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Abstract. Sports injuries frequently stem from improper poses and movements. This paper 

explores the potential of using video and deep neural network model in mitigating such risks. A 

novel real-time body movement tracking system is designed to enable athletes to analyze and 

refine their techniques without the need for intrusive sensors. Central to our approach is the 

development of a user-friendly graphical interface, facilitating the effortless display and 

examination of tracked movements. This system not only enhances athletic performance but also 

aims to significantly reduce the sports injuries. 
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1.  Introduction 

  
The person here is wearing a full-body tracking suit to track 

movements  

The developed body movement tracking system allows for results from 

only videos. 

*.https://www.rokoko.com/insights/types-of-motion-trackers 

Figure 1. Types of body movements tracking  

In athletics, people are very prone to injury, and these injuries may cause detrimental problems to their 
careers. The information on movement can be used as data and can be analyzed to find movements that 
create injury. Especially in athletics, tracking movements is a good way to find places where technique 
and posture are incorrect, allowing room for less room for injury and more room for improvement. 
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Therefore, the tracking of body parts is very valuable. One way this could be done is by using sensors, 
which are usually attached to a person by using something that sticks the tracker onto the body part that 
wants to be tracked. Another way this could be done is by wearing clothing containing sensors. Though 
this form of tracking works, the cost, and the comfort come as a setback for the subject. A better way of 

tracking body movement would be through videos. In today’s world, everyone has access to a device 
with a camera, and by using them, the ability to track movement is available. To track the people in the 
videos, a deep learning algorithm is needed. In this algorithm, a system is created based on deep learning 
and Convolutional Neural Networks (CNN). The algorithm predicts the joint positions of each individual 
in the captured video. It then connects the corresponding joints to create a skeleton-like frame. In the 
end, the movement of the people can be seen from these skeletons. This system not only produces 
accurate results but also can be used in real-time applications due to its high efficiency.  

There are two strategies to create 2D body tracking, one of which is the so-called top-down approach, 

this approach first uses object detection algorithms to obtain the bounding boxes of each individual. 
Then, the single-person post estimation is applied to each bounding box. This strategy heavily relies on 
the performance of the object detection algorithm. For example, if the bounding boxes are not accurate, 
then it is impossible to track body movement optimally. Moreover, the object detection algorithms are 
very resource-consuming, which creates limitations to real-time applications. Another approach would 
be to directly estimate all the joints of the people in the frame. This approach is more challenging in the 
sense that a more complicated pose estimation algorithm is needed. Although more challenging, this 

one-stage algorithm is faster and more straightforward than the two-stage top-down strategy. In this 
paper, the system follows the second, or bottom-up, strategy to compute the 2D body movement.  

In this system, the use of CNN is needed. CNN is a powerful deep-learning architecture specialized 
in image recognition tasks. By stacking convolutional layers, it can extract visual features from fine-
grain to larger scale in a hierarchical manner. Since the labeling of human body parts is resource-
consuming, only a limited size of data is available to train the pose estimation algorithm. Therefore, 
CNN is first trained on a large-scale ImageNet dataset for classification tasks. Then, this pretrained CNN 

can be used for extracting features in this work. The extractions are fed into a preceding predictor to 
produce the body part positions. 

The contributions of this work are as follows:  

• A body movement tracker is successfully developed based on CNNs, which is accurate and efficient 
for real-time applications. 

• The system can understand visual representations of the images from the use of pretrained CNN or 
transferred learning. Therefore, the resulting system achieves excellent performance. 

• A graphic interface based on the tracking program has been developed, which can mark the body 
parts of athletes in the captured video, and is beneficial for real-world applications. 

2.  Related works 

2.1.  Sensor-based Sport Analysis 
In analyses that are mainly focused on sports, the typical idea is to use a sensor that is attached to the 
subject’s joints, which then gives data to be analyzed. Similar to the proposal seen in this situation, the 

recorded data from the sensors is analyzed using deep learning. Existing sport analysis approaches can 
be mainly divided into two categories, one relies on body sensors to collect data on body movement 
such as the speed and angle of each body part [1]. The collected data has been successfully used in 
numerous sports analysis applications, including preperformance optimization, post-injury diagnosis, 
etc. For instance, Ghasemzadeh Hassan, Vitali Loseu, and Roozbeh Jafari [2] have proposed a wearable 
wrist device to improve the quality of golf movements. Panindre Prabodh, Vijay Gandhi, and Sunil 
Kumar [3] have created a device to track heart rate and predict and prevent the events of cardioembolic 
stroke and Atrial Fibrillation (AFib) episodes by using. They found that to classify AFib, Recurrent 

Neural Network (RNN) with Bi-directional Long Short-Term Memory (LSTM) is a better pick than the 
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other AI algorithm. Choi, Edward, et al. [4] chose to use RNN to predict the initial diagnosis of heart 
failure. They found that using RNN worked better than other non-deep learning approaches. 

