 years in prison')

writer.commit()

searcher = index.searcher()

parser = QueryParser("content", index.schema)

myquery = parser.parse("Guilty")

results = searcher.search(myquery)for hit in results:

print(hit["id"])

Figure 2. User Usage Diagram

3. Prospects and Challenges

The application of intelligent judicial trial assistance systems in the field of judicial practice can help

judicial personnel automatically process legal documents and cases, reduce manual workload, assist

judges in making more rational judgments, and improve judicial efficiency. It can also be used for public

legal education, enabling the public to better understand and apply the law [1]. However, the practical

application of the system also faces many challenges. Legal cases often involve the private information

of multiple parties, and how to conduct efficient machine learning while meeting data protection and

privacy regulations is a challenge. Moreover, training accurate machine learning models requires a vast

amount of high-quality data. The legal field has strict regulations and standards, and ensuring the

system's output complies with these regulations and standards is also a major challenge [5]. Despite the

increasingly powerful decision-making capabilities of machine learning models, their interpretability

often remains poor, which could affect user trust and acceptance. In summary, while the intelligent

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/75/20240542

228

judicial trial assistance system presents significant prospects, it also faces numerous challenges.

Overcoming these challenges to explore a truly suitable application path is necessary to unlock the

system's potential value in the judiciary [2].

4. Conclusion

This system is an intelligent judicial trial assistance system that combines generative artificial

intelligence and machine learning technologies. It aids professionals in making more accurate judgments

and decisions by analyzing and learning from a vast array of legal cases and regulations. Its design

concept includes needs analysis, model selection, data preparation, model training and validation,

system design and testing, and finally deployment and optimization [4]. The emergence of this system

signifies the arrival of an era of intelligence, expected to significantly improve the work efficiency of

legal professionals. Additionally, with the continuous increase in data, the system's judgment capability

and accuracy are expected to improve over the long term, making it a powerful legal assistance tool.

However, from a practical and application perspective, the system will also face some challenges, such

as how to protect data privacy, improve data quality, solve technical complexity, comply with regulatory

requirements, enhance system interpretability and trust, avoid erroneous decisions, and ensure the

system's continuous update and maintenance. Therefore, overcoming these issues through technological

improvements and strict management is necessary to realize the system's maximum potential [6].

References

[1] Xu, H., & Li, J. Q. (2023). The possibilities and boundaries of generative artificial intelligence in

assisting judicial adjudication. Journal of Taiyuan University of Technology (Social Science

Edition), 41(06), 24-32.

[2] Guo, W. J. (2023). The dual dilemma of factual determination in the application of artificial

intelligence in judiciary and the path to relief. Journal of Kunming University of Science and

Technology (Social Science Edition), 23(05), 18-25. https://doi.org/10.16112/j.cnki.53-

1160/c.2023.05.213

[3] Zheng, X. (2023). The application of generative artificial intelligence in judiciary: Prospects, risks,

and regulations. Chinese Journal of Applied Jurisprudence, (04), 81-93.

[4] Zhao, G. (2023). Research on the choice of game strategy and applicability evaluation of artificial

intelligence application modes in judicial adjudication [Doctoral dissertation]. Shenyang

University of Technology. https://doi.org/10.27322/d.cnki.gsgyu.2023.000001

[5] Ni, H. C. (2023). The prevention mechanism of wrongful criminal cases under the perspective of

intelligent judiciary [Doctoral dissertation]. Zhejiang Gongshang University.

https://doi.org/10.27462/d.cnki.ghzhc.2023.000086

[6] He, Y. J., & Lei, Z. W. (2022). Challenges and responses: Judicial adjudication in the era of

artificial intelligence. Journal of Guizhou Minzu University (Philosophy and Social Sciences

Edition), (01), 178-190.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/75/20240542

229

