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Abstract. Brain tumors rank among the most lethal types of tumors. Magnetic Resonance 

Imaging (MRI) technology can clearly display the position, size, and borders of the tumors. 

Hence, MRI is frequently used in clinical diagnostics to detect brain tumors. Deep learning and 

related methods have been widely used in computer vision research recently for diagnosis and 

classification of MRI images of brain tumors. One trend is to achieve better performance by 

increasing model complexity. However, at the same time, the trainable parameters of the model 

increases accordingly. Too many parameters will lead to more difficult model training and 

optimization, and are prone to overfitting. To address this problem, this study constructs a model 

that incorporates a depthwise separable convolution technique and an attention mechanism to 

balance model performance and complexity. The model achieves 97.41% accuracy in the brain 

tumor classification task, which exceeds the 96.72% accuracy of the pre-trained model 

MobileNetV2, and shows good image classification ability. Future work could test the model's 

classification results on noisy images and investigate how to optimize the model's generalization 

ability. 

Keywords: Brain Tumor, MRI, Depthwise Separable Convolution, Attention Mechanism, 

Image Classification. 

1.  Introduction 

According to the World Health Organization (WHO), cancer has become a major culprit in human 
mortality, causing nearly 10 million (or nearly one in six) deaths in 2020 [1]. Among the many types of 
cancer, brain tumors (BT) are particularly prominent due to their high degree of lethality. Magnetic 
Resonance Imaging (MRI) devices are used to acquire high-contrast gray-scale images of the brain, 
primarily for BT diagnosis [2]. MRI-based brain tumor diagnosis has the advantage of high-resolution 

imaging, which can clearly reveal brain structures and tumor features, providing important information 
for precise tumor localization and characterization. However, current diagnostic methods still rely on 
doctors' experience and judgment, which may cause serious problems such as misdiagnosis and 
omission. Therefore, computer-aided diagnostic (CAD) systems have emerged to utilize pathology 
image analysis with the aim of improving diagnostic accuracy and efficiency, reducing physician burden, 
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and optimizing patient treatment. Although classical machine learning algorithms are widely used for 
image classification in CAD systems, their efficacy is limited by the bottleneck of manual feature 
engineering, which not only relies on the knowledge and experience of experts, but also has low 
efficiency and accuracy when dealing with large-scale datasets [3].  

In contrast, several variants of neural networks have made significant progress in image classification 
in recent years, and they have brought new breakthroughs in the field of medical image analysis by 
demonstrating their respective advantages in terms of improved accuracy, reduced computation, and 
enhanced model generalization. Neural networks can give out final diagnosis for brain tumor based on 
radiographic images. For patients with brain tumors, the ability to accurately identify the specific type 
of tumor in a timely manner is of critical importance in developing a personalized treatment plan as well 
as improving survival rates after treatment. In the study of brain tumor images classification based on 
convolutional neural network (CNN), Martini et al. achieved 93.9% accuracy [4], while Choudhury et 

al. achieved a high accuracy of 96.08% for brain tumor MRI image classification by extracting features 
through CNNs and combining them with fully connected networks [5]. Khaliki et al. investigated the 
application of a three-layer CNN and a transfer learning model (Inception-V3, EfficientNetB4, VGG19) 
for brain tumor image classification, and evaluated the model performance by F-score, recall, imprint, 
and accuracy. Among these models, EfficientNetB4 achieved the best accuracy result of 95% [6]. These 
researchers tried to increase the model complexity to achieve better performance, however, higher model 
complexity means larger number of parameters. 

This study presented a novel model to classify brain tumor MRI images more accurately while using 
less parameters. The model incorporates depth-separable convolution and an attention mechanism. To 
assess the effectiveness and performance of the proposed model, its results were contrasted with those 
of the migration learning model MobileNetV2 and the traditional multilayer perceptron (MLP). 

