
Instrument recognition in unprocessed musical audio through 

transformer-based modelling 

Congren Dai 

King’s College London, London, WC2B 4BG, United Kingdom 

congren.dai@kcl.ac.uk 

Abstract. This study focuses on identifying primary instruments in musical audio using an 

adapted Wav2Vec 2.0 model, initially intended for extracting speech features from raw audio. 

Modifications to the model's convolutional layers and transformer element were made to 

facilitate the recognition of instruments in complex audio mixes. The task of instrument 

recognition is approached as a multi-labelled classification problem. The effectiveness of the 

model is measured through accuracy, precision, recall, F1-score, and analysis via a confusion 

matrix. Key findings reveal the model's differential efficiency in recognising various instruments, 

with notable success in detecting violins, pianos, saxophones, and human voices. However, the 

model encounters difficulties in recognising instruments with a narrower dynamic range or lower 

volume, like the organ that may provide harmonic support, and those with scarce representation, 

such as the cello and clarinet. The research also indicates that while pre-separation of certain 

instruments like guitars may enhance recognition, it may not be necessary for others. 
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1.  Introduction 

The central aim of this paper is to categorise the predominant instruments in musical audio. It opens 

avenues to distinguish orchestral music, known for its complex arrangements, with a musical impact 

deemed unique in the sphere of music performance. Orchestral works, like symphonies, can involve 

about 100 musicians. The instruments used in these compositions typically cover the string, brass, 

woodwind, and percussion families, with several of these instruments being the focus of this study. This 

is considered a multi-labelled classification problem [1], compared to other multi-class classifications 

that simply classify one instrument in musical audio. Wav2Vec 2.0 [2] has proven effective in acquiring 

speech representations directly from raw audio at 16kHz as shown in Figure 1. This model is applied to 

discern "instrumental" representations across a range of 11 distinct instruments in this paper. 

Modifications are made to the model, which involves adjusting the dimensions of the convolutional 

layers in the feature extraction section and altering the number of hidden layers in the transformer [3] 

component of the model. The study incorporates data processing techniques like resampling the audio 

and padding the input into the model. Regarding model evaluation, the paper discusses overall accuracy 

and accuracy specific to multi-labelled classification. Additionally, it delves into precision, recall, the 

F1-score, and the utilisation of the confusion matrix for each instrument as crucial metrics for assessing 

the model's performance.  
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Figure 1. Musical audio resampled at 16kHz. 

2.  Literature Review 

In the study conducted by Bosch et al. [4], an investigation was carried out focusing on the detection of 

primary musical instruments within polyphonic audio signals. In this study, a comprehensive assessment 

was conducted on a spectrum of sound segregation techniques, each varying in complexity, to determine 

their effect on the precision of instrument identification algorithms. The algorithms evaluated include 

Support Vector Machines, the Flexible Audio Source Separation Framework, and the Simple Left/Right-

Mid/Side (LRMS) Separation method. Additionally, it was established that the inclusion of a sound 

segregation phase prior to the deployment of the instrument recognition algorithm notably enhances the 

accuracy of the results, with improvements observed up to 32%. The findings of this study indicate that 

the efficacy of instrument recognition algorithms is significantly improved when they are trained using 

features derived from isolated audio streams. As opposed to the approach outlined in their research, this 

paper leverages a transformer model to solve the classification issue without segmenting instruments. 

Gururani et al. [5] addressed the challenge of identifying musical instruments in multi-instrumental 

compositions with weakly labelled data. They proposed an attention-based framework to enhance 

classification accuracy under these conditions. This approach addresses the limitations of existing 

datasets, such as MedleyDB, which offers detailed per-frame annotations but is small in scale, and 

OpenMIC, which provides basic labels indicating the presence or absence of instruments in music 

segments but is larger in scale. The study demonstrates that incorporating an attention mechanism 

enables the model to focus on specific temporal segments relevant to each instrument, significantly 

improving classification accuracy across all 20 instruments in the OpenMIC dataset compared to 

conventional models like binary relevance random forests, recurrent neural networks, and fully 

connected neural networks. The attention model not only outperforms these baselines in classification 

metrics but also provides interpretative insights by highlighting the audio segments that the model 

prioritises for instrument recognition. Additionally, the use of an attention mechanism facilitates 

contextual understanding by selectively emphasising sounds or phonemes essential for comprehending 

the context, effectively managing long sequences by identifying the most critical parts of the input. 