2.2.  Camera-based Sport Analysis 

Although wearable sensors can provide accurate results, it is not universally applicable. For example, 
during the competitions or non-controlled areas. With the use of cameras, the analysis will not only be 
cheaper but will also relieve the athletes from wearing the sensors and devices. This approach became 
possible after the invention of convolutional neural networks. For example, Cao, Zhe, et al. [5] have 
built a pose estimation system solely with cameras via convolutional neural networks. There is a 
proposition to employ a neural network to first detect the bounding box of each person and then estimate 

the pose using an additional neural network [6, 7]. Since the bottom-up is more efficient than the top-
down approach, the system proposed in this paper employs the bottom-up in the pose estimation module. 

3.  Background 

The main building blocks of CNNs are convolutional layers, pooling layers, and fully-connected layers. 
A CNN network is built by stacking convolutional and pooling layers and adding a fully connected layer. 

As shown in the figure,  
At a convolution layer, the input features are convolved with trainable kernels to generate the output 

features, which are often referred to as feature maps. Each trainable kernel will generate a corresponding 
feature map, capturing different visual aspects of the original image. The formulation of convolution [5] 
is as follows:  

 𝑥𝑗
𝑙 = 𝑓 (∑𝑛∈𝑀𝑗

   𝑥𝑖
𝑙−1 ∗ 𝑘𝑖𝑗

𝑙 + 𝑏𝑗
𝑙),  

where 𝑀𝑗  represents a selection of input maps and 𝑙 denotes the layer number. Each output map is 

assigned an additive bias b. For a particular output map, the input maps will be convolved with distinct 
kernels.  

As presented in the figure below, the process of pooling in a convolutional network is shown. From 
the input vector, a 3x3 matrix is taken as a pooled vector. A 3x3 kernel is then placed over the pooled 

vector to apply element-wise multiplication. Since one kernel only generates one feature map, multiple 
kernels are applied to have a diverse representation of the input image. After these processes, the sum 
is taken and placed in the corresponding destination in a smaller-sized matrix.  

 

Figure 2. The process of a convolutional layer in the network [8]. The kernel is placed over the pooled 
vector that is taken from the input vector. Element-wise multiplication is applied between the kernel 
weight and the input values. The sum is taken from the pooled vector after the multiplication and is then 

placed in the array for the final destination.  

Typical convolutional networks consist of the following components: 

• Convolutional layers: Here, multiple convolutional filters are applied to the input image 
to extract the image features from the low-level details to the global summary 
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information. This is achieved by stacking those convolutional layers in a hierarchical 
manner. 

• Activation function: To introduce non-linearity to the network, the Rectified linear unit 
activation function (ReLu) is employed in between two consecutive convolutional layers. This 
activation function takes only the positive inputs and sets all of the negative inputs to zero. 

• Fully connected layers: After obtaining the extracted features from the convolutional layers, they are 
pooled into a high-dimensional feature vector which represents the global information of the input 
image. This feature vector goes further to fully connected layers for predicting the final results.  

 

Figure 3. The architecture of a VGG network [9]. 

As shown in Fig. 3, VGG [10] networks are pretrained and employed as the feature extractor in this 
paper. This network is a powerful architecture for classification and proves to successfully learn 
representative features of the input image as well as outperform benchmarks in a variety of tasks. VGG 
finds its application in a variety of downstream tasks and archives remarkable performance results. 

4.  Method 

In this paper, the application of convolutional networks for real-time body movement tracking of athletes 
is studied. More particularly, the body movement tracking system developed purely relies on cameras 
to successfully capture the movement of athletes. At the core of the system lies the pose estimation 
algorithm that uses the application of convolutional networks. The convolutional network is trained on 
a prepared dataset not only including the images but also the corresponding labels to accurately train the 
network. Furthermore, a graphical user interface (GUI) is developed based on the pose estimation 
algorithm. The user has the choice to select the desired video files captured by a camera which could 
also be played in the interface. In addition, there is a button to start the pose estimation process. This is 

important for users who do not know programming. In the following sections, each technical design will 
be described in more detail. 

