

Robot learning-enhanced tree-based algorithms for

kinodynamic motion planning: A comparative analysis

Liang Hu

Columbia University, New York, US April 2, 2024

lh3057@columbia.edu

Abstract. Kinodynamic motion planning is pivotal in advancing robotics, en- abling autonomous systems

to navigate dynamic environments effectively while adhering to both kinematic and dynamic constraints.

This study delves into the efficacy of tree sampling-based planners, namely the Rapidly- exploring Random

Tree (RRT), Rapidly-exploring Random Tree Star (RRT*), and Dominance Informed Region Trees (DIRT),

in kinodynamic motion planning. Through a comparative analysis focusing on both fully informed and

uninformed versions of these algorithms, I explore their performance in environments with dynamic

constraints. Special emphasis is placed on the integration of learned controls, aiming to enhance

maneuver planning. My research reveals significant differences in success rates, iterations, and

path costs among the algorithms, underscoring DIRT’s superiority under certain conditions and

the beneficial impact of learned controls. These findings contribute valuable insights into the

selection and optimization of motion planning algorithms, paving the way for more efficient and

adapt- able autonomous systems.

Keywords: Kinodynamic Motion Planning, Tree Sampling-Based Plan- ners, RRT, RRT*,

DIRT, Autonomous Systems.

1. Introduction

Kinodynamic motion planning is essential in robotics, addressing the challenge of navigating dynamic

environments while respecting both kinematic and dy- namic constraints. This field underpins the

development of autonomous sys- tems, from self-driving vehicles to robots in varied settings,

emphasizing the need for algorithms that can manage movement feasibility, dynamic limitations, and

environmental interactions effectively.

Among the strategies, tree sampling-based planners like RRT, RRT*, and DIRT stand out for their

use of stochastic sampling to balance exploration and exploitation of the state space. This study

focuses on comparing these plan- ners, especially highlighting the benefits of integrating learned

controls—control strategies augmented by machine learning—to enhance their efficiency.

By examining the performance of these algorithms with and without learned controls, my research

aims to shed light on their relative strengths and limita- tions, contributing insights to the advancement

of motion planning in complex and dynamic environments.

2. Literature Review

Kinodynamic motion planning is at the forefront of robotics research, blending kinematic constraints

with dynamic capabilities to navigate through intricate environments. The advent of tree-based

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/76/20240565

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

65

algorithms such as RRT, RRT*, and DIRT has markedly enhanced the adaptability and efficiency of

autonomous systems.

Introduced by LaValle and Kuffner [9], the Rapidly-exploring Random Tree (RRT) algorithm was a

significant leap forward, efficiently covering high-dimensional spaces. This innovation paved the way

for RRT* by Karaman and Frazzoli [8], which optimized the original by guaranteeing asymptotic

optimality. The Dom- inance Informed Region Trees (DIRT) concept, developed by Littlefield and

Bekris [10], further advanced kinodynamic planning by utilizing dominance re- gions to guide

sampling decisions.

The fusion of traditional algorithms with intelligent controls, particularly through machine learning,

has opened new horizons in autonomous navigation. Pan et al. [2] demonstrated the potential of

integrating sampling-based algo- rithms with machine learning to improve motion planning. This

approach is further exemplified by the work of Na Lin, Lu Bai, and Ammar Hawbani [4] in cooperative

multi-agent path planning, and by Raihan Islam Arnob and Gre- gory J. Stein [6] in navigating

partially-mapped environments, emphasizing the value of computational intelligence in addressing

navigation challenges.

Janson and Pavone [7] highlighted the transformative potential of machine learning in enhancing

pathfinding algorithms for real-time scenarios, paving the way for the incorporation of Deep

Reinforcement Learning (DRL) into motion planning. The groundbreaking work by Silver et al. [1]

on DRL demonstrates its capacity to enable systems to adapt to changing environments efficiently.

This review situates my research within a vibrant field, exploring the effi- cacy of algorithms like

RRT, RRT*, and DIRT under dynamic conditions. By weaving together these threads of inquiry, we

aim to further the discourse on kinodynamic motion planning, enriching the pool of strategies for

enhancing autonomous navigation through computational and learned controls.

3. Methodology

This section delves into the methodologies employed to implement, evaluate, and compare the

kinodynamic motion planning algorithms: RRT-Uninformed (RRT-U), RRT-Fully Informed (RRT-FI),

RRT*, and Dominance Informed Re- gion Trees (DIRT).I detail the algorithmic foundations, evaluation

metrics, and the experimental setup used in our comparative analysis.

