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Abstract. This paper explores the use of machine learning for causal inference to estimate the 

average treatment effect of special education services on fifth-grade math scores. Causal 

inference is the study of the relationship between cause and effect when changes in one variable 

directly affect another variable. The use of machine learning techniques in causal inference 

problems has been growing rapidly, offering advantages over traditional methods such as 

propensity score matching. such as propensity score matching. This paper compares the 

performance of four machine learning methods: Ordinary Least Squares (OLS), Multi-Layer 

Perception (MLP), Targeted Maximum Likelihood Estimation (TMLE), and Bayesian Additive 

Regression Trees (BART) in estimating the average treatment effect of special education 

services on fifth-grade math scores. This study utilizes the Early Childhood Longitudinal Study, 

Kindergarten Class of 1998-1999 (ECLS-K) dataset. A factor analysis is conducted to identify 

the key variables that influence math performance, paving the way for examining their causal 

effects. Our results show that BART outperforms the other methods in accuracy and robustness 

and that receiving special education services does not have a causal effect on math scores. This 
paper discusses the implications and limitations of our findings and suggests directions for future 

study. 

Keywords: causal inference, machine learning, treatment effect. 

1.  Introduction 

Many questions that arise in real life are not about correlation but about causality. Holland proposed that 
correlation does not imply causation [1]. Understanding the causal relationships between events is often 
more important than just identifying correlations between them. The objective of causal inference is to 
determine the amount of change in the outcome that is exclusively caused by a change in the treatment 
variable of interest. Rubin established a counterfactual framework that can define the causal effect [2]. 
Holland’s research [1] introduced the concept of structural causal models and directed acyclic graphs, 
explaining how they can be utilized to make causal inferences from observational data. Propensity Score 

Matching is a traditional causal inference method used in the statistical analysis of observational data 
and it is increasingly used in the social sciences and other fields. So far, the advancements in machine 
learning continue to expand its applications from predictive modeling to statistical inference, offering 
more possibilities in the field. Combining machine learning with causal inference enhances the 
estimation of causal effects. K. John McConnell and Stephan Lindner found that machine learning-based 
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methods have enormous potential for estimating treatment effects [3] and evaluated the performance of 
several machine learning-based estimators, including Targeted Maximum Likelihood Estimation, 
Bayesian Additive Regression Trees, Causal Random Forests, among others. Jennifer L. Hill introduced 
Bayesian Additive Regression Trees (BART), a statistical method that can identify causal effects [4]. 

Compared to propensity score matching, BART will produce more precise estimates of average 
treatment effects. BART also performs exceptionally well in linear settings. It can be found that machine 
learning has good performance and wide application in the field of causal inference. This article is based 
on Bryan Keller and Elizabeth Tipton’s research [5]. Utilizing propensity score analysis, their study 
estimated the impact of special education services on fifth-grade math scores. Our study aims to 
investigate the causal relationship between special education services and fifth-grade math scores using 
the Early Childhood Longitudinal Study, Kindergarten Class of 1998-1999 (ECLS-K) dataset as they 
used. This article aims to estimate the average treatment effect using traditional causal inference 

methods, along with machine learning methods including Ordinary Least Squares (OLS), Multi-Layer 
Perception (MLP), Targeted Maximum Likelihood Estimation (TMLE), and Bayesian Additive 
Regression Trees (BART). This article attempted to investigate the causality between our interests, as 
well as evaluate the performance of the model. By conducting a principal component analysis, 
specifically a factor analysis, the primary variables that affect math performance can be identified. Our 
further study aims to closely examine the factors that have a significant impact on math performance 
based on the main variables. In addition, further research can investigate the causal effects of those 

significant variables in the future.  

2.  Literature review 

2.1.  Causal inference 

Inferential statistics build upon descriptive statistics to make inferences about a population from a 

sample. Let’s denote 𝑋 as a set, where each element in 𝑋 is a unit, represented as 𝑥. For each 𝑥 in 𝑋, 
there are two associated variables: 𝐹 and 𝐺. The value of 𝐹 for each unit 𝑥 is represented as 𝐹(𝑥), and 

𝐺  is another variable that is defined for each unit in 𝑋 . Associational inference makes statistical 

inferences about the associational parameters relating 𝐹 and 𝐺  based on data. However, it does not 
provide information about causality, as correlation does not imply causation [1]. 

2.1.1.  Counterfactual framework. David Hume’s counterfactual definition of cause is that there is an 

object, and if the first object doesn't exist, the second object will never exist [6]. Hume was the first to 
propose a discussion of causality based on a counterfactual framework and gave a textual elaboration of 
counterfactual relations. 

Based on Hume's research, Lewis proposed a counterfactual theory of causation that if actual events 
are causally dependent, it denotes causation [7]. Lewis also suggested that causation can exist 

independently, without any causal dependence [7]. Let 𝐴 and 𝐵 be two actual events. If 𝐴 does not occur 

and 𝐵 does not occur, it can be determined that event 𝐴 is the cause of event 𝐵. Lewis leaped causal 
dependence to causation. 