2.  Dataset description and pre-processing 

2.1.  Dataset description 
This research is conducted using Brain Tumor MRI Dataset [7], a publicly available dataset from Kaggle. 
It comprises 7023 human brain MRI scans that are divided into four subsets: pituitary tumors, gliomas, 
meningiomas, and no tumors. The dataset was divided into testing and training sets (Table 1). 

Table 1. The dataset division adopted in this study. 

Classes Training Testing Total 

Glioma 1321 300 1621 

Meningioma 1339 306 1645 

Pituitary tumor 1457 300 1757 

No tumor 1595 405 2000 

Total 5712 1311 7023 

2.2.  Dataset preprocessing 
With the inconsistent image sizes in this dataset, images in the dataset were first rescaled to a 
standardized size of 224×224 pixels. The rescaled images underwent a normalization process whereby 

the red (R), blue (B) and green (G) values for each pixel were retrieved and then each channel's pixel 
value was divided by 255, thereby normalizing the value range from [0, 255] to [0, 1]. 
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3.  Method 

3.1.  Depthwise Separable Convolutional Network with CBAM  

3.1.1.  Depthwise Separable Convolutional 
The Depthwise Separable Convolution (DSC) network [8] can be decomposed into two operations: 
Pointwise Convolution (PW) and Depthwise Convolution (DW) (Figure 1). 

 

Figure 1. The process of Depthwise Separable Convolution. 

Channel-separated convolution refers to the characteristic of depth-separable convolutional networks. 
Specifically, the network first performs spatial convolution for each channel (depth), generates a series 

of convolutional results, and then stitches these results together. The final feature map is then generated 
by the depth-separable convolutional network by applying channel convolution on the joining result 
using a unit convolution kernel.  

The deep separable convolutional network offers a reduction in computational demand and parameter 
count when contrasted with its traditional convolutional neural network counterpart.  The difference in 
the parameter counts and computational effort between the standard convolution (SC) and the deep 
separable convolution (DSC) is reflected in Table 2. 

Table 2. Parameter counts and computational effort required for standard and depth-

separable convolution. 

Standard Convolution Deep Separable Convolution 

Parameter 
Counts 

Computational Effort 
Parameter 

Counts 
Computational Effort 

𝐷𝐾 × 𝐷𝐾

× 𝑀 × 𝑁 

𝐷𝐾 × 𝐷𝐾 × 𝑀 × 𝑁 × 𝐻
× 𝑊 

𝐷𝐾 × 𝐷𝐾

× 𝑀
+ 𝐷𝐾 × 𝑁 

𝐷𝐾 × 𝐷𝐾 × 𝑀 × 𝐻 × 𝑊
+ 𝐷𝐾 × 𝑁 × 𝐻
× 𝑊 

 

𝐷𝐾  represents the size of the convolutional kernel. 
𝑀 stands for the number of input channels. 

𝑁 represents the number of output channels. 

𝐻 and 𝑊 stand for the height and width of the input feature map respectively. 
 
The ratio of the number of parameters and computational cost between SC and DSC: 

Parameter Counts (SC)

Parameter Counts (DSC)
=

Computational Effort (SC)

Computational Effort (DSC)
=

1

𝑁
+

1

𝐷𝐾
2 (1) 
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3.1.2.  Convolutional Block Attention Module 
By successively merging the two sub-modules of Channel Attention and Spatial Attention, the 
Convolutional Block Attention Module (CBAM) [9] is a widely-applied attentional mechanism that 
allows the model to concentrate more on important aspects in the image (Figure 2 and Figure 3).  

 

Figure 2. CBAM module flowchart. 

 

Figure 3. CBAM is composed of: (a) A channel attention module; (b) A spatial attention module. 