4.1.  Pose Estimation 
To accurately estimate the pose, a VGG network pretrained on ImageNet data is selected as the feature 

extractor. The network generates a set of feature maps that is input to the first stage of each branch. The 
pose estimation algorithm is based on OpenPose [5]. 
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4.1.1.  Generation of Confidence Map. Each 2D confidence map represents the probability that a 
particular body part appears at each pixel location. Within a single confidence map, the number of peaks 
should be the number of people as long as the body part is not hidden.  

 𝑀𝑗,𝑘
∗ (𝑃) = 𝑒𝑥𝑝 (−

||𝑝−𝑥𝑗,𝑘||2
2

𝜎2 )  

In confidence map M, with j being the row and k being the column of the pixel’s position, the 
equation above calculates the probability of the targetted body part being at that location. The value p is 
the location or the coordinate of a pixel on the image. σ is a coefficient that is chosen to be 1 by default. 
It can be adjusted to further control the spread of the peak. 

As mentioned above, the figure is given as an input to a VGG network that is a feature extractor. 
After obtaining the extracted features, the features are further fed into a sequence of convolutional layers 
that form the final prediction of joint locations on the image. The prediction module is divided into 

several stages. In the first stage, a set of confidence maps 𝑆1 = 𝑝1(𝐹) is produced by the network. These 
confidence maps are fed into successive stages together with the original feature. 

 𝑆𝑡 = 𝑝𝑡 (𝐹, 𝑆𝑡−1), 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 ≥ 2  

In Figure 4, the refinement of the confidence maps is illustrated. To assist the network in having 
more precise prediction, a loss function is applied at the end of the stage. Mean squared error loss is 
adopted as the loss function between the prediction and the ground truth label. Notably, an additional 
weight is added to consider the case in which some body parts of a person are not shown in the image 
and should not be addressed in the loss function. 

 𝑓𝑆
𝑡 = ∑𝑗=1

𝐽
   ∑𝑝   𝑊(𝑝) ⋅ ||𝑆𝑗

𝑡(𝑝) − 𝑆𝑗
∗(𝑝)||2

2  

For each joint, there will be a predicted confidence map. The corresponding ground truth confidence 
map is denoted by the symbol *. Finally, the losses from each stage will be totaled together to obtain the 
final loss. 

 𝑓 = ∑𝑡=1
𝑇    (𝑓𝑆

𝑡)  

 

Figure 4. The image provided here shows the whole pipeline of the pose estimation algorithm. From 
left to right, the flowchart shows the process of the pose estimation algorithm. The feature extractor 
takes RGB images as input and gives summary information about the image in the form of tensors. The 
pose estimator takes the extracted features and makes predictions in the form of heat maps. The final 

result is the most possible positions being marked out on the image. 

4.2.  Body Movement Tracking System Design 
Based on the pose estimation algorithm above, the graphic user interface is designed using Python 
version 3.6 in the work. The address of the recorded video should be given to the software and will be 
loaded and divided into a sequence of frames. The pose estimation mentioned above will be applied to 
each frame simultaneously. At the end, the output will be formed again into a video. In the designed 
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GUI, there are a number of user options for visualizing the body movement. They are laid out as a design 
as follows: 

 

Figure 4. A video is chosen and loaded to be shown in the interface. 

 

Figure 5. The loaded video is analyzed by the body movement tracking system. 

4.2.1.  Layout design. In the images shown above, Figure 4 shows the video chosen by the user that will 
be analyzed. The left side of the interface is used to display the original video along with the estimated 
results when the user decides. The menu on the right shows the video path as well as the buttons that 

will be used to control the estimation. Each button is as follows: 

• Load Video: The button provided here takes the inputted path in the textbox and loads the video into 
the space on the left, which is used for displaying the estimations. 

• Start Estimation: When this button is clicked, the program runs the implemented algorithm in the 
background. The estimated results will be stored in the file system. 

• Show Estimation: The estimated results will be retrieved from the file system and shown on the left 
panel. 
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4.2.2.  Estimation Pipeline. The video provided by the user is first separated into a sequence of frames. 
Once this is done, the algorithm generates a series of heatmaps corresponding to these frames. The 
heatmaps are used to represent the probability of a specific kind of joint located at each position in the 
input image. That is to say, 18 heatmaps will be generated for a single input image.  

 

Figure 6. The heatmap on the left represents the probability of the head position. The heatmap on the 

left represents the probability of the left foot positions. 

After obtaining these heat maps, the peak positions will be regarded as the final predictions of the 
joint location. The program will automatically combine these 18 heatmap positions into a single output 
as shown below.  