2.1.2.  Potential outcomes framework. Neyman pioneered the application of potential outcome notation 

in the field of statistics, and he applied it to a completely randomized experiment [8]. The randomized 
experiments presented by Fisher and potential outcome notation laid the fundamentals for the potential 
outcomes model [8,9]. Rubin extended the application of the potential outcome framework to 
observational research [10], thus unifying randomized experiments and observational research under the 
same framework. Holland mentioned the Rubin causal model, a framework of potential outcomes, 
introduced by Rubin [1]. 

In the potential outcomes framework, each entity, denoted 𝑥𝑖, is associated with a pair of possible 

outcomes. The first, 𝑌0(𝑥𝑖), is called the control outcome and represents the hypothetical outcome if the 

entity remains untreated. Conversely, 𝑌1(𝑥𝑖) is known as the treated outcome and illustrates the potential 
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outcome should the entity undergo treatment. Holland also proposed the fundamental issue in causal 

inference lies in the inherent impossibility of simultaneously observing the values of 𝑌0(𝑥𝑖) and 𝑌1(𝑥𝑖) 
for a single entity. Consequently, direct observation of the causal effect is unattainable [1]. The typical 
assumptions include independence assumption (IA) and stable unit treatment values assumption 
(SUTVA). Independence assumption requires treatment status to be independent of potential outcomes. 
SUTVA stipulates that the potential outcomes for any individual should remain unaffected by the 

treatment status of other individuals [1]. The core of the potential outcome model is no causation without 
manipulation. The potential outcomes model compares the differences in outcomes between the same 
unit when they were treated and controlled. The individual treatment effect (ITE) is the impact of the 

cause treatment on a specific unit represented by the subscript 𝑌1(𝑥𝑖) − 𝑌0(𝑥𝑖). The average treatment 

effect (ATE) is represented by 𝐸(𝑌1 −𝑌0).  
Propensity score matching is a statistical technique that can be employed to estimate the ATE. To 

conduct a propensity score analysis, there are four steps that need to be followed. To begin with, we 
need to estimate the propensity scores. The second step is the assessment of overlap to make sure every 
unit has a non-zero probability of receiving both the treatment and control. The third step is the 
assessment of balance, the treatment group and the comparison group have an identical distribution of 
significant confounding covariates. Finally, the average causal effect and its standard error can be 
estimated [11,12]. 

2.1.3.  Structure causal model. Structural Causal Models (SCMs) are represented as graphs with nodes 
and directed edges. The nodes represent variables, while the directed edges indicate the causal 
relationships between these variables. More than just graphs, SCMs also include a set of structural 
equations that express how each endogenous variable is a function of the other variables in the model. 
Pearl proposed the concept of external intervention based on the Bayesian network and formed an 

expression for causality based on external intervention [13].  
A structure causal model consists of two sets of variables 𝑈 and 𝑉, and a set of functions 𝑓. The 

variables in 𝑈 are called exogenous variables and the variables in 𝑉 are called endogenous variables. 
Each endogenous variable is a descendent of at least one exogenous variable. Exogenous variables are 
not allowed to be derived from other variables, have no ancestors must be root nodes in graphs. If 

variable 𝑋 is a child of variable 𝑌, then 𝑌 is considered the direct cause of 𝑋. On the other hand, 𝑌 is 

considered the potential cause of 𝑋 if the variable 𝑋 is a descendant of the variable 𝑌. Pearl also 

proposed to express intervention with the do operation. For example, 𝑃(𝑌 = 𝑦|𝑋 = 𝑥) represents the 

probability distribution of 𝑌 = 𝑦  for 𝑋 = 𝑥  while  𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑥))  represents the probability 

distribution of 𝑌 = 𝑦 when 𝑋 = 𝑥 is caused by the intervention. Thus, causality can be identified from 
correlation by do operators and graph patterns [13-15]. 

2.2.  Machine learning 
Compared to conventional statistical methods and tools, machine learning can often be seen as a tool 
that is proficient in making predictions. Based on machine learning methods, the average treatment 

effect can be accurately estimated [25]. 

