

AI techniques in board game: A survey

Ailien Liu

Huamei-Bond International College, Guangzhou ,510520, China

1330451967@qq.com

Abstract. This paper delves into the realm of Artificial Intelligence (AI) and its transformative

impact on board games, with a particular focus on chess and Go. In the domain of Go, it traces

the evolution from AlphaGo’s historic victory over Lee Sedol to the groundbreaking AlphaGo

Zero and Alpha Zero models. This survey explores the fundamental neural network architectures

and reinforcement learning techniques employed in board games, ushering AI to new heights in

mastering these intricate games. Furthermore, it introduces the chess AI developed by DeepMind,

shedding light on the cutting-edge advancements in AI-driven board game strategies. This

comprehensive examination highlights the profound influence of AI in reshaping the landscape

of board games and sets the stage for further research and innovation in this exciting field.

Keywords: AI Techniques, Board Game, AlphaGo.

1. Introduction

At the dawn of computers, some early games included some basic elements of artificial intelligence.

However, the use of AI in games is very limited due to computational power and technical limitations.

In 1950, Alan Turing published an important paper in which he proposed the concept of a chess program

[1]. The publication of this paper marked the beginning of the field of AI in computer games and board

games. Although computer performance was very limited at that time, it could not achieve satisfactory

results in real games. The paper laid the foundation for research in this field. During that era, Arthur

Samuel became the first to develop what we now recognize as reinforcement learning using a program

that learned to play Checkers by playing against itself [2, 3].

The modern paradigm of chess programming began to take shape during the 1970s and early 1980s

and has since undergone continuous refinement [4]. This approach relies on alpha-beta pruning [5] and

the MiniMax search algorithm, further augmented by specialized extensions designed to address unique

scenarios like critical forcing variations [6]. This combination of techniques has laid the foundation for

developing and optimizing chess-playing AI systems. Early AI research was predominantly focused on

board games. The primary rationale behind this was the inherent clarity of rules and well-defined victory

conditions in these games. For instance, in chess, achieving checkmate or forming a line of five stones

in games like Gomoku represent unequivocal win conditions. These characteristics simplified the

formalization of problems, enabling researchers to precisely define the game states, legal moves, and

victory conditions (typically expressible effectively through states and permissible actions, usually no

more than approximately 100 reasonable moves available from any given position [5]).

This paper profoundly delves into classical board game AI, such as Chess and Go, focusing on their

algorithms, especially AlphaGo. We will detail how these AI algorithms work. In computer science and

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/79/20241297

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

49

artificial intelligence, classical board game AI research has far-reaching significance. This paper aims

to provide insight for a diverse audience, from AI beginners to enthusiasts interested in board games to

professionals and researchers. This is a great starting point for beginners in AI to understand the basics

of the field and build a solid academic foundation by exploring well-known board game AI programs

and algorithms. For those interested in board games, this paper will reveal the inner workings of these

games and provide them with valuable insights for improving their game skills. Finally, for professionals

and researchers alike, the study will provide the latest insights into AI algorithms and promote the

application of AI technologies in a broader range of fields. By delving into classical board game AI, we

can better understand how intelligent systems operate in complex decision-making environments and

provide insights and inspirations for future developments in the field of AI.

Figure 1. the whole process of MCTS

2. Algorithms in Board AI

2.1. Tree Search Algorithm

In the context of board games, the Tree Search Algorithm involves imagining the possible actions and

the resulting outcomes. When taking action from a state, it leads to a new state, and this process is

iterated until it reaches a final state, each corresponding to a specific value. This systematic exploration

of all possible actions and consequences forms a search tree (see Figure 1). The objective is to select the

action at the initial state that maximizes its associated value, where the value of a state is equivalent to

the value of an action taken from it. The value of the final state, which corresponds to a leaf node, is

known. To compute the values of preceding states or nodes, knowledge of the values of later states is

required. This fundamental distinction from reinforcement learning lies in planning through simulated

scenarios instead of learning from real experiences. In the Tree Search Algorithm, several critical

components are involved. A node is a fundamental unit, with the foremost node referred to as the root.