To focus on the channel dimension, the feature matrix is initially inputted into the Channel Attention 
Module (CAM). Within this module, the feature maps undergo both global average pooling and global 
max pooling. These processes generate descriptors for the average-pooled features and the max-pooled 
features, respectively. And then MLP generates the channel attention and multiplies such attention 
weight values with the input feature matrix. 
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Following the channel attention mechanism, the feature matrix is fed into the Spatial Attention 
Module (SAM) to calculate attention in the spatial dimension. Additionally, along the channel axis, 
average pooling and maximum pooling operations are conducted to produce two two-dimensional 
mappings. After the two feature maps are stacked and run through a convolutional layer, the activation 

function finally produces the spatial attention map. To create a predicted feature map that is weighted 
in multiple dimensions of space and channel, the attention weight value is ultimately multiplied by the 
feature matrix with channel attention applied. 

3.1.3.  The Structure of DSConv-CBAM Model 
In order to construct a model with a smaller number of parameters, less complexity, and superior feature 

extraction performance, this research proposed a network model based on depth-separable convolution 
and CBAM attention mechanism (DSConv-CBAM model). This innovative approach leverages the 
efficiency of depthwise separable convolution combined with the powerful feature focusing abilities of 
the CBAM (Figure 4). 

 

Figure 4. The structure of DSConv-CBAM model. 

First, the input image passes through the first layer of SeparableConv2D using 32×3×3 convolution 
kernels for depth separable convolution to initially learn the local features of the MRI image. To reduce 

the size of the feature maps, MaxPooling operation is performed on the feature maps after depth-
separable convolution, using a 2×2 pooling window. A CBAM attention module is introduced to refine 
the feature map with 32 input channels, a downscaling ratio of 16, and spatial attention using a 5×5 
convolutional kernel. 

For further feature abstraction, more complex features continue to be extracted using 64×3×3 
convolutional kernels via SeparableConv2D and MaxPooling, subsequently following a CBAM module 
for feature refinement. Repeating the basic structure again, using the SeparableConv2D layer with 128 
convolutional kernels, continued to reduce the feature map size through maximum pooling and used the 

CBAM module to further focus on key features. 
The Flatten layer is utilized to bridge the convolution operation and the fully-connected operation to 

flatten the multidimensional output into one dimension. In order for the model to learn the images and 
labels, the model contains two fully connected layers. The first one has 128 neurons and the second one 
is the output layer with 4 neurons for outputting 4 classification results.  

3.2.  Multilayer Perceptron(MLP) 

Multilayer perceptron is an artificial neural network (ANN) which contains an input layer, multiple 
hidden layers, and an output layer. Each layer is fully connected to the next layer, and each node except 
the input node carries a nonlinear activation function. The input data is forward propagated, the data is 
gradually propagated to the output layer, and the loss function is back-propagated to the first layer and 
the weights are updated. The structure of the MLP used in this research is shown in Figure 5. 
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Figure 5. The structure of the MLP model. 

3.3.  Transfer Learning with Pre-trained MobileNetV2 
Transfer learning is a method of using knowledge learned in one domain to apply it to another related 
domain. ImageNet is a widely used large-scale image dataset for training deep convolutional neural 
network models. In this study, we adopt the parameter transfer approach, utilizing the MobileNetV2 

model pretrained on ImageNet, retaining all layers except for the final fully connected layer, and freezing 
the pretrained parameters. Additionally, we incorporated a global average pooling layer, a fully 
connected layer with 128 neurons, and a final output layer with 4 neurons. 

3.4.  Hyperparameter Settings 
To train different models and compare the results, we set uniform hyperparameters before training. 

Specifically, we used Adam as the optimizer. The learning rate was 0.001, beta_ 1 parameter was 0.9, 
and beta_2 parameter was set as 0.99. ReLU was used as the activation function for the model, and the 
cross-entropy loss function was employed. Each model was trained for 35 iterations with a batch size of 
64. 

3.5.  Evaluation Metrics 

To evaluate the classification performance of different models, this study employed accuracy, precision, 
recall, F1 score, specificity, and AUC as evaluation metrics. The formulas for these metrics are as 
follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
(2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(5) 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(6) 

TP stands for true positives, which refers to the number of positive cases that the model accurately 
predicts as positive. True negatives (TN) refer to the accurate prediction of negative instances as 
negative by the model. FP stands for false positives, which refers to the count of negative cases that the 
model mistakenly predicts as positive. False negatives (FN) refer to the cases where the model wrongly 
predicts positive instances as negative. 