2.2.1.  Targeted maximum likelihood estimation. Targeted Maximum Likelihood Estimation (TMLE) is 
a semiparametric estimation framework to estimate the parameter of interest [16]. Considering a study 

that is centered around determining the average treatment effect (ATE) of a treatment variable 𝐷 on a 

resultant variable 𝑌. Treatment 𝐷 is a binary exposure of interest and 𝑋 are confounder of the treatment 
and outcome. The first step is to generate an initial estimate. Confounders and treatment status are used 

as predictors to estimate the expected outcome. 𝐸[𝑌|𝐷, 𝑋] is an initial estimate that can yield potential 

results 𝑌1 and 𝑌0 with 𝐴 = 1 and 𝐴 = 0. Then all observations' probability of receiving the treatment 

using the confounders as predictors are estimated, which is called propensity score, 𝑃[𝐷 = 1|𝑋]. Then 
we can make a "clever covariate," [17]  
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 𝐶[𝐷, 𝑋] =
𝐼(𝐷=1)

�̂�(𝐷=1|𝑋)
−

𝐼(𝐷=0)

�̂�(𝐷=0|𝑋)
 (1) 

define the inverse probability of receiving treatment is: 

 𝐶[𝐷 = 1,𝑋] =
1

�̂�(𝐷=1|𝑋)
 (2) 

and negative inverse probability of not receiving treatment is: 

 𝐶[𝐷 = 0,𝑋] = −
1

�̂�(𝐷=0|𝑋)
 (3) 

A logistic regression is applied to find the optimal balance between bias and variance for estimating 
ATE and the equation is below. 

 𝑙𝑜𝑔𝑖𝑡(𝐸[𝑌|𝐷,𝑋]) = 𝑙𝑜𝑔𝑖𝑡(�̂�[𝑌|𝐷, 𝑋])+ 𝜖𝐶(𝐷, 𝑋) (4) 

And the initial outcome can be updated with it. Finally, the targeted estimate of the ATE is calculated 
by taking the average difference between the updated expected outcomes [18]. 

2.2.2.  Bayesian additive regression trees. Bayesian Additive Regression Trees (BART) is a Bayesian 
“sum-of-trees” model and every tree in The BART model is restricted by a regularization prior [19,24]. 

Let 𝑍 be a binary tree and all interior nodes contain decision rules that send a pair of parentheses either 

left or right, containing (𝑧, 𝑥) pair. Let 𝑀 = {𝜇1, 𝜇2,⋯ 𝜇𝑏} be the vector of means in the b terminal 

nodes of the tree. Also, 𝑔(𝑧, 𝑥; 𝑇,𝑀) is defined as the value obtained by following observation (𝑧, 𝑥) 

down tree and returning mean for the terminal node in which it lands. Each (𝑇𝑗,𝑀𝑗) represents a single 

subtree model and the model can be expressed as:  

 𝑌 = 𝑔(𝑧, 𝑥; 𝑇1, 𝑀1) + 𝑔(𝑧, 𝑥; 𝑇2, 𝑀2) + ⋯+ 𝑔(𝑧, 𝑥; 𝑇𝑚, 𝑀𝑚) + 𝜀 = 𝑓(𝑧, 𝑥) (5) 

BART is proposed to have a straightforward estimation of causal effects from posterior distributions, 
and it can generate coherent uncertainty intervals for treatment effect estimates. We derive an estimate 

of the average treatment effect by calculating the difference in predicted values of 𝐸(𝑌|𝐷 = 1, 𝑋) −
𝐸(𝑌|𝐷 = 0,𝑋) when BART predicts accurately [20]. 

2.2.3.  Bayesian additive regression trees. Bayesian Causal Forests (BCF) is a model that builds on 

Bayesian Additive Regression Trees [21,22]. Both combine Bayesian regularization with regression 
trees. BCF is proposed to solve the problem when we do causal inference with confounding, 
heterogeneous effects, and targeted selection. The BCF model corrects the bias in BART due to 

regularization priors by estimating the 𝑓 in such way [21]:  

 𝑓(𝑥𝑖 , 𝑧𝑖) = 𝜇(𝑥𝑖 , �̂�𝑖) + 𝜏(𝑥𝑖)𝑧𝑖 (6) 

where �̂�𝑖 is an estimate of the propensity score. Including the propensity score yields a prior which can 

deal with complex patterns of confounding, helping control the direct effect of 𝑋 on 𝑍. Like BART, 
BCF also has posterior estimates, and it can make inferences on the average treatment effect and 
individual treatment effect with uncertainty intervals [22]. 

2.2.4.  Double machine learning. Double Machine Learning (DML) is to partially out the effect of 
covariates based Frisch–Waugh–Lovell theorem [23]. Consider the following linear equation: 

 𝑌 = 𝐷𝛽1 +𝑋𝛽2 (7) 

FWL theorem says we can estimate β1 in the way called residuals-on-residuals. It regresses 𝑌 on 𝑋 

and let �̂� = 𝑌 − �̂�. Then it regresses 𝐷 on 𝑋 and let �̂� = 𝐷 − �̂�. Finally, it regresses �̂� on �̂� to estimate 

𝛽1. Similarly, considering equation: 

 𝑌 = 𝜃0𝐷 + 𝑔0̂(𝑋) (8) 
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DML can be proceed as follows: (a) training an ML algorithm to predict 𝐷 based on 𝑋; (b) Predicting 

𝑌 based on 𝑋; (c) regressing the residuals from (b) on the residuals from (a) and then getting an estimate 
of 𝜃0. In this way, DML can overcome regularization bias with orthogonalization [23]. To overcome 
overfitting bias, DML uses sample splitting as the following steps: (a) splitting samples into two parts; 

(b) fitting Machine Learning models for 𝐷 and 𝑌 on the first part; (c) using (b) model to estimate 𝜃0,1 

in the second part; (d) fit Machine Learning models in the second part; (e) using (d) model to estimate 

𝜃0,2 in the first part and final estimator 𝜃0 is the average of 𝜃0,1 and 𝜃0,2.  

