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Abstract. In the context of the rapid development of large AI models, multimodal fusion, and 

extensive application of VR, particularly in the era where technology profoundly impacts artistic 

expression, this review explores the innovative intersection of artificial intelligence (AI), virtual 

reality (VR), and dance choreography. It discusses the evolution of dance creation from 

traditional methods to advanced AI-driven techniques, emphasizing the role of AI in analyzing 

and synthesizing complex dance movements. The review highlights the application of 

multimodal learning in dance, focusing on how AI utilizes auditory and visual data to understand 

and create dance sequences. A significant part of the review is dedicated to the integration of VR 

in dance, examining its potential to enhance the choreographic process and user experience. The 

paper also addresses the challenges and future prospects in AI choreography, including the 

development of VR interfaces for dance enthusiasts and creators, akin to modern music 

production software. This venture reflects a promising direction for AI and VR in transforming 

dance creation and presentation, making it more accessible and interactive. 

Keywords: Multimodal Learning, Human-Computer Interaction, Motion Capture, Interactive 

Design, Dance Choreography. 

1.  Introduction 

In the contemporary artistic landscape, technological advancements in AI models, such as those seen in 

Magenta Studio, are rapidly transforming creative fields like music and painting. Advanced technologies 

like Differentiable Digital Signal Processing (DDSP) and Generative Adversarial Network Synthesis 

(GANSynth) are increasingly being explored, revolutionizing AI in music composition and representing 

the current new trend of combining classic signal processing technology with deep learning [1-2]. The 

integration of Ableton Live with Magenta Studio epitomizes this evolution, democratizing music 

composition and making it accessible to the general public. These advanced models are increasingly 

serving as invaluable tools for creators, augmenting their artistic capabilities. 

Given the burgeoning development of multimodal artificial intelligence (AI), the immense potential 

of a sophisticated dance model is soon to be noticed. Currently, models like Chor-rnn utilize deep 

learning to create complex dance sequences, while applications such as GrooveNet and AI 

Choreographer that focus on real-time music-driven dance movement generation are gradually 
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becoming mainstream [3-4]. In light of these developments, we can anticipate the emergence of more 

user-friendly interactive interfaces in the future, which will have a revolutionary impact on dance 

creation for ordinary users. By simplifying the process of dance composition, these technologies not 

only ignite the public’s passion for creation but also unleash their creative potential. This progress 

signifies the potential role of AI in dance artistry, offering opportunities for creative expression to a 

broader audience. 

2.  Technological foundations and advancements in dance movement recognition 

2.1.  From biomechanics to dance: the evolution of motion recognition 

The journey of AI choreography research can be traced back to the study of visual perception of 

biological motion. In the early 20th century, Edgar Rubin conducted research on how people perceive 

shapes and patterns, focusing on the separation of figure-background in visual perception. He introduced 

the famous “Rubin Vase” or “Rubin’s face-vase” illusion [5]. Subsequently, Albert Michotte pointed 

out that the visual system utilizes universal mechanisms to interpret observed dynamic events, 

emphasizing the ability of people to directly perceive causality without any reasoning or logical analysis, 

and to recognize specific biological motion patterns such as walking and running from abstract events 

[6]. These studies, from a psychological perspective, provided a theoretical foundation for identifying 

complex movements through the visual system. Later, Johansson developed a method by representing 

the movement of major joints in an active body with a few bright spots, thus studying motion patterns 

independently of shape. It was found that even a minimal number of 10-12 elements, through appropriate 

motion combinations, could evoke a strong visual impression of human movements such as walking, 

running, and dancing [7]. 

By the 21st century, in the pioneering stages of behavior recognition, Oliver tackled the challenge of 

limited training data by introducing and evaluating two state-based learning architectures—

HiddenMarkov Models (HMM) and Coupled Hidden Markov Models (CHMM), aimed at modeling 

behaviors and interactions. Building on the foundation of time series modeling, CHMMs enrich the 

analysis by weaving interactions between multiple sequences, making them particularly adept at 

handling scenarios marked by sparse data [8]. To further advance this approach, Oliver and his team 

embarked on another innovative research project, leveraging a synthetic Alife-style training system. 

