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Abstract. With the proliferation of AI technology, machine learning has emerged as a 

cornerstone of AI systems, facilitating pattern recognition and decision-making through robust 

data analysis. This encompasses various learning paradigms such as supervised, unsupervised, 

and reinforcement learning, all of which are indispensable for the advancement of artificial 

intelligence. Nevertheless, the development of AI necessitates substantial computational 

resources, with specialized chips serving as the linchpin, particularly in demanding tasks such as 

deep learning. Dedicated chip development, exemplified by GPUs and TPUs, plays a pivotal role 

in enhancing the performance of AI systems, notwithstanding challenges related to costs and 

market monopolies. Moreover, AI systems require significant power support, especially during 

the training of large-scale models. To address these challenges, this paper reviews the existing 

literature on modeling techniques aimed at enhancing the efficiency of machine learning and 

reducing energy consumption. This review encompasses optimal algorithm design, hardware 

optimization, and spatial modeling. Through the implementation of these approaches, the 

challenges posed by resource constraints in machine learning scenarios can be effectively 

mitigated, thereby fostering the continued development and application of AI technology. 
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1.  Introduction 

In contemporary times, propelled by technological advancements, several global powers are directing 
their efforts towards the development of high-performance chips, such as GPUs, capable of handling 
immense arithmetic power. This pursuit aims to establish technological leadership, particularly among 
tech companies striving to engineer superior AI products. Presently, machine learning commands a 
substantial portion, nearly 60%, of global investments, primarily driven by the burgeoning AI industry 
encompassing robotics and speech recognition [1]. IBM defines AI as a system that "utilizes computers 
and machines to replicate the problem-solving and decision-making capabilities inherent in the human 

mind"[2]. The emergence of artificial intelligence has ignited a fierce competition between the United 
States and China in the realm of chip development, given the pivotal role of semiconductors. 
Semiconductors not only serve as the cornerstone of the modern economy and the digital realm but also 
constitute essential hardware for the development and operation of AI systems [3]. China, with its 
substantial semiconductor demand, commands a notable 34.4% market share, yet it accounts for only 
16% of the world's total manufacturing capacity[4]. Lawrence & VerWey [4] critique China's 
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semiconductor industry plan for lacking clear objectives and a coherent implementation strategy, 
hindered by bureaucratic hurdles. Furthermore, the veil of secrecy surrounding technology in Japan, 
South Korea, and even within China and Taiwan has impeded China's quest for significant technological 
breakthroughs [5]. In addition to the on-chip pressures, there exists a significant strain on environmental 

resources. The energy demands induced by the large-scale model arithmetic employed in the AI industry 
are considerable. Even before the widespread adoption of machine learning models, the proliferation of 
big data centers saw a six-fold increase in server numbers, reaching 30 million. Consequently, the energy 
consumption per server far surpasses that of earlier models. The continual evolution and refinement of 
big-model algorithmic techniques have imposed formidable challenges on the energy sector at a global 
scale. These challenges encompass escalating consumption rates, efficiency dilemmas, volatile trends 
in supply and demand, and a dearth of comprehensive analyses essential for effective management. The 
gravity of these issues is particularly pronounced in emerging markets, where unauthorized "grid access" 

is prevalent, leading to substantial energy losses and heightened levels of CO2 emissions. This 
exacerbates the already critical efficiency predicaments [6]. 

This paper presents a comprehensive review of the contemporary state-of-the-art modeling literature 
aimed at enhancing the efficiency of machine learning algorithms and mitigating energy consumption. 
We concentrate on four primary areas of optimization: algorithm and model design, hardware 
optimization, and spatial modeling techniques. Our objective is to offer engineers and scientists in 
computer science and sustainable technology a fresh perspective within the context of chip constraints 

and to delineate avenues for future research endeavors. The paper unfolds as follows: Section 2 
elucidates the design of optimization algorithms and model structures tailored for processing large-scale 
datasets. Section 3 explores current advancements in hardware optimization, providing actionable 
recommendations. In Section 4, we delve into spatial modeling techniques, addressing both their merits 
and limitations. Lastly, Section 5 presents a contemporary outlook on the future of AI, advocating for 
reduced dependence on chips. 