Leaf nodes represent the endpoints of the tree, and actions connecting nodes are known as edges. Nodes

are interconnected through edges, forming parent-child relationships between them. For example, the

root node is the parent of every node in the layer below, and each leaf node is a child of the corresponding

node in the layer above.

When two players, the agent and the rival, are engaged, the agent's actions begin with the current

state as the root. The search expands by imagining all possible actions (outcomes) at the first level,

leading to the creation of edges (agent actions) and nodes (outcomes). From the agent's perspective, the

rival's actions are treated as states, while the agent's possible actions are outcomes. The process

continues by considering the rival's potential actions and consequences, followed by the agent's actions

and outcomes. Once this process stops, the final layer of nodes constitutes the leaf nodes, marking the

completion of the search tree. Subsequently, the values of these leaf nodes are calculated, typically

through manually defined functions that consider various board features, such as the quantity and types

of game pieces. These values, known as naive values, are then propagated through the tree's nodes and

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/79/20241297

50

edges, referred to as backup. Ultimately, the values of actions and edges at the initial level are

determined, enabling the selecting of the action with the highest value.

2.2. MiniMax Tree Finding

The MiniMax algorithm is a backup operation for calculating node values in a game tree. Assuming we

have already obtained the values of leaf nodes, the next step is to compute the values of higher-level

nodes. At this node level, the agent needs to choose an action. The agent will select the action with the

maximum value, so the value of this node equals the maximum value among its child nodes. Similarly,

we can calculate the values of other nodes at the same level by passing the values of leaf nodes up to the

parent nodes. We then continue this propagation upwards. In the parent nodes at the upper level, the

rival needs to select an action, and thus, the rival will choose the action that leads to the minimum value.

This is because the value is relative to the agent, and the agent prefers higher values as they are more

advantageous. Therefore, the value of this node equals the minimum value among its child nodes. In the

MiniMax algorithm, the value of agent nodes is determined by choosing the maximum value among

their child nodes. In contrast, the value of rival nodes is determined by selecting the minimum value

among their child nodes. Hence, this algorithm is known as MiniMax.

In 1997, the Deep Blue computer [7], which defeated the world chess champion, employed the

MiniMax tree search algorithm. However, the MiniMax algorithm faces a problem wherein the search

tree grows exponentially, as each node considers all possible actions and their consequences, and each

consequence leads to multiple possible actions. To address this issue, Deep Blue also utilized a technique

to reduce the size of the search tree, known as Alpha-Beta pruning. Additionally, the MiniMax algorithm

typically limits the number of levels it searches rather than exploring all the way to the deepest level.

2.3. Alpha-beta Pruning

In the process of constructing the search tree, we don’t obtain all leaf nodes simultaneously; instead, we

acquire them one at a time. We can perform a backup operation when we have obtained all the values

of a parent node’s leaf nodes (child nodes). After obtaining the value of the first node in the second-to-

last layer, we continue exploration and calculate the value of the first child node of the second node. It

is important to note that the value of the second node must be greater than or equal to the value of its

first leaf node (since we always select the maximum value regardless of the other leaf node’s value).

We choose the minimum value when we reach the third-to-last layer, which corresponds to the rival’s

actions. If the value of its first child node is smaller than the range of values for the second child node,

it is unnecessary to explore that particular node. We then proceed to explore the parent nodes of other

leaf nodes. By using the value of these parent nodes, we can deduce that the corresponding nodes at the

upper layer (rival state) can have a value at most equal to the parent node’s value. When comparing the

values of nodes at the same parent node for the rival state, the agent state will choose the maximum

value. Consequently, some child nodes can be explored without exploring. This process continues, and

some remaining leaf nodes can be left unexplored. Through this algorithm, we effectively reduce the

size of the search tree, thereby improving search efficiency.