This system was designed to cultivate flexible prior models adept at recognizing human interactions, 

skillfully marrying Bayesian methods with existing knowledge and data evidence, thereby eliminating 

the need for extensive recalibration or additional training. Their groundbreaking work laid down a robust 

framework that empowered AI to effectively navigate small datasets and adapt to a wide range of 

complex behaviors—surpassing simple observations of passers-by in shopping malls or individuals 

walking past elevators. 

Subsequently, Brand and Hertzmann’s “Style Machines” marked a significant shift. They used 

motion capture sequences to replicate and learn various dance styles, allowing for the creation of new 

dance movements [9]. This progress highlights the transformative role of AI in dance choreography. 

2.2.  Opportunities and challenges in complex movement recognition 

Development of motion capture starts with recognizing simple to complex human actions. While not 

directly centered on dance movements, it has provided invaluable insights and technological 

advancements. 

Pavlovic introduced three algorithms for inference in Switching Linear Dynamic Systems (SLDS), 

treating them as dynamic Bayesian networks and demonstrating their superiority over traditional Hidden 

Markov Models in classification and prediction [10]. Ronald Poppe’s 2010 survey addressed challenges 

in human action recognition of complex sports performance, and examined cost-effective image 

representation methods like global grid-based and space-time interest point techniques, enhancing 

human motion analysis [11]. This advancement is crucial for AI’s understanding of complex dance 

movements, especially those with intricate motions and expressions. 
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As complex motion capture technologies mature, the volume and complexity of human motion data 

have increased significantly. Dance, being a highly structured spatiotemporal art form, requires precise 

coordination in time and space. In 2015, Holden introduced a novel technique using convolutional 

autoencoders to learn the manifold of human motion data. This method was applied to the extensive 

CMU human motion database, compressing complex human motion data into lower-dimensional 

representations and optimizing the efficiency of motion capture [12]. In 2016, Jain and others 

demonstrated the advantages of Structured Recurrent Neural Networks (S-RNN) over unstructured 

(conventional) RNNs and non-deep learning structured methods in various spatiotemporal problems. 

They transformed arbitrary spatiotemporal graphs into rich, scalable, and jointly trainable RNN hybrids 

[13]. These studies have significantly improved the quality of the data, constantly refining and 

optimizing human motion data and enabling prediction over extended periods of motion capture. 

To process the broad spectrum of motion capture data, Butepage et al. developed a deep learning 

framework with an encoding-decoding network. They introduced an unsupervised learning scheme for 

the long-term prediction of human movement, proposing a Temporal Encoder (TE) aimed at capturing 

the temporal correlations in human motion data, rather than just static representations of human posture 

[14]. In their experiments, Butepage et al. demonstrated three distinct structures of Temporal Encoders: 

the S-TE model utilizes a symmetric structure for simultaneous encoding and decoding of motion data; 

the C-TE model improves predictive ability by accounting for motion data across different time scales; 

and the H-TE model achieves more precise capture and prediction of complex human actions by directly 

incorporating the body’s hierarchical structure. Such methods, by offering multiple perspectives on 

action prediction and encoding, provide a solid technical foundation for the prediction and generation 

of dance movements, which require high coherence and temporal correlation. 

2.3.  Multimodal approaches and emotion analysis 

Dance, as a multifaceted art form, encompasses music, movement, lighting, and emotional expression. 

Therefore, the integration of multimodal fusion in AI for dance recognition can enhance the processing 

and interpretation of dance data. Atrey et al. explain that multimodal fusion combines multiple sensory 

inputs, like audio and visual data, for a more comprehensive understanding, which is essential in dance, 

where auditory and visual elements are closely intertwined [15]. Baltrusaitis et al. note the challenge of 

synchronizing different mediaˇ types, such as audio and video, in multimodal fusion [16]. Moreover, 

assessing the confidence levels of different modalities is crucial in dance recognition. Sometimes audio 

cues may be more reliable than visual ones, necessitating a weighted fusion approach [15]. The decision-

making in multimodal fusion affects dance recognition’s accuracy and efficacy. Lastly, determining 

which modalities to fuse, as they can provide complementary or contradictory insights, is key for 

effective fusion in dance recognition. 