3.1. RRT-Uninformed & RRT-Fully Informed

In this subsection, I present a unified RRT framework that encapsulates the strategies of both RRT-

Uninformed (RRT-U) and RRT-Fully Informed (RRT- FI). By introducing a parameter α, the

algorithm seamlessly toggles between RRT-U’s stochastic exploration and RRT-FI’s goal-directed

search. This ap- proach allows for an adaptable exploration strategy, efficiently bridging the two

variants and illustrating their applicability across different scenarios within a singular, cohesive

algorithm.

The unified RRT algorithm operates as follows:

1. Initialize the tree with a node xinit.

2. Define α based on strategy: 0 for RRT-U, 1 for RRT-FI.

3. While the goal is not achieved:

a) If α = 0, sample a random point xrand using the RRT-U strategy.

b) Else, sample towards the goal xgoal as per the RRT-FI strategy.

c) Find the nearest node xnear in the tree to xrand.

d) Steer from xnear towards xrand to generate a new node xnew.

e) If xnew is valid, add it to the tree.

3.2. Rapidly-Exploring Random Tree Star (RRT*)

As an extension, RRT* incorporates a path optimization mechanism, reassessing and restructuring the

tree to enhance path quality through cost minimization. This iterative refinement process is pivotal for

achieving an optimal solution over time.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/76/20240565

66

Σ

The RRT* algorithm procedure is as follows:

1. Initialize the tree with xinit.

2. While not at the goal:

a) Sample a random point xrand.

b) Find the nearest node xnear in the tree to xrand.

c) Steer from xnear towards xrand to generate a new node xnew.

d) If xnew is valid, insert it into the tree and attempt to rewire the tree in the vicinity of xnew.

3.3. DIRT

The decision-making in DIRT is based on evaluating potential controls to apply at each node. For a

given node x, the set of possible controls U is evaluated based on the cost function J which takes into

account the distance to the goal d(x, xgoal) and the heuristic information h(x):

 J (x, u) = α · d(f (x, u), xgoal) + β · h(f (x, u))

where f (x, u) represents the state transition function applying control u at state x, α and β are

weighting parameters, and h(x) is the heuristic value of state x.

3.4. Metrics

The performance evaluation of the algorithms was based on a set of quantitative metrics, each designed to

assess different aspects of efficiency and effectiveness in pathfinding. These metrics are crucial for

understanding the algorithms’ capabilities in navigating complex environments.

Success Rate: The success rate is a critical indicator of reliability, reflecting the proportion of trials

where the algorithm successfully identifies a viable path to the goal. It is mathematically represented as:

 Success Rate =
Number of Successful Trials

Total Number of Trials
 (1)

This metric is pivotal for evaluating the algorithm’s ability to consistently find solutions across a

wide range of scenarios.

Iterations: This metric measures the computational effort required by the algorithm, quantifying the

average iterations needed to discover the first valid path. It is computed using the formula:

 Iterations =
∑ Iterations per Trial

Total Number Trials
 (2)

A lower average signifies greater efficiency, indicating that the algorithm requires fewer steps to reach

a solution.

Path Cost: The total cost of the path, denoted as Cpath, is defined by the cumulative distances

between consecutive nodes along the path, calculated as follows:

 𝐶𝑝𝑎𝑡ℎ = ∑ 𝑑(𝑛𝑖, 𝑛𝑖+1)𝑁−1
𝑖=1 (3)

Here, N is the total number of nodes in the path, d represents the distance between consecutive

nodes, and ni and ni+1 are sequential nodes along the path. The path cost is an essential measure of the

solution’s quality, with lower costs indicating more efficient paths.

These metrics collectively provide a comprehensive framework for assessing the performance of

pathfinding algorithms, offering insights into their efficiency, effectiveness, and the quality of the

solutions they generate. Revising your section with more detail on the generated grid environments, we

can elaborate on the configurations, obstacles, and rationale behind the transition from the initial to the

refined setup. This enhancement will not only clarify the experimental conditions but also underline

the progression and decision-making process in adapting the setup for improved pathfinding

evaluation.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/76/20240565

67

3.5. Experimental Setup

My journey commenced with an experimental setup featuring a grid populated with square blocks

randomly designated as obstacles, chosen to present a sim- plified yet challenging landscape for

pathfinding algorithms. This setup tested the algorithms’ capability to navigate through environments

where obstacles completely block paths, necessitating the exploration of alternative routes. De- spite its

initial utility, this binary obstacle model introduced complexities that detracted from my primary

research goals, overemphasizing exhaustive search tactics over nuanced navigation strategies.