3.  Method 

3.1.  Traditional causal inference method 
Propensity Score Matching (PSM) is a traditional and simple tool to estimate causal effect. It provides 
a way to make accurate causal inferences through non-randomized experiments. The propensity score 

is the probability a subject receives treatment based on other chrematistics. Note that 𝑋 is a confounder 

and 𝑇 is a treatment, we define propensity score: 

 𝑒(𝑥) = 𝑃(𝑇 = 1|𝑋 = 𝑥) (9) 

The key assumption includes the unconfoundedness assumption. Although we don’t know whether 
there is an unmeasured confounder or not, we assume that all confounders have been measured and 

included in the model. There is also a conditional independence assumption. Given the value of the 

propensity score 𝑒(𝑋), the propensity score 𝑃(𝑇|𝑋) is the balanced score 𝐸(𝑇|𝑋). So, we can achieve 
independence of the potential outcomes on the treatment by propensity score instead of the condition on 
𝑋: (𝑌0,𝑌1) ⊥ 𝑇|𝑒(𝑋). We also assume common support that observations with similar characteristics 𝑋 
are present in both treatment and control groups. There are several steps to do propensity score matching. 

The logistic regression model of the treatment is trained to generate propensity scores based on the 

potential confounders. To get the estimation of �̂�(𝑥), this article uses logistic regression: 

 logit (
𝑒(𝑥)

1−𝑒(𝑥)
) = 𝑋𝛽  (10) 

 𝑒(𝑥) =
exp(𝑋𝛽)

1+exp(𝑋𝛽)
  (11) 

Then matching individuals from the treatment group to individuals in the control group by nearest 
neighbor or optimal matching. The third step involves assessing balance by calculating the standardized 
mean differences between the treatment and control groups for each of the potential confounding 
variables. Finally, estimating the average treatment effect on the treated (ATT): 

 ATT = E[Y(1) − Y(0)|T = 1] (12) 

Here is a flowchart explaining the Propensity Score Matching (PSM) commonly used in traditional 
causal inference methods. 
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Figure 1. Traditional causal inference method.  

3.2.  Causal inference method with machine learning 

3.2.1.  Ordinary least squares. Ordinary Least Squares (OLS) is sometimes to estimate the linear 

regression equation and predict 𝑦 by 𝑥. Assuming there is a binary treatment variable, 𝑇, where 𝑇 = 1 

for treated units and 𝑇 =  0 for untreated units, 𝑋 is a matrix of covariates and an outcome variable 𝑌. 

The OLS regression model to infer the causal effect of a treatment 𝑇 on an outcome 𝑌 is below: 

 𝑌 = 𝛼 + 𝛽𝑇 + 𝛾𝑋 + 𝜖  (13) 

There are some basic assumptions in Ordinary Least Squares (OLS). Linearity: The independent and 
dependent variables have a linear relationship. No endogeneity: The error term and the independent 

variables are not correlated which can be represented as 𝑐𝑜𝑣(𝑋, 𝜖) = 0. Homoscedasticity: The error 

term is distributed with a mean of zero and a constant variance. which can be represented as 𝐸(𝜖) =
0,𝑉𝑎𝑟(𝜖) = 𝜎2. No autocorrelation: The error terms are uncorrelated with each other which can be 
represented as 𝑐𝑜𝑣(𝜖𝑖𝜖𝑗) = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗. No multicollinearity: There was no high correlation between 

the variables. 
OLS method will estimate the coefficients that minimize the sum of squared errors: 

 𝑄(𝛼, 𝛽, 𝛾) = ∑ [𝑌𝑖 − 𝐸(𝑌𝑖)]
2 = min

𝛼,𝛽,𝛾
∑ (𝑌𝑖 − 𝛼 − 𝛽𝑇𝑖 −𝛾𝑋𝑖)

2𝑛
𝑖=1

𝑛
𝑖=1  (14) 

Then, solving three equations below simultaneously to get the OLS estimates:  

 

{
 
 

 
 

𝜕𝑄

𝜕𝛼
= −2∑ (𝑌𝑖 − 𝛼 −𝛽𝑇𝑖 − 𝛾𝑋𝑖)

𝑛
𝑖=1 = 0

𝜕𝑄

𝜕𝛽
= −2∑ (𝑌𝑖 − 𝛼 − 𝛽𝑇𝑖 −𝛾𝑋𝑖)