2.  Model design for large-scale data 

The rapid advancements in text categorization, speech recognition, and image processing have ushered 
in a myriad of optimization challenges within the domain of machine learning. Text categorization 
endeavors often encounter convex optimization problems, rooted in the application of algorithms like 
logistic regression or support vector machines. Conversely, the terrain of speech and image recognition 
is characterized by highly intricate non-linear and non-convex problems, necessitating the utilization of 

deep neural networks. 
As the volume of large-scale data continues to burgeon, the quest for models adept at efficiently 

discerning patterns and correlations within datasets becomes imperative. Sustainable data modeling 
stands as a beacon, striving to optimize two pivotal facets: achieving maximum learning accuracy while 
minimizing computational overhead and facilitating rapid processing of extensive datasets. This 
optimization not only fosters enhanced data processing efficiency but also frequently leads to significant 
cost reductions. This assertion finds validation in the works of esteemed researchers such as Patnaik, 
Sundaravaradan and Marwah [7,8,9]. Furthermore, streamlining model complexity emerges as a potent 

strategy to bolster efficiency by curbing computational burden and curtailment of energy consumption. 
Leveraging domain expertise, researchers embark on the endeavor of simplifying models, rendering 
them more computationally tractable. Notably, strides have been made across four major domains [10]: 
Kernel models, Graph models, Deep models, and Tree models. For instance, kernel methods offer an 
efficient means to compute inner products in high-dimensional feature spaces, thus enabling the 
modeling of non-linear relationships with heightened efficiency. Kernel methods have proven to be 
particularly adept at handling datasets with complex structures, as evidenced by simplification 

techniques like sampling-based approaches [11] and projection-based approximations [12]. 
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3.  Optimization algorithms 

The surge in research endeavors within text categorization, speech recognition, and image processing 
has catalyzed a spectrum of optimization challenges in machine learning. Text categorization research 
often grapples with convex optimization problems, typically arising from the application of algorithms 

such as logistic regression or support vector machines. Conversely, studies in speech or image 
recognition confront highly complex non-linear and non-convex problems, necessitating the utilization 
of deep neural networks. Diverse optimization techniques abound in machine learning, offering avenues 
to reduce unnecessary computation and enhance computational efficiency. Noteworthy among these are 
three commonly employed approximation optimization methods: Mini-batch Gradient Descent[13], 
Coordinate Gradient Descent[14], and Numerical Integration based on Markov chain Monte Carlo 
(MCMC)[15]. 

3.1.  Mini-batch gradient descent 

Mini-batch gradient descent updates the parameters (θ) of a model iteratively using mini-batches of data 

(𝐵) from the dataset. In each iteration (𝑡), the parameters are updated according to the formula: 

                                                                   [𝜃(𝑡+1) = 𝜃(𝑡) − 𝛼 ⋅ 𝑔𝐵
(𝑡)

]                                                         (1) 

where (α) is the learning rate and (𝑔𝐵
(𝑡)

)is the gradient of the loss function(J(θ)) computed on mini-

batch (𝐵) at iteration (𝑡). 

3.2.   Coordinate gradient descent 

Coordinate gradient descent updates each parameter (θ𝑗) individually while holding the others fixed. In 

each iteration (𝑡), a parameter (θ𝑗)is chosen, and the parameter is updated according to: 

                                                         [θ𝑗
(𝑡+1)

= argmin
θ𝑗

J (θ1
(𝑡)

, θ2
(𝑡)

, … , θ𝑗, … , θ𝑛
(𝑡)

)]                          (2) 

This process is repeated for each parameter until convergence. 

3.3.  Numerical integration using MCMC 
Numerical integration using MCMC involves sampling from the parameter space using a Markov chain. 

Given a target distribution (p(θ))and a proposal distribution(q (θ′ | θ)), the parameters are sampled 

iteratively according to the Metropolis-Hastings algorithm: 

1. Given the current parameter (θ(𝑡)), propose a new parameter (θ′) from (q (θ′ | θ(𝑡))). 

2. Compute the acceptance probability(A = min (1,
𝑝(θ′)

𝑝(θ(𝑡))
)). 

3. Accept the new parameter with probability (𝐴); otherwise, retain the current parameter. 
This process is repeated for a large number of iterations to obtain samples from the target 

distribution(p(θ)), which can be used for approximating integrals and optimizing functions. 

Optimization algorithms in machine learning across diverse domains encounter notable challenges, 
especially in the domain of deep neural networks. Stochastic gradient descent algorithms, integral to 
deep learning optimization, often present various complexities [16,17]. Notably, some adaptive methods 
exhibit learning rate fluctuations during later training stages, leading to the potential problem of non-
convergence [18]. However, integrating stochastic gradient descent with its variant properties offers a 

promising avenue for optimization enhancement[19]. Particularly noteworthy is the transition from 
adaptive algorithms to stochastic gradient descent methods, which can augment algorithmic accuracy 
and convergence speed [20]. Furthermore, stochastic optimization methods, as proposed by T. Chen et 
al. [21], can be effectively applied to Markov chain Monte Carlo (MCMC) sampling, thereby bolstering 
efficiency. Another noteworthy technique, stochastic variational inference, enhances algorithmic 
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efficiency by introducing natural gradients and extending variational inference to large-scale datasets, 
outperforming traditional optimization methods [22]. 