Influenced by Jiang’s research on complex obstacle navigation[3] and Cui’s research on optimized

sampling point[5], I refined my setup by integrating polyg- onal obstacles within a versatile grid, better

reflecting the varied shapes found in both natural and urban terrains. The adoption of floating-point

nodes en- hanced my model’s precision, enabling the identification of more direct and efficient paths.

Moreover, I conceptualized the destination not as a pinpointed location but as a broader target area,

aligning with real-world scenarios where reaching a vicinity is often the objective. This adaptation

allowed my Rapidly- exploring Random Trees (RRT) algorithms to recognize any node within this

area as a successful end, introducing a flexible approach to path completion.

Figure 1: Initial square block ob- stacle grid,

highlighting pathfinding complexity in a binary

obstacle set- ting.

Figure 2: Refined grid with polyg- onal obstacles

and floating-point nodes, for enhanced pathfinding

re- alism and flexibility.

This progression from a simplistic binary model to a comprehensive, realistic framework marked a

pivotal advancement in my research. It not only enabled a deeper evaluation of pathfinding algorithms

but also ensured my methodologies resonated with the intricate demands of real-world navigation,

establishing a solid foundation for future exploration in the field.

4. Results

The evaluation of the planning algorithms—DIRT, RRT-FI (Fully Informed), RRT-U (Uninformed),

and RRT*—was conducted based on their success rates, the number of iterations to achieve the first

solution, and the path costs of both the first and final solutions. This comprehensive assessment was

carried out over 50 randomly generated grid environments, ensuring consistency in parameters such as

vision radius, edge increment, and edge length across all tests.

4.1. Results Visualization

To visualize the results we obtained, we selected representative examples of each of the implemented

algorithms run on the same grid.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/76/20240565

68

Figure 3: RRT-Fully Informed Graph Figure 4: Uninformed Graph

Figure 5: RRT* Graph
Figure 6: DIRT Graph

My comparative analysis of pathfinding algorithms—Fully Informed RRT, Uninformed RRT,

RRT*, and DIRT highlights distinct efficiencies and path qualities, primarily influenced by the

availability of environmental information. Fully Informed RRT in Figure3 excels in well-informed

settings, producing opti- mal paths with minimal exploration. figure 5 demonstrates the efficiency of the

path refinement approach. In contrast, DIRT in Figure 6 and Uninformed RRT in Figure 4 require

additional iterations but offer flexibility in unpredictable environments.

Notably, DIRT emerges as a balanced solution, leveraging the strengths of RRT* by offering a

middle ground in terms of computational demand and ex- ploration depth. These insights highlight the

importance of algorithm selection based on the specific needs of the operational environment, guiding

strategic algorithm deployment in diverse settings and informing future developments in pathfinding

technology.

4.2. Comparative Evaluation of Algorithm Performance

The core evaluation metrics—Success Rate, Number of Iterations, and Path Cost—serve as

benchmarks for assessing each algorithm’s performance. Table 1 consolidates these metrics, facilitating

a comprehensive analysis.

Table 1. Average Results of Planning Algorithms Evaluation

Algo Success Rate Iterations Path Cost

RRT-FI 100% 562.6 91.28

RRT-U 90% 1543.1 67.22

RRT* 90% 2112.9 61.63

DIRT 100% 1389.8 119.48

*FI = Fully Informed, U = Uninformed

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/76/20240565

69

The Success Rate (Equation 1), defined as the proportion of trials in which the algorithm

successfully identifies a viable path from the starting point to the goal, serves as a primary indicator of

reliability. The Number of Iterations (Equation 2) and the Path Cost (Equation 3) further provide

insights into the computational efficiency and solution optimality, respectively.

The analysis reveals RRT-FI and DIRT achieving a 100% success rate, indi- cating their high

reliability in pathfinding. Notably, DIRT’s approach—continuing exploration beyond the initial

solution—manifests in its unique balance between exploration depth and computational efficiency, as

evidenced by its iterations and path cost metrics.

This juxtaposition of algorithmic performance highlights the critical impor- tance of selecting an

appropriate pathfinding algorithm based on the specific requirements and constraints of the operational

environment. The insights de- rived from this comparative study not only inform the strategic

deployment of algorithms but also provide valuable directions for future research and develop- ment in

the field of pathfinding technology.

5. Discussion

The comparative evaluation of the planning algorithms: DIRT, RRT-FI, RRT- U, and RRT*—provides

significant insights into their performance in terms of success rate, iterations to achieve the first

solution, and path costs for both initial and refined solutions. The results, drawn from 50 randomly

generated grid environments, underscore the nuanced efficacy and optimization potential inherent in

each algorithm under consistent conditions.

