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Abstract. Kinodynamic motion planning is pivotal in advancing robotics, en- abling autonomous systems 

to navigate dynamic environments effectively while adhering to both kinematic and dynamic constraints. 

This study delves into the efficacy of tree sampling-based planners, namely the Rapidly- exploring Random 

Tree (RRT), Rapidly-exploring Random Tree Star (RRT*), and Dominance Informed Region Trees (DIRT), 

in kinodynamic motion planning. Through a comparative analysis focusing on both fully informed and 

uninformed versions of these algorithms, I explore their performance in environments with dynamic 

constraints. Special emphasis is placed on the integration of learned controls, aiming to enhance 

maneuver planning. My research reveals significant differences in success rates, iterations, and 

path costs among the algorithms, underscoring DIRT’s superiority under certain conditions and 

the beneficial impact of learned controls. These findings contribute valuable insights into the 

selection and optimization of motion planning algorithms, paving the way for more efficient and 

adapt- able autonomous systems. 

Keywords: Kinodynamic Motion Planning, Tree Sampling-Based Plan- ners, RRT, RRT*, 

DIRT, Autonomous Systems. 

1.  Introduction 

Kinodynamic motion planning is essential in robotics, addressing the challenge of navigating dynamic 

environments while respecting both kinematic and dy- namic constraints. This field underpins the 

development of autonomous sys- tems, from self-driving vehicles to robots in varied settings, 

emphasizing the need for algorithms that can manage movement feasibility, dynamic limitations, and 

environmental interactions effectively. 

Among the strategies, tree sampling-based planners like RRT, RRT*, and DIRT stand out for their 

use of stochastic sampling to balance exploration and exploitation of the state space. This study 

focuses on comparing these plan- ners, especially highlighting the benefits of integrating learned 

controls—control strategies augmented by machine learning—to enhance their efficiency. 

By examining the performance of these algorithms with and without learned controls, my research 

aims to shed light on their relative strengths and limita- tions, contributing insights to the advancement 

of motion planning in complex and dynamic environments. 

2.  Literature Review 

Kinodynamic motion planning is at the forefront of robotics research, blending kinematic constraints 

with dynamic capabilities to navigate through intricate environments. The advent of tree-based 
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algorithms such as RRT, RRT*, and DIRT has markedly enhanced the adaptability and efficiency of 

autonomous systems. 

Introduced by LaValle and Kuffner [9], the Rapidly-exploring Random Tree (RRT) algorithm was a 

significant leap forward, efficiently covering high-dimensional spaces. This innovation paved the way 

for RRT* by Karaman and Frazzoli [8], which optimized the original by guaranteeing asymptotic 

optimality. The Dom- inance Informed Region Trees (DIRT) concept, developed by Littlefield and 

Bekris [10], further advanced kinodynamic planning by utilizing dominance re- gions to guide 

sampling decisions. 

The fusion of traditional algorithms with intelligent controls, particularly through machine learning, 

has opened new horizons in autonomous navigation. Pan et al. [2] demonstrated the potential of 

integrating sampling-based algo- rithms with machine learning to improve motion planning. This 

approach is further exemplified by the work of Na Lin, Lu Bai, and Ammar Hawbani [4] in cooperative 

multi-agent path planning, and by Raihan Islam Arnob and Gre- gory J. Stein [6] in navigating 

partially-mapped environments, emphasizing the value of computational intelligence in addressing 

navigation challenges. 

Janson and Pavone [7] highlighted the transformative potential of machine learning in enhancing 

pathfinding algorithms for real-time scenarios, paving the way for the incorporation of Deep 

Reinforcement Learning (DRL) into motion planning. The groundbreaking work by Silver et al. [1] 

on DRL demonstrates its capacity to enable systems to adapt to changing environments efficiently. 

This review situates my research within a vibrant field, exploring the effi- cacy of algorithms like 

RRT, RRT*, and DIRT under dynamic conditions. By weaving together these threads of inquiry, we 

aim to further the discourse on kinodynamic motion planning, enriching the pool of strategies for 

enhancing autonomous navigation through computational and learned controls. 