Solanki et al. [6] tackled the challenge of identifying the predominant instrument in real-world 

polyphonic music, a task that aligns with the focus of this paper. The researchers utilised a Mel 

spectrogram representation to convert audio data into a matrix form, suitable for processing by a model 

similar to AlexNet. Their methodology demonstrated remarkable accuracy, achieving a 92.8% success 

rate in instrument recognition, thus underscoring its potential utility in music information retrieval. 

However, the study lacks clarity regarding the threshold applied in the Softmax function for label output. 

Given that the testing set is multi-labelled, varying thresholds could yield different accuracy results. 

Also, in the context of multi-labelled classification, it remains ambiguous whether the reported accuracy 

reflects instances where the entire set of predicted labels for a sample precisely matches the 

corresponding set of true labels. 

Mahant et al. [7] conducted research on the automated classification of musical instruments using 

convolutional neural networks (CNNs) and Mel-frequency cepstral coefficients (MFCCs), employing 

the Philharmonia dataset that encompasses twenty distinct musical instrument classes. They addressed 

dataset imbalance by implementing audio data augmentation techniques. Their methodology highlighted 

the effectiveness of MFCCs in capturing the timbral qualities of musical instruments. The study also 
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discussed the potential of integrating this model into real-time applications due to its compact and 

efficient structure. Contrasting with their approach, this paper employs raw musical audio as input, 

which, while more straightforward, introduces greater challenges in resolving the classification problem. 

3.  Methodology 

This section outlines the methodology proposed for the investigation. The objective of this study is to 

harness the potential of Wav2Vec 2.0, a speech recognition framework adept at deriving speech 

representations from unprocessed audio. 

3.1.  Model Development 

The Wav2Vec 2.0 model employs a multi-layer convolutional feature encoder that processes raw audio 

into latent speech representations through temporal convolution, layer normalisation, and GELU [8] 

activation, with the input normalised to zero mean and unit variance [2]. The output is discretised using 

a quantisation module that employs product quantisation from multiple codebooks, facilitated by the 

Gumbel softmax and a straight-through estimator, enabling differentiable codebook entry selection. 

These discretised representations feed into a transformer-based context network incorporating a 

convolutional layer for relative positional embedding, superseding fixed embeddings, followed by layer 

normalisation. The model also uses a masking and contrastive task strategy, masking certain encoder 

outputs and replacing them with a common feature vector. 

The architecture of the Wav2Vec 2.0 is modified by reducing the convolutional layers’ dimensions 

from 512 to 256, the number of hidden layers from 12 to 4, and attention heads from 12 to 8. Additionally, 

the model head is modified to include three identical structures, each with a fully connected layer 

followed by layer normalisation and a dropout layer at a rate of 0.3, preceding the final classifier layer. 

These changes result in a model comprising 35,445,387 parameters. 

3.2.  Dataset 

The dataset employed in this research is IRMAS [9], specifically designed for training and testing 

systems intended for the automatic recognition of primary instruments in musical audio. It features a 

diverse range of instruments, encompassing cello (cel), clarinet (cla), flute (flu), acoustic guitar (gac), 

electric guitar (gel), organ (org), piano (pia), saxophone (sax), trumpet (tru), violin (vio), and human 

singing voice (voi). This dataset is an adaptation of the one compiled by Fuhrmann in his doctoral thesis 

[4]. However, unlike Fuhrmann's approach, in the paper, the testing set is utilised for the phases of 

training, validation and testing of the model. This deviation is due to the testing set's multiple labels per 

sample, making it a suitable resource for the proposed methodology of this study. Fuhrmann's testing 

set is divided in an 8:1:1 ratio, with the specific distribution of this split detailed in Figure 2. 

 

Figure 2. Distribution of the classes in the datasets. 