𝑛
𝑖=1 𝑇𝑖 = 0

𝜕𝑄

𝜕𝛾
= −2∑ (𝑌𝑖 − 𝛼 −𝛽𝑇𝑖 − 𝛾𝑋𝑖)𝑋𝑖

𝑛
𝑖=1 = 0

 (15) 

These three equations can be written in matrix notation: 

 𝑋′𝑋𝛽 = 𝑋′𝑌  (16) 

So, the ordinary least squares estimation of parameters is: 

 �̂� = (𝑋′𝑋)−1𝑋′𝑌  (17) 

�̂� gives a vector of the estimated parameters (�̂�, �̂�, 𝛾). But OLS provides an unbiased estimate of the 

ATE only if OLS assumptions are met and conditional independence holds., which suppose 𝑇 is 
randomly assigned binary random variable and 𝑋 is independent of 𝑌. We can estimate 𝛽 to know the 
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causal effect and �̂� is the average treatment effect. The sample regression coefficient �̂� based on OLS 
is a reliable estimator that consistently estimates the causal effect parameter. 

3.2.2.  Multi-layer perception. Multi-Layer Perception (MLP) is a simple and classical neural network, 
and it is a supervised learning algorithm. A multi-layer perceptron consists of an input layer, an output 
layer, and one or more hidden layers. Each neuron node has a nonlinear activation function, except for 

input nodes. MLP assumes that the relationships between the inputs and the output are not linear. It 
initializes the weights and biases randomly. Based on the chain rule of differentiation and gradient 
descent algorithm, MLP assumes that the weights and biases are adjusted by propagating the error 
backward through the network.  

In the first step, this paper inputs the data and initializes the MLP. The input layer consists of a set 

of neurons {𝑥𝑖}  which represents the input features. Then training the MLP involving forward 
propagation, cost computation, and backpropagation. In the hidden layer, each neuron calculates the 

value of the previous layer through a weighted linear summation. Neurons receive inputs 𝑋 and match 

them with weights 𝑊: 

 w1x1 +w2x2 +⋯+wixi (18) 

the resulting sum is added to the bias 𝑏 and passed to the non-linear activation function 𝑓(∙). Here 
this paper uses the sigmoidal function as an activation function: 

 𝑓(𝑥) =
1

1+𝑒−𝑥
 (19) 

Each neuron value ℎ can be calculated using the following formula: 

 𝑍ℎ = 𝑊ℎℎ𝑝𝑟𝑒𝑣 + 𝑏ℎ (20) 

 ℎ = 𝑓(𝑍ℎ) (21) 

where ℎ represents the output of the hidden layer, ℎ𝑝𝑟𝑒𝑣 represents the output of the previous layer, 𝑊ℎ  

represents the weight matrix of the hidden layer, and 𝑏ℎ represents the bias vector of the hidden layer. 
The output layer takes the last hidden layer's value and converts it to the output. 

In this process, this paper calculates the loss function to measure the error between the model's 
predictions and the real data. The loss function for an MLP is usually the Mean Squared Error (MSE), 
which can be computed as: 

 𝐿 =
1

𝑛
∑ (𝑦 − �̂�)2𝑛
𝑖=1  (22) 

where 𝑛 is the number of samples, 𝑦 is the target output, �̂� is the predicted output. 
To minimize the loss function, this paper uses error Back-Propagation algorithm to adjust the 

parameters and we commonly use the gradient descent algorithm. This paper calculates the error 
gradient for each neuron by backpropagation and update the weights and biases between neurons using 

gradient descent. This can be represented by the following equations: 

 
𝜕𝐿

𝜕𝑊ℎ
=

𝜕𝐿

𝜕𝑓(𝑍ℎ)
∙
𝜕𝑓(𝑍ℎ)

𝜕𝑍ℎ
∙
𝜕𝑍ℎ

𝜕𝑊ℎ
 (23) 

 
𝜕𝐿

𝜕𝑏ℎ
=

𝜕𝐿

𝜕𝑓(𝑍ℎ)
∙
𝜕𝑓(𝑍ℎ)

𝜕𝑍ℎ
∙
𝜕𝑍ℎ

𝜕𝑏ℎ
 (24) 

 𝑊ℎ = 𝑊ℎ −𝜂
𝜕𝐿

𝜕𝑊ℎ
 (25) 

 𝑏ℎ = 𝑏ℎ − 𝜂
𝜕𝐿

𝜕𝑏ℎ
 (26) 

where 𝜂 is the learning rate. 
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Then, this paper can make predictions after the MLP is trained. The prediction �̂� can be computed 
by applying the forward propagation step to the test data:  

 �̂� = 𝑓(𝑊ℎℎ𝑝𝑟𝑒𝑣 + 𝑏ℎ) (27) 

Finally, calculating the difference in predicted outcomes between the treated and untreated units and 
the ATE is: 