3.  Methodology 

This section delves into the methodologies employed to implement, evaluate, and compare the 

kinodynamic motion planning algorithms: RRT-Uninformed (RRT-U), RRT-Fully Informed (RRT-FI), 

RRT*, and Dominance Informed Re- gion Trees (DIRT).I detail the algorithmic foundations, evaluation 

metrics, and the experimental setup used in our comparative analysis. 

3.1.  RRT-Uninformed & RRT-Fully Informed 

In this subsection, I present a unified RRT framework that encapsulates the strategies of both RRT-

Uninformed (RRT-U) and RRT-Fully Informed (RRT- FI). By introducing a parameter α, the 

algorithm seamlessly toggles between RRT-U’s stochastic exploration and RRT-FI’s goal-directed 

search. This ap- proach allows for an adaptable exploration strategy, efficiently bridging the two 

variants and illustrating their applicability across different scenarios within a singular, cohesive 

algorithm. 

The unified RRT algorithm operates as follows: 

1. Initialize the tree with a node xinit. 

2. Define α based on strategy: 0 for RRT-U, 1 for RRT-FI. 

3. While the goal is not achieved: 

a) If α = 0, sample a random point xrand using the RRT-U strategy. 

b) Else, sample towards the goal xgoal as per the RRT-FI strategy. 

c) Find the nearest node xnear in the tree to xrand. 

d) Steer from xnear towards xrand to generate a new node xnew. 

e) If xnew is valid, add it to the tree. 

3.2.  Rapidly-Exploring Random Tree Star (RRT*) 

As an extension, RRT* incorporates a path optimization mechanism, reassessing and restructuring the 

tree to enhance path quality through cost minimization. This iterative refinement process is pivotal for 

achieving an optimal solution over time. 
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The RRT* algorithm procedure is as follows: 

1. Initialize the tree with xinit. 

2. While not at the goal: 

a) Sample a random point xrand. 

b) Find the nearest node xnear in the tree to xrand. 

c) Steer from xnear towards xrand to generate a new node xnew. 

d) If xnew is valid, insert it into the tree and attempt to rewire the tree in the vicinity of xnew. 

3.3.  DIRT 

The decision-making in DIRT is based on evaluating potential controls to apply at each node. For a 

given node x, the set of possible controls U is evaluated based on the cost function J which takes into 

account the distance to the goal d(x, xgoal) and the heuristic information h(x): 

 J (x, u) = α · d(f (x, u), xgoal) + β · h(f (x, u)) 

where f (x, u) represents the state transition function applying control u at state x, α and β are 

weighting parameters, and h(x) is the heuristic value of state x. 

3.4.  Metrics 

The performance evaluation of the algorithms was based on a set of quantitative metrics, each designed to 

assess different aspects of efficiency and effectiveness in pathfinding. These metrics are crucial for 

understanding the algorithms’ capabilities in navigating complex environments. 

Success Rate: The success rate is a critical indicator of reliability, reflecting the proportion of trials 

where the algorithm successfully identifies a viable path to the goal. It is mathematically represented as: 

 Success Rate =
Number of Successful Trials

Total Number of Trials
  (1) 

This metric is pivotal for evaluating the algorithm’s ability to consistently find solutions across a 

wide range of scenarios. 

Iterations: This metric measures the computational effort required by the algorithm, quantifying the 

average iterations needed to discover the first valid path. It is computed using the formula: 

 Iterations =
∑ Iterations per Trial

Total Number Trials
   (2) 

A lower average signifies greater efficiency, indicating that the algorithm requires fewer steps to reach 

a solution. 

Path Cost: The total cost of the path, denoted as Cpath, is defined by the cumulative distances 

between consecutive nodes along the path, calculated as follows: 

 𝐶𝑝𝑎𝑡ℎ = ∑ 𝑑(𝑛𝑖, 𝑛𝑖+1)𝑁−1
𝑖=1   (3) 

Here, N is the total number of nodes in the path, d represents the distance between consecutive 

nodes, and ni and ni+1 are sequential nodes along the path. The path cost is an essential measure of the 

solution’s quality, with lower costs indicating more efficient paths. 