Ultimately, we obtain the first-layer edges, and the agent selects the action with the highest value as

its actual move. This leads us to a real rival state. The rival also makes a real move based on its

considerations, entering a real agent state. This state becomes a new root node, initiating the MiniMax

research process anew. Consequently, in Deep Blue’s chess gameplay, each move is determined through

the search tree, in contrast to reinforcement learning, where a policy function decides actions. However,

it is worth noting that this policy function can also be employed in the tree search process.

2.4. Monte Carlo Rollout

Monte Carlo Rollout is a game tree search technique designed to evaluate the value of the current game

state. It works by estimating a state's value through simulating the game's progression, as opposed to

fully expanding the entire game tree, which is typical in MiniMax algorithms. To begin with, starting

from the current game state, we consider all possible actions and their corresponding consequences,

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/79/20241297

51

forming the first layer of edges and nodes. This layer consists of the last layer of nodes and leaf nodes,

resulting in a relatively shallow game tree. Next, we initiate the Rollout process starting from each leaf

node. In Rollout, we randomly select an action and simulate the game's progression until it reaches an

end state. This Rollout process is repeated multiple times (typically controlled by an adjustable

hyperparameter, n) to generate winning probabilities for each leaf node. These winning probabilities are

then used as the values of the leaf nodes.

Subsequently, the agent makes its actual move based on these leaf node values, selecting the action

with the highest value. Following this, we enter a new root node and continue the Monte Carlo Rollout

to improve the estimation of state values iteratively. It is important to note that as the number of Rollout

iterations (n) increases, the Rollout values gradually converge to approximate the true state values.

Unlike the traditional MiniMax algorithm that considers the entire game tree, Monte Carlo Rollout

only focuses on the first layer of nodes, with subsequent iterations involving single action selections.

The Rollout policy determines the specific action choices. This approach offers the advantage of

providing valuable value estimates in scenarios with a large state space or when precise modeling is

challenging. Therefore, Monte Carlo Rollout finds extensive applications in games and decision-making

problems.

2.5. Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS) is a powerful game tree search algorithm that combines Monte Carlo

Rollout and MiniMax tree search elements. It is particularly effective in scenarios where the game tree

is too large for exhaustive exploration.

The MCTS algorithm starts from a common root node. Initially, it employs the MiniMax tree search

technique to build a relatively deep but not fully expanded search tree. Then, it proceeds with Monte

Carlo Rollout, starting from the leaf nodes, and repeats this process for a specified number of iterations

(denoted as 𝑁). A tree policy is used throughout the tree search process to guide the exploration. During

the Rollout phase, the algorithm estimates the value of each leaf node by conducting Monte Carlo

simulations. These estimated values are referred to as the “Rollout values” and serve as the leaf nodes’

values. Subsequently, the algorithm integrates the Rollout values into the search tree using the principles

of MiniMax tree search. It propagates the leaf nodes’ values upwards in the search tree. After conducting

a certain number of iterations, MCTS selects the action with the highest value as the actual move. By

combining these two methods, MCTS aims to enhance the accuracy of value estimation. However, it is

worth noting that the computational complexity of both techniques combined does not always lead to a

substantial improvement in performance.

The core iteration of the general MCTS approach involves the following steps, as illustrated in the

figure 2 below.

Figure 2. the whole process of MCTS

In the initial stage, each edge in the first layer is associated with two variables: 𝑄(𝑠, 𝑎) and 𝑁 (𝑠, 𝑎),

where s represents the state, and 𝑎 represents the action. The variable 𝑄(𝑠, 𝑎) denotes the average or

positional value of choosing action a in state s, while 𝑁 (𝑠, 𝑎) represents the frequency or count of

choosing action a in state s. Both 𝑄 and 𝑁 are initialized to 0. MCTS operates iteratively, expanding the

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/79/20241297

52

search tree, conducting Rollouts, and updating the Q and N values until a stopping criterion is met. This

dynamic and adaptive approach makes MCTS a versatile algorithm for various games and decision-

making problems.

2.5.1. Selection

In the Monte Carlo Tree Search (MCTS) algorithm, the next step is to employ a tree policy known as

UCT (Upper Confidence Bounds for Trees) to choose the node for exploration.