 𝐴𝑇𝐸 = 𝐸(�̂�𝑡𝑟𝑒𝑎𝑡𝑒𝑑) − 𝐸(�̂�𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑) (28) 

3.2.3.  Targeted maximum likelihood estimation. Targeted Maximum Likelihood Estimation (TMLE) is 
a doubly robust maximum likelihood-based estimator. The TMLE approach is useful in achieving the 
optimal balance between the bias and variance tradeoff for the target parameter, and we will get more 

valid inferences. Let 𝑇  denote the binary treatment variable, 𝑊  denote the vector of potential 

confounders of treatment and outcome, and 𝑌 denote the continuous outcome. There are several 
assumptions made in the Rubin causal framework. The SUTVA assumes that the exposure status of one 
individual does not have an impact on the potential outcomes of another individual. Another causal 

assumption includes no unmeasured confounders and positivity. They are formalized as (𝑌1, 𝑌0) ⊥ 𝑇|𝑊 

and 0 < 𝑃(𝑇 = 1|𝑊) < 1.  

TMLE can estimate initial outcomes 𝑄(𝑇,𝑊), and probability of treatment 𝑔(𝑊) and produce an 
updated estimate 𝑄∗(𝑇,𝑊). Steps to implement TMLE to estimate ATE are as follows. 

The first step is to use confounders and treatment status as predictors to estimate the expected 

outcome for all observations. This article generates the initial estimate: 

 𝑄(𝑇,𝑊) = 𝐸[𝑌|𝑇,𝑊] (29) 

Then this article uses the confounders as predictors to estimate all observations' probability of 
receiving the treatment which is often called the propensity score: 

 𝑔(𝑊) = 𝑃(𝑇 = 1|𝑊) (30) 

With propensity scores, we can compute the prediction of two probabilities: inverse probability of 

receiving treatment 
1

�̂�(𝑇=1|𝑊)
 and negative inverse probability of not receiving treatment −

1

�̂�(𝑇=0|𝑊)
. 

Then this article can get the clever covariate: 

 𝐻[𝑇,𝑊] =
𝐼(𝑇=1)

�̂�(𝑇=1|𝑊)
−

𝐼(𝑇=0)

�̂�(𝑇=0|𝑊)
 (31) 

To make our estimate of the ATE is asymptotically unbiased, this article updates the initial estimate 

of 𝐸[𝑌|𝑇,𝑊]. This paper will solve an equation to figure out how much to update: 

 𝑙𝑜𝑔𝑖𝑡(𝐸[𝑌|𝑇,𝑊]) = 𝑙𝑜𝑔𝑖𝑡(�̂�[𝑌|𝑇,𝑊]) + 𝜖𝐻(𝑇,𝑊) (32) 

To solve this equation, this article fits a logistic regression with the clever covariate 𝐻[𝑇,𝑊], initial 

outcome estimates 𝑙𝑜𝑔𝑖𝑡(�̂�[𝑌|𝑇,𝑊]) and the outcome 𝑌. The 𝑒𝑥𝑝𝑖𝑡 can be used to get the inverse of 

𝑙𝑜𝑔𝑖𝑡 function so the initially expected outcome estimates will be updated: 

 �̂�∗[𝑌|𝑇,𝑊] = 𝑒𝑥𝑝𝑖𝑡 (𝑙𝑜𝑔𝑖𝑡(�̂�[𝑌|𝑇,𝑊]) + 𝜖̂𝐻(𝑇,𝑊)) (33) 

Calculate the ATE according to the updated expected outcomes estimates as follows:  

 𝐴𝑇𝐸𝑇𝑀𝐿𝐸̂ =
1

𝑁
∑ �̂�∗[𝑌|𝑇 = 1,𝑊] − �̂�∗[𝑌|𝑇 = 0,𝑊]𝑁
𝑖=1  (34) 

3.2.4.  Bayesian additive regression trees. The Bayesian Additive Regression Trees (BART) can be 
described as a model that combines a multitude of decision trees and a regularization prior. The building 

block of BART is regression trees. Regression trees predict the 𝑦 using trees 𝑇𝑙 , 1 ≤ 𝑙 ≤ 𝐿, which means 
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a series of if-else conditions with each partition 𝐴𝑏, based on the value of 𝑥, sets a constant value 𝑚𝑙𝑏 

to 𝑦.   
There is also a set of parameter constraints or priors that regularize the split likelihood. So, this article 

can define a constant function combined with the partition, the parameters, and the priors: 

 𝑔𝑙(𝑥) = 𝑚𝑙𝑏 𝑖𝑓 𝑥 ∈ 𝐴𝑏 (35) 

Then a resemble of individuals are amalgamated into a singular regression forest: 

 𝑌 = ∑ 𝑔𝑙(𝑥) + 𝜖
𝐿
𝑙=1  (36) 

The BART model can be represented as: 

 𝑌 = 𝑔(𝑧, 𝑥; 𝑇1, 𝑀1) + 𝑔(𝑧, 𝑥; 𝑇2, 𝑀2) + ⋯+ 𝑔(𝑧, 𝑥; 𝑇𝑚, 𝑀𝑚) + 𝜖 = 𝑓(𝑧, 𝑥) (37) 

which defines 𝑔(𝑧, 𝑥; 𝑇,𝑀) as the value obtained by following observation (𝑧, 𝑥) down a tree and 

returning mean for the terminal node in which it lands, 𝑀 = {𝜇1, 𝜇2,⋯ 𝜇𝑏} as the vector of means in the 
b terminal nodes of the tree. 