These metrics collectively provide a comprehensive framework for assessing the performance of 

pathfinding algorithms, offering insights into their efficiency, effectiveness, and the quality of the 

solutions they generate. Revising your section with more detail on the generated grid environments, we 

can elaborate on the configurations, obstacles, and rationale behind the transition from the initial to the 

refined setup. This enhancement will not only clarify the experimental conditions but also underline 

the progression and decision-making process in adapting the setup for improved pathfinding 

evaluation. 
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3.5.  Experimental Setup 

My journey commenced with an experimental setup featuring a grid populated with square blocks 

randomly designated as obstacles, chosen to present a sim- plified yet challenging landscape for 

pathfinding algorithms. This setup tested the algorithms’ capability to navigate through environments 

where obstacles completely block paths, necessitating the exploration of alternative routes. De- spite its 

initial utility, this binary obstacle model introduced complexities that detracted from my primary 

research goals, overemphasizing exhaustive search tactics over nuanced navigation strategies. 

Influenced by Jiang’s research on complex obstacle navigation[3] and Cui’s research on optimized 

sampling point[5], I refined my setup by integrating polyg- onal obstacles within a versatile grid, better 

reflecting the varied shapes found in both natural and urban terrains. The adoption of floating-point 

nodes en- hanced my model’s precision, enabling the identification of more direct and efficient paths. 

Moreover, I conceptualized the destination not as a pinpointed location but as a broader target area, 

aligning with real-world scenarios where reaching a vicinity is often the objective. This adaptation 

allowed my Rapidly- exploring Random Trees (RRT) algorithms to recognize any node within this 

area as a successful end, introducing a flexible approach to path completion.  

 

  

Figure 1: Initial square block ob- stacle grid, 

highlighting pathfinding complexity in a binary 

obstacle set- ting. 

Figure 2: Refined grid with polyg- onal obstacles 

and floating-point nodes, for enhanced pathfinding 

re- alism and flexibility. 

This progression from a simplistic binary model to a comprehensive, realistic framework marked a 

pivotal advancement in my research. It not only enabled a deeper evaluation of pathfinding algorithms 

but also ensured my methodologies resonated with the intricate demands of real-world navigation, 

establishing a solid foundation for future exploration in the field. 

4.  Results 

The evaluation of the planning algorithms—DIRT, RRT-FI (Fully Informed), RRT-U (Uninformed), 

and RRT*—was conducted based on their success rates, the number of iterations to achieve the first 

solution, and the path costs of both the first and final solutions. This comprehensive assessment was 

carried out over 50 randomly generated grid environments, ensuring consistency in parameters such as 

vision radius, edge increment, and edge length across all tests. 

4.1.  Results Visualization 

To visualize the results we obtained, we selected representative examples of each of the implemented 

algorithms run on the same grid. 
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Figure 3: RRT-Fully Informed Graph Figure 4: Uninformed Graph 

  

Figure 5: RRT* Graph 
Figure 6: DIRT Graph 

My comparative analysis of pathfinding algorithms—Fully Informed RRT, Uninformed RRT, 

RRT*, and DIRT highlights distinct efficiencies and path qualities, primarily influenced by the 

availability of environmental information. Fully Informed RRT in Figure3 excels in well-informed 

settings, producing opti- mal paths with minimal exploration. figure 5 demonstrates the efficiency of the 

path refinement approach. In contrast, DIRT in Figure 6 and Uninformed RRT in Figure 4 require 

additional iterations but offer flexibility in unpredictable environments. 

Notably, DIRT emerges as a balanced solution, leveraging the strengths of RRT* by offering a 

middle ground in terms of computational demand and ex- ploration depth. These insights highlight the 

importance of algorithm selection based on the specific needs of the operational environment, guiding 

strategic algorithm deployment in diverse settings and informing future developments in pathfinding 

technology. 

4.2.  Comparative Evaluation of Algorithm Performance 

The core evaluation metrics—Success Rate, Number of Iterations, and Path Cost—serve as 

benchmarks for assessing each algorithm’s performance. Table 1 consolidates these metrics, facilitating 

a comprehensive analysis. 