3.3.  Data Processing 

The process involves critical steps like resampling, padding, and multi-hot encoding. Since Wav2Vec 

2.0 requires 16 kHz input, the audio is resampled from 44 kHz using the librosa library [9]. For feature 

extraction, the Wav2Vec2FeatureExtractor from Hugging Face [10] is utilised. Labels are multi-hot 
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encoded as shown in Table 1, where a "1" denotes the presence of predominant instruments, while "0" 

indicates their absence, which demonstrates a substantial number of actual negatives in the dataset. 

Table 1. Multi-hot encoded labels. 

cel cla flu gac gel org pia sax tru vio voi 

0 0 0 0 1 0 0 0 0 0 1 

3.4.  Loss Function 

Given that the task involves multi-labelled classification, Binary Cross-Entropy, is utilised as shown in 

Equation 1. N represents the total number of observations in the dataset, yi denotes the actual label of 

the 𝑖-th observation (being either 0 or 1), and 𝑝𝑖  is the predicted probability of the 𝑖-th observation 

belonging to class 1. The term yi ⋅ log(pi) contributes to the loss when the actual label 𝑦𝑖 is 1, with the 

loss intensifying as the predicted probability pi  diverges from 1. Conversely, the term (1– yi) ⋅
log(1– pi) affects the loss when the actual label 𝑦𝑖 is 0. 

𝐿 =  −
1

𝑁
 ∑[ 𝑦𝑖 ⋅ 𝑙𝑜𝑔(𝑝𝑖) +  (1 − 𝑦𝑖) ⋅ 𝑙𝑜𝑔(1 −  𝑝𝑖)]

𝑁

𝑖=1

 (1) 

3.5.  Technical specifications 

The experiments were conducted on a system running Ubuntu 20.04 as the operating system. The 

hardware specifications include a CPU with 10 cores, a GPU with an A100-PCIE-40GB, a memory 

capacity of 72 GB, and a storage space of 80 GB. 

4.  Results 

The threshold set for predicting the presence of instruments is 0. The evaluation metrics focus on several 

aspects: training loss and accuracy, accuracy, precision, recall, F1-score, and confusion matrix. 

4.1.  Training Loss and Accuracy 

As illustrated in Figure 3, the model’s loss declined rapidly when training, whereas the validation loss 

decreased slowly and slightly. Figure 4 illustrates a continuous increase in the model's accuracy on the 

training set. However, the accuracy on the validation set, while initially improving, exhibits an earlier 

plateau. The model selected is from Epoch 61 where it has the lowest validation loss during training. 

 

 

 

Figure 3. Loss. 
 

Figure 4. Accuracy. 
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4.2.  Accuracy, Precision, Recall, and F1-score 

Table 2 showcases the accuracy rates for different instruments, ranging from approximately 70% to 96%, 

indicating variable model performance across instruments. Instruments such as the cello, clarinet, and 

trumpet exhibit the highest accuracy, while the electric guitar has the lowest within the group. 

Additionally, in multi-labelled classification problems, accuracy can be measured by a stricter criterion 

that considers a prediction accurate only if it matches the true labels "exactly". Using this more stringent 

measure, the model's accuracy is reported at 0.32. 

Table 2. Accuracy per instrument. 

cel cla flu gac gel org pia sax tru vio voi 

0.96 0.96 0.95 0.85 0.7 0.82 0.80 0.93 0.96 0.95 0.81 

 

Table 3 reveals that the model completely fails to identify true positives for the cello and clarinet, as 

indicated by zero precision and recall scores. This failure may result from inadequate data representation 

or an inability to distinguish the unique characteristics of these instruments. For the flute, acoustic guitar, 

and violin, the model shows high precision but varied recall scores, suggesting it accurately identifies 

these instruments when detected but frequently fails to recognise them. The organ and trumpet display 

uniformly low performance, highlighting significant recognition challenges. In contrast, the electric 

guitar, piano, saxophone, and human voice achieve more balanced and moderately high F1-scores, 

indicating better overall performance. 

Table 3. Classification Report. 