To prevent overfitting and limit the range of reasonable errors, BART regularization is essential. 

Regularization prior prefers fewer nodes and the probability associated with a node at depth ℎ 
undergoing a split are: 

 𝜂(1+ ℎ)−𝛽 with default 𝜂 = 0.95 𝑎𝑛𝑑 𝛽 = 2 (38) 

It also shrinks the effect of predictor toward zero:  

 𝑚𝑙𝑏~𝑁(0,𝜎𝑚
2 ), 𝜎𝑚 =

𝜎0

√𝐿
 (39) 

The fundamental procedures for estimating the causal impact utilizing BART are outlined below: 

The first thing is to input variables 𝑌,𝑋, 𝑍 to the MCMC random forest with regression parameter 
specification. The posterior can be computed by using MCMC after a prior putting on the parameters. 

MCMC is Markov chain Monte Carlo, which seeks out a good 𝑓 by using a stochastic search for each 
tree. At each iteration, each (𝑇𝑗,𝑀𝑗) and 𝜎 are redrawn and the BART function will be updated by 

parameters. Each iteration generates a new draw of 𝑓 and prediction on 𝑌. According to MCMC random 
forest, this article can get a function: 

 [𝑌|(𝑋, 𝑍)] = 𝑓(𝑥, 𝑧) (40) 

and do some prediction with calculating 𝑓(𝑥, 𝑧 = 1) and 𝑓(𝑥, 𝑧 = 0). The posterior distribution of 

𝑓(𝑋, 𝑍) can be known. So, this article straightforward gets an estimation of the causal effect from 
posterior distribution: 

 𝜏(𝑥) = 𝑓(𝑥, 𝑧 = 1) − 𝑓(𝑥, 𝑧 = 0) (41) 

Considering the conditions on the 𝑋 values, this article calculates the conditional average treatment 
effect (CATE): 

 
1

𝑛
∑ 𝑓(𝑥𝑖 , 𝑧 = 1) − 𝑓(𝑥𝑖 , 𝑧 = 0)
𝑛
𝑖=1  (42) 

The following flowchart represents the basic machine learning steps in causal inference. 
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Figure 2. Causal inference method with machine learning.  

4.  Results 

4.1.  Data description 

This paper uses data from the 1998-1999 Early Childhood Longitudinal Study of Kindergarten Classes 
(ECLS-K) to estimate the average treatment effect (ATE) of receiving special education services. After 
deleting cases with missing variate information, there are 36 variables with a sample size of 7362. The 
treatment variable is whether students receive special education services or not, 429 students in our 
dataset are enrolled in special education services. The outcome variable is the fifth-grade math score, 

ranging from 50.9 to 170.7. The other variables include demographic, academic, school composition, 
family context, health, and parent rating of the child. In our dataset, there are 3657 male and 3705 female 
cases. 5759 students were in the public school and 96.7% of students were first-time kindergarteners. In 
their family context, 6193 students got nonparental Pre-K childcare and 1265 students were from one-
parent families. Here this article uses the Python package seaborn to create a plot that can describe 
variables’ distributions. When dealing with a large number of variables, it is important to visualize their 
relationships through a heatmap to identify strongly correlated variables. First, this article creates a 

heatmap and then generates a correlation graph for the chosen variables. The darker shades in the 
heatmap indicate a stronger correlation between the variables. In the correlation graph, the diagonal 
plots show the distribution of each variable, and the off-diagonal plots show the relationship between 
two different variables. 
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Figure 3. Correlation heatmap.  

According to the figures, this article finds a positive correlation between kindergarten reading scores 
and kindergarten math scores, reading IRT and math IRT, math IRT, and SES. This article also finds a 
negative correlation between birth weight and number of days premature. Considering fifth-grade math 
scores, it is positively correlated with kindergarten reading scores and kindergarten math scores, 

negatively correlated with problem-solving.  