According to the UCT policy, we first consider all possible actions that can be taken from the current

node, along with their consequences, forming the first layer of edges and nodes. The nodes in this layer

are essentially the leaf nodes. However, since all actions in the first layer are equivalent, we typically

choose one action at random based on a certain probability, rather than selecting a specific node. This

process is referred to as” selection.”

When selecting an action, we use the following UCT formula (Equation 1) [8]:

 𝐴 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎∈𝐴(𝑠)

{𝑄(𝑠, 𝑎) + 𝐶√
𝑙𝑛[𝑁(𝑠)]

𝑁(𝑠,𝑎)
} (1)

In this formula, 𝑄(𝑠, 𝑎) represents the average return or value of a node, 𝑁 (𝑠, 𝑎) represents the

number of times the node has been visited, and 𝐶 is an exploration parameter that controls the weight of

exploration. The first part of the formula 𝑄(𝑠, 𝑎) represents the average value, which is higher for

actions that lead to a higher average return, making them more likely to be chosen. The second part of

the formula 𝐶√
𝑙𝑛[𝑁(𝑠)]

𝑁(𝑠,𝑎)
 represents uncertainty, and by increasing the exploration parameter 𝐶, we can

increase the weight of exploration, favoring the selection of less explored actions to balance the trade-

off between exploration and exploitation. This means that actions with fewer visits are more likely to be

chosen.

It’s important to note that during the selection phase, we typically choose only one action from all

actions in the first layer, rather than selecting all actions at once. This process is guided by the policy

function and involves selecting one action based on certain probabilities. After selecting an action, the

corresponding edge’s visit count is updated to 1, and other actions are temporarily ignored.

2.5.2. Simulation and Backup

Next, starting from the chosen leaf node, we perform a “rollout” in which we simulate a game until it

reaches its conclusion. In each simulation, the result, whether a win or loss, is recorded as the value

(typically 1 for a win and -1 for a loss) returned to the leaf node. We then calculate the total value of the

leaf node, often denoted as 𝑊 (𝑠, 𝑎), where 𝑊(𝑠, 𝑎) = ∑ 𝑉 (𝑠leaf), and 𝑉 (𝑠leaf) represents the win/loss

results of each simulation.

Subsequently, we compute the 𝑄 value for the edge:

 𝑄(𝑠, 𝑎) =
𝑊 (𝑠,𝑎)

𝑁 (𝑠,𝑎)
 (2)

where the 𝑄 value represents the average value of all leaf nodes associated with the action. This average

value becomes the value associated with the action itself.

This computational process is referred to as “backup” because we are propagating the results of

simulations back into the search tree. We then return to the “selection” phase, starting the selection

process again using the UCT policy. During the new selection process, the visit count of the

corresponding edge is updated to 1, and simulations start anew, yielding new results that are propagated

back in the same manner.

2.5.3. Expansion and Backup

MCTS includes an optional step called “expansion”. Expansion involves transforming a leaf node into

an internal node and continuing exploration within that internal node. Without expansion, a leaf node

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/79/20241297

53

will be iteratively used multiple times, gradually increasing its visit count. When the visit count reaches

a certain threshold (typically used for dynamic adjustment to control the growth rate of the search tree),

the expansion step is triggered.

The leaf node is transformed into an internal node during the expansion process. Then, possible

actions and resulting states from the new internal node are considered, forming new edges and nodes

with new 𝑄 and 𝑁 values. Simulations are then conducted within the new leaf nodes. The results of

these new simulations are also propagated back into the search tree, updating the relevant 𝑄 and values.

The purpose of expansion is to make the search tree more dynamic, enabling a more comprehensive

exploration of the state space. It is important to note that some leaf nodes may be chosen during

expansion, while others may not, depending on the selection strategy based on the UCT policy.

2.5.4. Conclusion

In conclusion, Monte Carlo Tree Search (MCTS) constructs a search tree through a continuous process

of “selection,” “simulation,” and “backup.” Each edge in the search tree corresponds to a state-action

pair and maintains three variables: 𝑄(𝑠, 𝑎), 𝑁 (𝑠, 𝑎), and 𝑊 (𝑠, 𝑎).