Table 1. Average Results of Planning Algorithms Evaluation 

Algo Success Rate Iterations Path Cost 

RRT-FI 100% 562.6 91.28 

RRT-U 90% 1543.1 67.22 

RRT* 90% 2112.9 61.63 

DIRT 100% 1389.8 119.48 

*FI = Fully Informed, U = Uninformed 
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The Success Rate (Equation 1), defined as the proportion of trials in which the algorithm 

successfully identifies a viable path from the starting point to the goal, serves as a primary indicator of 

reliability. The Number of Iterations (Equation 2) and the Path Cost (Equation 3) further provide 

insights into the computational efficiency and solution optimality, respectively. 

The analysis reveals RRT-FI and DIRT achieving a 100% success rate, indi- cating their high 

reliability in pathfinding. Notably, DIRT’s approach—continuing exploration beyond the initial 

solution—manifests in its unique balance between exploration depth and computational efficiency, as 

evidenced by its iterations and path cost metrics. 

This juxtaposition of algorithmic performance highlights the critical impor- tance of selecting an 

appropriate pathfinding algorithm based on the specific requirements and constraints of the operational 

environment. The insights de- rived from this comparative study not only inform the strategic 

deployment of algorithms but also provide valuable directions for future research and develop- ment in 

the field of pathfinding technology. 

5.  Discussion 

The comparative evaluation of the planning algorithms: DIRT, RRT-FI, RRT- U, and RRT*—provides 

significant insights into their performance in terms of success rate, iterations to achieve the first 

solution, and path costs for both initial and refined solutions. The results, drawn from 50 randomly 

generated grid environments, underscore the nuanced efficacy and optimization potential inherent in 

each algorithm under consistent conditions. 

5.1.  Algorithm Performance and Optimization 

DIRT’s standout performance, characterized by a 100% success rate and the unique capability to 

iteratively refine the path cost, underscores its robustness and efficiency. This iterative refinement, 

absent in the RRT variants, highlights DIRT’s superior optimization over time, making it particularly 

suitable for ap- plications where gradual improvement of the solution is feasible and desirable. On the 

other hand, the observation that RRT-FI, despite its fully informed nature, does not always secure the 

most cost-efficient paths, raises questions about the optimization capabilities and efficiency of 

informed strategies. This suggests that a fully informed approach may not necessarily translate to optimal 

performance, especially in complex or dynamic environments. 

5.2.  Implications for Path Planning Strategy 

The findings of this study imply that the choice of path planning algorithm should be context-

dependent, taking into consideration the specific requirements and constraints of the operational 

environment. While DIRT offers clear ad- vantages in scenarios where the refinement of solutions is 

possible, the initial efficiency of RRT-U and RRT* cannot be disregarded for situations requiring 

immediate but potentially suboptimal solutions. This delineation underscores the necessity for a 

strategic approach to algorithm selection, balancing between immediacy and optimality based on 

situational demands. 

6.  Conclusion 

This section concludes the study by summarizing the main findings, discussing their implications, and 

suggesting avenues for future research. 

6.1.  Summary of Findings 

This study conducted a comparative analysis of tree sampling-based kinody- namic motion planning 

algorithms, with a focus on RRT, RRT*, DIRT, and the integration of learned controls. Our evaluation 

across various simulated environ- ments revealed distinct differences in performance, with DIRT 

demonstrating superior efficiency in terms of success rates, iterations to achieve first solutions, and path 

optimization capabilities. The comparison highlighted DIRT’s robust- ness and its ability to refine 

solution paths, marking it as a highly adaptable algorithm for dynamic environments. 
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6.2.  Future Directions 

Considering the evolving complexity of environments in which autonomous sys- tems operate, future 

research should focus on enhancing the scalability and adaptability of kinodynamic motion planning 

algorithms. The development of advanced learning mechanisms that can adjust in real-time to 

environmental changes could bridge the existing gap between theoretical optimality and prac- tical 

application. Furthermore, exploring the potential of hybrid algorithms that combine the strengths of 

different planning strategies could yield more versatile and robust solutions. Investigations into the 

applicability of these algorithms in real-world scenarios, beyond simulated environments, will be crucial 

in validat- ing their effectiveness and reliability in dynamic and unpredictable conditions. 
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