4.  Result and discussion 

4.1.  Training process 

Figure 6 shows the validation accuracy curves of the model training process for the MLP model, the 
transfer learning MoblieNetV2 model and the self-constructed DSConv-CBAM model. From the curves, 
it can be seen that the transfer learning strategy can obtain a significantly higher initial accuracy with 
the fastest convergence speed compared to the additional two models trained from scratch, with 
convergence accomplished at about 10 epochs. On the other hand, the two models trained from scratch, 
the MLP and the DSConv-CBAM model, both have noticeably lower initial accuracies than the transfer 
learning model while converging at a significantly slower rate, completing convergence at about 20 and 
15 epochs, respectively. On the other hand, the MLP experiences greater fluctuations during training 

and is more challenging to converge compared to the other two convolutional neural network models. 
Meanwhile, the DSConv-CBAM model's loss and accuracy curves are smoother than those of MobileV2. 

 

Figure 6. The loss and accuracy curves of different models. 

4.2.  Testing results 
Table 3 presents the evaluation outcomes for three models. All the three models exhibit excellent recall 
when confronted with MRI medical images of pituitary tumors and no tumors, obtaining 97.67%, 98.67% 
and 99.67% recall for pituitary tumor cases and 100.00%, 99.75% and 100.00% recall for no tumor 

cases, respectively. All three models showed excellent ability in not to miss report pituitary tumors and 
no tumor cases. However, the MLP model demonstrated a mere 89% accuracy, with the lowest weighted 
average across other metrics, particularly notable in its recall for the Meningioma category at only 68%. 
This indicates a significant rate of missed diagnoses for the meningioma class. 
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In addition, the DSConv-CBAM model improves precision by 3.67% in the confrontation of MRI 
medical images of meningiomas and recall by 3.00% in the confrontation of MRI medical images of 
gliomas compared to the transfer learning MoblieNetV2 model. 
To conclude, the DSConv-CBAM model outperforms the pretrained MobileNetV2 in overall accuracy 

and metrics. This showcases the superior performance of the DSConv-CBAM model. 

Table 3. Test results of different models. 

Model Classes Precision Recall 
F1-

Score 
Specificity Kappa Accuracy 

MLP 

Pituitary 0.96 0.98 0.97 0.99 

0.86 0.89 
No tumor 0.89 1.00 0.94 1.00 

Meningioma 0.89 0.68 0.77 0.91 

Glioma 0.84 0.89 0.86 0.97 
Average 0.90 0.89 0.89 0.97 

MobileNetV2 

Pituitary 0.97 0.99 0.98 1.00 

0.96 0.97 
No tumor 1.00 1.00 1.00 1.00 

Meningioma 0.91 0.97 0.94 0.99 
Glioma 0.99 0.91 0.94 0.97 
Average 0.97 0.97 0.97 0.99 

DSConv-
CBAM 

Pituitary 0.98 1.00 0.99 1.00 

0.97 0.97 

No tumor 0.99 1.00 1.00 1.00 

Meningioma 0.94 0.95 0.95 0.99 

Glioma 0.97 0.94 0.95 0.98 

Average 0.97 0.97 0.97 0.99 

4.3.  Confusion Matrix 
This study presents the confusion matrices of three models, as shown in Figure 7. In the confusion 
matrices, the diagonal line stretching from the top-left to the bottom-right indicates the count of correct 

predictions for each category. The more numbers there are on the diagonal of the confusion matrix, the 
more accurate the model predictions are and the better the performance. 

 

Figure 7. Confusion matrices of different models. 