 Precision Recall F1-score Support 

cel 0.00 0.00 0.00 12 

cla 0.00 0.00 0.00 11 

flu 0.86 0.33 0.48 18 

gac 0.64 0.49 0.56 55 

gel 0.57 0.46 0.51 99 

org 0.14 0.05 0.07 43 

pia 0.68 0.62 0.65 84 

sax 0.57 0.67 0.62 24 

tru 0.17 0.14 0.15 7 

vio 0.95 0.62 0.75 32 

voi 0.69 0.82 0.75 103 

     

Micro avg 0.64 0.52 0.57 488 

Macro avg 0.48 0.38 0.41 488 

Weighted avg 0.59 0.52 0.54 488 

Samples avg 0.63 0.56 0.57 488 

4.3.  Confusion Matrix 

In Figure 5 the model's performance for cello and clarinet indicates a significant shortfall, as it fails to 

correctly identify any of both instruments. All occurrences of cello and clarinet are predicted as 

negatives, signifying a complete miss in recognising these classes. For instruments like organ and 

trumpet, the model exhibits a limited ability to identify true positives, coupled with a high count of false 

negatives. This pattern suggests that the model struggles to detect these instruments when they are 

present, leading to a low recall. In the case of the piano, acoustic guitar, and electric guitar, there appears 

to be a more balanced distribution between true positives and false negatives. This suggests a moderate 

level of accuracy in the model's predictions for these instruments. The higher recall for the instruments 

indicates a better proficiency of the model in detecting their presence. Across all instruments, there is a 
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consistently high number of true negatives. This implies that the model generally performs well in 

predicting the absence of an instrument, demonstrating its effectiveness in avoiding false positives. 

 

Figure 5. Confusion matrix for each instrument. 

5.  Discussion 

The results indicate that the modified Wav2Vec 2.0 model achieved varying levels of performance 

across different instruments, and generally performs well in predicting the absence of an instrument. 

However, as noted in Section 3.2, following the multi-hot encoding of the labels, the dataset exhibits a 

significant proportion of actual negatives. Consequently, the F1-score, which provides a balanced 

measure of a model's precision and recall, is more suitable for analysis in this context than considering 

precision and recall independently. The notably elevated F1-scores associated with the piano, saxophone, 

violin, and human voice indicate a strong performance, marked by a minimal incidence of 

misclassifications and a low rate of overlooked true cases, as opposed to cello, clarinet, organ, and 

trumpet. 

The dynamic range and articulation of instruments significantly affect their sonic signature. The 

piano and saxophone, with their vast dynamic range and the ability to play both staccato and legato, 

might be easier for the model to identify due to their distinct and variable sound. In contrast, instruments 

with more subtle articulation changes, like the organ, might pose more challenges. 

The audibility of an instrument within a musical composition significantly impacts its ability to be 

recognised. Instruments, such as violins or the human voice, which usually lead the melody at higher 

volumes, are more readily identifiable due to their dominance in the audio mix. In Figure 6, the relatively 

sparse number of violins in the training set may cause higher accuracy. Conversely, instruments that are 

relegated to background roles or serve as harmonic support, like the organ, face detection challenges 

even though they have a moderate number of training samples, resulting in lower metrics of precision, 

recall, and F1-score. 
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Figure 6. Samples using one instrument. In 

the training set, various types of trumpets 

display a range of timbral characteristics. 

Some trumpets employ mutes to alter their 

sound, making it higher or lower in multi-

instrument samples, compared to those 

containing one single trumpet. 

6.  Conclusion 

The results of the study are valuable in enhancing the understanding of transformer models for musical 

audio analysis and reveal the model's varying effectiveness in identifying different instruments, with 

notable success in recognising violins, pianos, saxophones, and human voices. These findings 

underscore the potential of transformer-based models in complex audio recognition tasks. Interestingly, 

instruments such as the violin and saxophone may not require prior separation for moderate accuracy in 

training. Despite having the fewest solo samples, the saxophone achieves an accuracy of 0.93 and an 

F1-score of 0.62. However, the research also identifies areas for further investigation. The model's 

performance in detecting instruments with a narrower dynamic range and lower volume, such as the 

organ, or those sparsely represented in the dataset, like the cello and clarinet, needs enhancement by 

expanding the dataset to improve training and accuracy. Additionally, incorporating timbral and 

contextual information could refine the model's effectiveness. Exploring the model's adaptability to 

different audio qualities and formats would increase its application range. 
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