Back to 2004, Camurri’s research developed a set of algorithms and software modules focused on 

real-time analysis of expressive gestures in full-body human motion [17]. Subsequently, various 

methods for analyzing the expressiveness of gestures were proposed, highlighting the role of non-

propositional movement traits (such as amplitude, speed, and fluidity) in emotional inference [18]. For 

a more detailed interaction case, Sanghvi proposed a method based on automatic visual extraction of 

expressive posture features from side-view video captures, utilizing computer vision to extract features 

such as body lean angle, slouch factor, quantity of motion, and contraction index. These features are 

further transformed into metafeatures for the training of recognition models, facilitating the automatic 

prediction of subjects’ engagement [19]. The study specifically selected children interacting with an 

iCat robot in a chess game as subjects, providing a rich dataset for training and validation due to the 

pronounced and diverse expressive postures and body movements of children compared to adults. Later, 

Kleinsmith and Bianchi Berthouze identified different roles of body posture and movement information 

in non-verbal communication for emotion perception. They explored the relationships between 

emotional states and high-level descriptions of body movements or postures, as well as how to refine 

emotional body expressions into lower-level descriptions. Their research provided a theoretical basis for 

developing AI systems capable of recognizing and mimicking emotional expressions in dance [20]. 
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3.  Unlocking potential in AI dance generation 

3.1.  Comprehensive overview of AI synthesis 

Artificial Intelligence (AI) is making significant strides in synthesizing various forms of content, 

including textual, auditory, and visual creations. Without the need for explicit supervision on specific 

tasks, GPT has been capable of autonomously performing a range of tasks, from text understanding, 

translation, and summarization to answering questions, flexibly achieving zero-shot task transfer across 

most training scenarios [21]. WaveNet, through the integration of dilated and causal convolutions, 

models and generates raw audio waveforms directly without relying on preprocessing or manual feature 

extraction. This approach achieves a high degree of naturalness in synthesizing and transitioning 

between various audio samples, such as naturally switching between different languages in the 

simulation of human speech or stitching together music segments, continually improving the quality of 

generated audio [22-23]. The text-guided diffusion model GLIDE employs a classifier-free guidance 

strategy, enabling the generation of images by DALL-E that closely resemble real photographs and are 

more favored by humans in evaluations of realism [24]. Furthermore, the direct generation of video files 

from textual descriptions is also making preliminary progress. These advancements seem to indicate 

that ordinary users are only one step away from accessing a user-friendly AI dance generation interface 

in their daily life. 

3.2.  Music-driven dance generation 

In the context of AI-driven dance generation for dance application scenarios, text inputs often contain 

more abstract information, making the understanding of user intent a significant challenge today. On the 

other hand, audio-driven approaches serve as a more effective starting point for simple dance generation 

due to the higher correspondence between musical and dance features, offering a richer model for 

training. Ofli first proposed an innovative framework employing four models: a music measurement 

model, an exchangeable dance character model, a dance character transformation model, and a dance 

character model to achieve a many-to-many statistical mapping [25]. Based on this, researchers defined 

a discrete HMM and synthesized different dance sequences using a modified Viterbi algorithm. Then, 

the motion parameters of the synthesized dance were calculated using the dance figure models, and these 

parameters were animated synchronously with the musical audio using a 3D character model. 

The matching of music and dance has always been a focus of research on music-to-dance generation. 

In Ofli’s research, AI learns exchangeable groups of dance figures, comparing and capturing the intrinsic 

dependencies within sequences of dance figures, allowing for acceptable variations within the training 

model. This enhances the richness of the generated movements while ensuring continuity of action and 

structural consistency [25]. To bring the generated dances closer to reality, the MDOT-Net (Music-to-

Dance with Optimal Transport Network) framework incorporates the optimal transport distance and the 

Gromov-Wasserstein distance to measure the similarity between distributions across different domains, 

such as the music space and the dance posture manifold. This effectively solves the cross-domain 

generation problem, ensuring that the dance sequences align well with the given music input in style 

and rhythmically match the expression [26]. Subsequently, HY Au’s team focused on the aesthetic style 

information between motion and music, exploring a dynamic graph-based data-driven learning strategy. 

Through training, a music style embedding module was developed, concentrating on selections sensitive 

to changes in music style. The strategy dynamically adjusts the speed of selected dance motion segments 

according to changes in the music, incorporating the completeness of actions, the naturalness of 

transitions, and the appropriateness of style into the choreography process . This framework flexibly 

responds to changes in music style, adjusting the selection and combination strategy of nodes composed 

of dance segments, to generate dances that match the music style [27]. 