4.4.  Discussion 
In this research, a convolutional neural network model, DSConv-CBAM, combining deeply separable 
convolution and attentional mechanisms, was constructed for a brain tumor MRI medical image 
classification task. 

Brain Tumor MRI Dataset [7], a freely available public dataset from Kaggle consisting of 5712 
images for training and 1311 images for testing, was used to evaluate the performance of three types of 
models, the multilayer perceptron MLP, the transfer learning model MobileNetV2, and the DSConv-

CBAM model, respectively, on the task of classifying MRI medical images of brain tumors, and to 
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compute various evaluation metrics in terms of precision, recall, F1-score, specifity, kappa, and accuracy. 
According to the obtained results, the self-constructed model DSConv-CBAM achieved the highest 
accuracy in MRI tumor classification when confronted with this dataset, and the DSConv-CBAM model, 
the transfer learning model MobileNetV2, and MLP models achieved an accuracy of 97.41%, 96.72%, 

and 89.47%, respectively. Table 3 demonstrated the detailed evaluation scores of the three models on 
brain tumor MRI medical image classification, and despite the slightly lower scores in the individual 
subthemes targeting different types of tumors, the comprehensive ability of the self-constructed 
DSConv-CBAM model is still significantly better than the other models. 

However, the test results also revealed some of the issues. All the models in this research, including 
the proposed DSConv-CBAM model, suffer from overfitting problems when facing small datasets. Due 
to the relatively minor size of the dataset, the models were over-matched to the current dataset after 
training, such that their performance showed significant degradation in the face of other data or while 

performing prediction, resulting in poor generalization ability of the models. The size of medical image 
datasets is usually very limited, while the medical image data used for model training usually demands 
manual feature extraction by human experts, which is limited by their accumulated level of expertise, 
time, and effort. Meanwhile, as a black-box model, the internal operation principle of the convolutional 
neural network model is usually complicated to elucidate, although it can classify and judge the medical 
image data for the reference of human experts, it cannot provide the basis of judgment for the human 
experts, which restricts the auxiliary ability of the human experts by its low interpretability. 

How to apply other advanced data preprocessing methods, including data enhancement, image 
segmentation, to avoid the overfitting problem while further improving the generalization ability of the 
model and its computational efficiency to adapt to its application environment will be the direction of 
subsequent research. It is expected that the model can be applied to other tumor types like lung cancer, 
liver cancer, pancreatic cancer, as well as other medical images like PEI, x-ray, ultrasound images, and 
so on. It is hoped that as the size of the medical image database will continue to expand and the model 
algorithms will continue to be iteratively improved, in the future it will be possible to build a 

comprehensive system to help reduce the burden of assisted judgment of human experts working in the 
field of medicine. 

5.  Conclusion 

This study presents the development of a new convolutional neural network model, DSConv-CBAM, 
specifically designed to improve the precision and efficiency of classifying brain tumour MRI 

images.By integrating depth-separable convolution with an attention mechanism, the model effectively 
balances performance with a reduced number of parameters, which is particularly beneficial for medical 
environments with limited computational resources. The model was rigorously evaluated against 
classical MLP and MobileNetV2 models, demonstrating superior accuracy in classifying gliomas, 
meningiomas, pituitary tumors, and non-tumors. 

The DSConv-CBAM model's innovative architecture, which includes a depth-wise separable 
convolution layer and a CBAM module, allows for more efficient feature extraction and focus on 
significant image features, leading to an average classification accuracy of 97.41%. Despite the model's 

high performance on the dataset, challenges such as overfitting due to the dataset's limited size were 
noted, indicating the need for advanced data preprocessing techniques to improve generalization. 
The study's findings suggested that the DSConv-CBAM model could serve as a valuable tool in medical 
diagnostics, potentially aiding healthcare professionals in making more informed decisions regarding 
brain tumor treatments. Future work will explore the model's applicability to other tumor types and 
medical imaging modalities, with the ultimate goal of creating a comprehensive system to assist medical 
experts in their diagnostic efforts. 
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