 

Figure 4. Scatterplot of important variables.  
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4.2.  Average treatment effect 
This article uses five methods to calculate average treatment effects (ATE). In the traditional method of 
causal inference, this article uses propensity score matching (PSM) by following the steps below: 
estimation of propensity scores with logistic regression, performing matching, assessment of overlap, 

assessment of covariate balance, and calculating ATE. In the steps of machine learning, this article did 
a train-test split first with 0.25 test size. After selecting the model, this article trained the model with 
default parameters. To get the predictions for the counterfactual outcome, this article assigns all 
treatments to 1 and 0 respectively. After predicting two counterfactual outcomes, this article calculates 
the ATE through them. 

The table displays results for ATE with different methods. In general, the results are all less than 0, 
which means the students who took special education services didn’t perform better than other students. 
Participating in special education services is not the reason for higher math grades. This may be due to 

the differences in the endowments of these students or their academic abilities. In the traditional causal 
inference method, the result of ATE is -3.175. In the machine learning method, MLP’s predicted 
performance is the best with its minimum variance, and the result is -1.051. BART also performed well, 
and its result is close to the MLP. However, OLS and TMLE didn’t perform as well as BART and MLP. 
Machine learning methods will get smaller variance than traditional methods. 

Table 1. Results of different methods. 

 PSM OLS TMLE BART MLP 

ATE -3.175 -6.429 -4.299 -1.274 -1.051 

Var Treatment 706.69 292.89 338.71 251.35 67.726 

Var Control 717.48 292.89 312.11 254.49 55.013 

4.3.  Factor analysis 

In further studies, this article hopes to identify the factors that affect students' math scores or the reasons 
for their improvement. Given the number of variables studied, this article uses principal component 
analysis (PCA) to reduce dimension for further study. First, analyze whether the research data is suitable 
for PCA. As can be seen from the table above, KMO is 0.799, greater than 0.6, which meets the 
prerequisite requirements of PCA. The dataset successfully met the criteria of Bartlett’s Test of 

Sphericity (𝑝 < 0.05), thereby affirming its appropriateness for PCA. 

Table 2. KMO and Bartlett's test of Sphericity. 

KMO 0.799 

 
Bartlett's test of Sphericity 

Chi-Square Approximations 67029.611  
df 595 

p-value 0  
 
The table and scree plot reveal that twelve principal components have been extracted, each with 

eigenvalues exceeding one. The variance of the main components of 12 explained rates were 16.873%, 
6.913%, 5.036%, 4.463%, 4.175%, 3.678%, 3.510%, 3.335%, 3.161%, 3.134%, 3.034%, 3.003%, and 

the cumulative variance explained at a rate of 60.315%. 
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Figure 5. Parallel analysis scree plots.  
  

Table 3. Eigenvalue and variance contribution. 

No. eigen values variance explained rate % accumulation% 

1 5.906 16.873 16.873 

2 2.419 6.913 23.786 

3 1.763 5.036 28.822 

4 1.562 4.463 33.285 

5 1.461 4.175 37.461 

6 1.287 3.678 41.139 

7 1.228 3.51 44.649 

8 1.167 3.335 47.984 

9 1.106 3.161 51.145 

10 1.097 3.134 54.279 

11 1.062 3.034 57.313 

12 1.051 3.003 60.315 

 
This article analyzes the correlation between 12 principal components and fifth-grade math scores 

and finds that the first principal component has a strong positive correlation with the score. By observing 
the load coefficient, it can be explained as students’ academic ability and their education context. A 
student who has perfect academic ability and gets a high-quality education may get higher math scores. 
The second and the eighth principal components negatively correlate with the score. They can be 
explained as the parent rating of the child. The reason for the negative correlation probably is too much 
parental discipline is counterproductive. In the process of further studying the variables that have a 

causal relationship with math grades, this article studies the academic ability, educational background, 
and parent rating of the child. 
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Figure 6. Correlation heatmap of main variables.  

5.  Conclusion 

In this article, our study tried to explore the causal relationship between access to special education and 
fifth-grade math scores. Whether students can improve their math scores after receiving special 
education is our concern. In estimating causal effects, this article utilized traditional causal inference 
methods as well as machine learning techniques. It is crucial to pay attention to the promising area of 
development that lies at the intersection of causal inference and machine learning. Machine learning can 
improve the accuracy and efficiency of estimating causal effects as more data is processed. It is possible 

to determine the effectiveness of a machine learning model by examining its prediction variance. A 
model with a smaller prediction variance is considered good. Regarding our main concern, the average 
treatment effect of negative values indicates that there is no causal effect on special education and math 
scores. Participating in special education does not necessarily result in higher math grades. It could be 
attributed to variations in students' endowments, abilities, or limitations in the data set under 
investigation. Given the complexity of our data, this paper performed factor analysis to facilitate further 
investigation. After conducting principal component analysis on variables, this paper found 12 principal 

components and discovered that students with exceptional academic abilities and who receive a high-
quality education tend to perform better on math scores as well. However, excessive parental input may 
have a negative impact on the child's performance. The potential causal relationships between these 
factors and students' math performance could be further explored through in-depth causal inference 
analyses in future studies. 
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