5.1. Algorithm Performance and Optimization

DIRT’s standout performance, characterized by a 100% success rate and the unique capability to

iteratively refine the path cost, underscores its robustness and efficiency. This iterative refinement,

absent in the RRT variants, highlights DIRT’s superior optimization over time, making it particularly

suitable for ap- plications where gradual improvement of the solution is feasible and desirable. On the

other hand, the observation that RRT-FI, despite its fully informed nature, does not always secure the

most cost-efficient paths, raises questions about the optimization capabilities and efficiency of

informed strategies. This suggests that a fully informed approach may not necessarily translate to optimal

performance, especially in complex or dynamic environments.

5.2. Implications for Path Planning Strategy

The findings of this study imply that the choice of path planning algorithm should be context-

dependent, taking into consideration the specific requirements and constraints of the operational

environment. While DIRT offers clear ad- vantages in scenarios where the refinement of solutions is

possible, the initial efficiency of RRT-U and RRT* cannot be disregarded for situations requiring

immediate but potentially suboptimal solutions. This delineation underscores the necessity for a

strategic approach to algorithm selection, balancing between immediacy and optimality based on

situational demands.

6. Conclusion

This section concludes the study by summarizing the main findings, discussing their implications, and

suggesting avenues for future research.

6.1. Summary of Findings

This study conducted a comparative analysis of tree sampling-based kinody- namic motion planning

algorithms, with a focus on RRT, RRT*, DIRT, and the integration of learned controls. Our evaluation

across various simulated environ- ments revealed distinct differences in performance, with DIRT

demonstrating superior efficiency in terms of success rates, iterations to achieve first solutions, and path

optimization capabilities. The comparison highlighted DIRT’s robust- ness and its ability to refine

solution paths, marking it as a highly adaptable algorithm for dynamic environments.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/76/20240565

70

6.2. Future Directions

Considering the evolving complexity of environments in which autonomous sys- tems operate, future

research should focus on enhancing the scalability and adaptability of kinodynamic motion planning

algorithms. The development of advanced learning mechanisms that can adjust in real-time to

environmental changes could bridge the existing gap between theoretical optimality and prac- tical

application. Furthermore, exploring the potential of hybrid algorithms that combine the strengths of

different planning strategies could yield more versatile and robust solutions. Investigations into the

applicability of these algorithms in real-world scenarios, beyond simulated environments, will be crucial

in validat- ing their effectiveness and reliability in dynamic and unpredictable conditions.

References

[1] D. Silver et al. “Mastering Go with Deep Neural Networks and Tree Search”. In: Nature

529.7587 (2016), pp. 484–489.

[2] J. Pan et al. “Motion Planning with Probabilistic Primitives”. In: 2012, pp. 3762–3768.

[3] L. Jiang et al. “Path Planning in Multi-Obstacle Environment with ImprovedRRT ”. In: IEEE/ASME

Trans. Mechatronics 27.6 (2022), pp. 4774–4785. DOI: 10.1109/TMECH.2022.3165845.

[4] N. Lin et al. “Deep RL-Based Computation Offloading in Multi-UAV IoT Network”. In: IEEE

IoT J. (2024). DOI: 10.1109/JIOT.2024.3356725.

[5] X. Cui et al. “More Quickly-RRT*: Improved Quick RRT Star”. In: Eng. Appl. Artif. Intell. 133

(2024), p. 108246. DOI: 10.1016/j.engappai. 2024.108246.

[6] R. I. Arnob and G. J. Stein. “Improving Navigation Under Uncertainty with Non-Local

Predictions”. In: IEEE/IROS. 2023, pp. 2830–2837. DOI: 10.1109/IROS55552.2023.10342276.

[7] L. Janson and M. Pavone. “Fast Marching Tree for Optimal Planning”. In: Int. J. Robotics Res.

Vol. 34. 7. 2015, pp. 883–921.

[8] S. Karaman and E. Frazzoli. “Sampling-based Optimal Motion Planning”. In: Int. J. Robotics Res.

30.7 (2011), pp. 846–894.

[9] S. M. LaValle and J. J. Kuffner. “Randomized Kinodynamic Planning”. In: IEEE/ICRA. 2001,

pp. 473–479.

[10] Z. Littlefield and K. E. Bekris. “Efficient Kinodynamic Planning via Dominance- Informed

Regions”. In: IEEE/IROS. 2018. DOI: 10.1109/IROS.2018. 8593672.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/76/20240565

71