 

Figure 7. The heatmap on the left shows the combined heatmaps of the peak positions, which are the 

joints. On the right, the dots represent the joints determined from the heatmaps. 

The joint positions are connected following the pre-defined skeleton model and visualized using 
colored lines representing the bones. The resulting image is shown below. 
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Figure 8. This is the image with the connected joints predicted from the pre-defined skeleton model. 

Each frame taken from the original video goes through the exact process mentioned above. The 
resulting frames are put back together to form a video again, which is then displayed to the user. 

5.  Experiments 

5.1.  Experiment Setup 
This code is implemented using Python 3.6 and Tensorflow 1.15. The pose estimation algorithm is based 
on the official implementation of OpenPose[5]. The pose estimator is pretrained on the COCO 2016 
keypoint challenge dataset and applied to the own photos of the author. For computation reduction, I 

resized the input image to the standard size of 1080x1920. A skeleton template with 18 joints is adopted 
to represent the human body.  

5.2.  Experiment Results 
Table 1. Pretrained results on the COCO 2016 keypoint challenge. AP50 is for OKS (Object Keypoint 
Similarity) = 0.5, and APL is for large-scale persons. The COCO evaluation defines the object keypoint 

similarity (OKS) and uses the mean average precision (AP). The OKS is calculated by taking how close 
a predicted keypoint is to its true keypoint normalized to 0-1. AP is obtained by dividing the predictions 

into correct and wrong using the threshold. 

Method AP AP50 AP75 APM APL 

OpenPose[5] 61.8 84.9 67.5 57.1 68.2 

G-RMI [11] 60.5 82.2 66.2 57.6 66.6 

DL-61 54.4 75.3 50.9 58.3 54.3 

R4D 51.4 75.0 55.9 47.4 56.7 

The model was first pretrained on the COCO 2016 dataset and the performance evaluation is shown 
in Table 1. It can be seen that OpenPose performs better than the other methods. Considering the 
performance and efficiency of the OpenPose model, it is adopted as the default pose estimator in this 
motion tracking system in this paper. 
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Figure 9. Runtime comparison between bottom-up and top-down methods. As the number of people 
increases, the top-down method also has an increase in the runtime while the bottom-up method is 

constant in runtime [5]. 

As shown in Figure 9, the computation efficiency is evaluated and compared. From this, it is 
evidently shown the top-down method increases in runtime as the number of people in the frame 
increases. On the other hand, the bottom-up method has a constant runtime despite having an increase 
in the number of bounding boxes. This is especially beneficial in sports scenarios with numerous players 
or referees. Fencing, for example, has at least two people in the frame. The referee, coaches, or other 

bystanders may also be included. With the bottom-up approach, it can achieve the real-time analysis of 
movement tracking. 

In Figure 10, I show the effect of using a different number of stages on the final product with mean 
average precision as a measurement. From this, the graph shows there to be an overall growth with the 
increase of normalized distance. At the last stage, or Stage 6, the is a higher accuracy than the other 
stages. This is due to the balance in model capacity and overfitting. Therefore, the number of stages is 
set to 6 by default for the rest of the experiment.  

 

Figure 10. Mean average precision over normalized distance for the number of stages. The normalized 
distance represents the margin of error when considering the prediction as accurate or not. Given this, 

the graph shows the accuracy growing as the normalized distance grows. 
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6.  Conclusion 

The resonating problem with the injuries of athletes due to the lack of attention and ability to analyze 
their technique has been an issue. With modern cameras and the capability to store videos, the body 
movement data can be captured without having subject wear sensors. This is because deep learning 

allows capturing movement to understand the behaviors and movements of those in the video. To do 
this, I have researched existing approaches and found the bottom-up method to be the most appropriate 
algorithm. It allows for efficiency for multi-person frames.  Based on this algorithm, a movement 
tracking system is designed to complete the task of successfully identifying the joint positions. 
Additionally, for the convenience of the user, a software was created to easily present the results. Given 
the provided software, anyone is able to receive the tracked movements with just their smartphone.  

The next step is to going above and beyond with this application is to have a higher-level analysis. 
Currently, the system only allows for movement tracking. A more complex analysis of the movement 

would be to have an automatic examination of when the movement of the subject becomes dangerous. 
The task of deeply examining the tracked movements, done by coaches or other sports authorities, is 
extremely tedious and time-consuming. The overall idea to counter this issue is to have a system that 
allows for automatic identification of when there is an incorrect or dangerous movement done by the 
subject. By doing this, there will be a greater and faster improvement for a more successful and safer 
performance. 
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