4.  Hardware optimization 

Deep Neural Networks (DNNs) have revolutionized numerous fields, leveraging innovative model 
configurations and advancements in hardware platforms. However, the escalating complexity of training 
DNNs has resulted in substantial energy requirements, posing a significant barrier to their deployment 
on energy-constrained embedded and mobile devices. For instance, deploying DNNs like AlexNet for 
image classification on Internet of Things (IoT) nodes and wearable devices can rapidly deplete a 
smartphone's battery within an hour [23]. To tackle the energy consumption challenge, Y.-H. Chen et 

al. [24] and others have proposed strategies to minimize data movement and optimize energy utilization. 
They highlight the detrimental impact of large filter weights and channels in DNNs on energy 
consumption, advocating for techniques such as data reuse and support for different shapes to reduce 
data movement. Additionally, leveraging data statistical information to implement zero-skipping/gating 
helps avoid unnecessary reads and computations. Furthermore, Cai et al. [25] and colleagues have 
introduced a layer-by-layer prediction framework based on sparse polynomial regression, aiming to 
forecast the energy consumption of Convolutional Neural Networks (CNNs) during inference on any 

GPU platform. Efforts to develop models capable of reasoning about energy consumption have yielded 
promising results. Yang et al. [26] demonstrated that energy-based pruning surpasses FLOPs-based 
methods in energy efficiency. They developed a prediction model based on measurements from their 
hardware accelerator Eyeriss, showcasing the potential for improved energy efficiency.In the context of 
Mobile Crowdsourcing Machine Learning (MCML), Anh et al. [27] and colleagues proposed a deep Q-
learning algorithm to enable servers to dynamically adapt and make optimal decisions in uncertain 
mobile environments. This algorithm outperforms static alternatives in terms of energy consumption 
and training latency, facilitating more efficient MCML operations. 

5.  Spatial modelling 

The ascent of AI is undeniably intertwined with endeavors exploring the neural architecture of the brain, 
exemplified by innovations like Long Short-Term Memory (LSTM) networks [28]. Drawing inspiration 
from studies elucidating working memory in the neurosciences, AI researchers have seamlessly 
integrated memory modules into machine learning frameworks, thereby underpinning a plethora of 

sequential processing tasks. Guided by insights into neocortical plasticity—a cornerstone of continuous 
learning in the brain—researchers have not only delved into memory mechanisms but also sought 
inspiration from the brain's attentional faculties. The integration of attention modules into artificial 
neural networks, whether temporally or spatially, has marked a transformative leap in AI[29,30]. These 
modules endow networks with the capacity to selectively focus on salient features while disregarding 
irrelevant elements, thereby bolstering the efficacy of deep neural networks in tasks spanning natural 
language processing and computer vision. Moreover, this incorporation enhances the efficiency of the 

training and inference processes, surpassing the capabilities of conventional deep networks. The 
evolution of such adaptable algorithms has catalyzed the emergence of contemporary big language 
models [31]. Yet, as the demand for computational power and chips escalates with the blind expansion 
of sequential algorithms, scholars propose a paradigm shift towards spatial modeling. Wu et al. [32] 
argue that prevailing big language models are rooted in a one-dimensional framework, positing that 
embracing spatial modeling could alleviate the concomitant chip requirements. Building upon this 
premise, Bui et al. [33] advocate for spatial approaches that enable the simultaneous processing of entire 

graphs at reduced computational costs. They propose the translation of the Hierarchical Deep Learning 
Neural Network (HiDeNN) framework, originally designed for addressing 3D problems in structural 
engineering [34]. This framework leverages multi-scale models within the HiDeNN architecture to 
address challenges across macro, meso, and microscales. Through collaborative coupling of loss 
functions, HiDeNN facilitates the modeling and resolution of physical phenomena across varying spatial 
scales, offering a novel approach to tackle computationally intensive problems. 
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6.  Conclusions 

This review endeavors to elucidate avenues for steering the development of AI technology within the 
prevailing technological milieu, mindful of the inherent constraints imposed by chip architecture and 
power consumption. Specifically, we delve into theoretical and empirical dimensions within the ambit 

of large-scale data-intensive domains, encompassing (1) the conceptualization of model frameworks, (2) 
the formulation of model optimization algorithms, and (3) an emerging paradigm shift—spatial 
modeling. The burgeoning influx of big data underscores the imperative for energy-efficient computing 
prowess, given its palpable impact on human resources. Foreseeably, the trajectory of AI development 
hinges upon the efficacy of data modeling practices, poised to catalyze advancements in spatial 
modeling. Novel design paradigms, exemplified by sustainable data modeling, not only hold promise 
for addressing chip-related challenges but also serve as conduits for maximizing dividends across 
multifarious scientific domains. 
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