3.3.  Current progress and challenges in AI dance generation 

In recent years, the Chor-RNN (Choreography Recurrent Neural Network) has been a focal model for 

dance generation. By adapting variations of RNNs (Recurrent Neural Networks), such as LSTM (Long 
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Short-Term Memory) and GRU (Gated Recurrent Unit ), it excels in handling time-series data, including 

music, language, and motion sequences. Compared to traditional rule-based dance synthesis systems, 

such as those using Markov models for music composition , this approach exhibits greater flexibility 

and creativity. Chor-RNN not only generates new dance sequences but also maintains and extends the 

dance style and expressiveness, surpassing previous systems in diversity and creativity. Additionally, 

by integrating Mixture Density Networks (MDN), the output’s vitality and variety are further enhanced, 

overcoming potential stagnation in dance fragment output [28]. 

Despite significant advancements in dance synthesis, an increasing number of applications for dance 

synthesis are emerging. Training dance models remains unstable and complex, often involving abstract, 

high-dimensional information. Mature dance generation systems like GrooveNet, AI Choreographer, 

and the AIST++ Dataset still face the challenge of limited training data. The GrooveNet project utilizes 

FCRBM and LSTM-RNN, along with different methods for describing audio information (feature 

extraction and feature learning), hoping the model can learn independently from audio data and generate 

basic dance moves, thus generating more training samples. However, it struggles to generalize beyond 

the songs in the training data, showing a tendency towards overfitting [3]. 

Choreography Optimization is predicted be a more advanced trend through the application of the 

optimal transport framework, aiming for generality and composability of dance content. However, the 

generalization capability of dance training models remains a significant challenge. Dance, an activity 

that combines complex spatial and temporal sequences, involving intricate human movements, temporal 

relationships between movements, rhythm, and dance style, among other multidimensional information. 

Progress in this field may only be achieved by capturing more synchronized dance and music data, 

deepening the understanding of various information interactions in dance scenarios, such as lighting, the 

environment, and integrating a broader range of multimodal information, to make future breakthroughs. 

4.  Virtual reality and AI dance: advancements and future prospects in interactive tools 

Popular interactive dance tools like ”Just Dance” utilize handheld controllers for operation, capturing 

users’ movements during play. These tools leverage a powerful interface, ambiance leadership, and 

controller feedback, offering most users a sense of strong interactivity and engagement [29]. However, 

the software relies on capturing professional dancers’ movements directly, leading to high costs and 

complex processes. Resources require manual replenishment and maintenance, and users need to invest 

in memberships for long-term use. Additionally, simulated dance learning through controllers does not 

accurately reflect the nuances and skills of real dancing. 

“Dancing in the Streets” (DITS), one of the earliest wearable VR products designed specifically for 

dance exercise, aims to replace traditional dance mats. Its immersive VR experience and the 

application’s gamification and social aspects significantly motivate players to continue playing [30]. 

With VR technology’s rapid development, advanced time-warping techniques optimally match image 

generation with user perception through algorithms, making VR experiences more immersive and 

natural. Games like “Beat Saber” that encourage full-body movement represent the pinnacle in user-

application interaction. These developments demonstrate the potential of dance interaction in VR and 

the trend towards choreography software dominated by VR interfaces. As VR platforms become more 

widespread and VR communities more refined, the way people create dance could be fundamentally 

transformed. 

5.  Conclusion 

The emergence of AI choreography tools, such as AI Choreographer and the AIST++ Dataset, signifies 

a growing interest in the AI choreography market. After prolonged development, from the visual 

perception of biological motion to understanding complex human behaviors, AI choreography is finally 

on the verge of having its own workstation, just like various DAWs(Digital Audio Workstation) for 

music production. Despite numerous limitations in processing complex information at present, the 

development of large AI models, the continuous expansion of training data, and the increasing 

interactivity and usability of VR are laying a solid foundation for its progress. 
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Future research should focus on developing more efficient and versatile artificial intelligence systems 

that integrate multimodal data (such as sound, motion, light, and emotions) to explore more multimodal 

information that can be processed, aiming to enhance the quality of dance choreography and the 

innovativeness of the output content. AI-assisted choreography software on VR platforms is poised to 

elevate dance creation to new heights, offering new tools for dance artists and broadening possibilities 

for dance education and entertainment. 
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