The ultimate goal is to select an action from the first layer of edges in the search tree. Typically, we

choose the action with the highest visit count 𝑁 , as this selection criterion is relatively stable in practice

and less affected by extreme values. After the agent selects an action, the opponent (rival) also chooses

an action, and the process enters the next agent’s state, initiating a new round of MCTS search. In this

process, the results of the previous round’s search tree can be inherited and used in the new round.

Overall, MCTS combines the strengths of MiniMax tree search and Monte Carlo simulation

algorithms, while efficiently utilizing value and policy functions to make tree search highly effective.

2.6. MCTS with Deep Neural Networks: AlphaGo

AlphaGo leverages the synergy between Monte Carlo Tree Search (MCTS) and deep neural networks

to significantly enhance its performance in the game of Go. This fusion capitalizes on the crucial role

played by deep neural networks, leading to a substantial improvement in the efficiency of the Monte

Carlo search. Simultaneously, MCTS’s forward-looking search capability helps compensate for the

limitation of policy networks, which rely solely on the current state of the game board. AlphaGo employs

a search algorithm that combines Monte Carlo simulation with two neural networks: a value network

and a policy network. The policy network further subdivides into the rollout policy network, supervised

learning policy network, and reinforcement learning policy network.

In AlphaGo, DeepMind constructs the game board positions using convolutional neural networks

(CNN) and extensively utilizes neural networks to enhance the efficiency and accuracy of the search

tree [9]. Specifically, the value network is responsible for assessing the value of each game board

position, while the policy network is tasked with selecting the next move. The roles of these two deep

neural networks in the MCTS process can be categorized into the following stages: selection (tree

policy), simulation (rollout policy), and Backup.

AlphaGo employs supervised learning to train two policy networks, which guide the selection of

AlphaGo’s next moves. The supervised learning policy networks take the current game board state as

input and output probabilities for different actions after processing through the neural network.

Additionally, AlphaGo employs reinforcement learning to train two deep neural networks, namely, the

policy network and the value network. The objective of reinforcement learning is to secure victories in

actual games, rather than merely replicating expert gameplay. Consequently, the policy network and the

value network undergo continuous self-play and strategy optimization, ultimately achieving remarkable

performance.

2.6.1. Supervised Learning Policy Network

In the field of artificial intelligence for Go, the Supervised Learning Policy Network plays a pivotal role.

Its primary objective is to enhance autonomous decision-making by emulating the choices of human Go

players. This network, implemented as a deep convolutional neural network (CNN), takes the current

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/79/20241297

54

state of the board as input and outputs a probability distribution over the empty spaces on the board

where a professional Go player would make their next move. DeepMind conducted training for a policy

network using a dataset comprising 30 million positions from the KGS Go Server, achieving remarkable

results with an accuracy of 57 percent in just 3 milliseconds [9].

The training process of the SL policy network includes the following key steps: first, a substantial

amount of training data is collected, with each board state being fed into the network. The network then

performs forward propagation and computes the loss function to measure the disparity between the

network’s output and the correct moves of professional players. Subsequently, optimization algorithms

such as gradient descent are utilized to iteratively adjust the network’s weights and biases to minimize

the loss function. This process is iterated repeatedly, with each iteration providing more game records

that gradually enhance the network’s performance through gradient descent updates. The ultimate goal

of the entire training process is to enable the SL policy network to predict Go moves similar to those of

professional players in any given board state. Once the training is complete, this SL policy network can

guide AlphaGo in selecting optimal moves during the search process, significantly improving the

efficiency and quality of the search. Whenever a board position is input, the network returns a probability

distribution over potential move.

2.6.2. Rollout Policy Network

The Rollout Policy Network, also known as the Fast Rollout Policy Network, plays a critical role in

Monte Carlo Tree Search (MCTS). MCTS employs the Rollout Policy Network to perform a series of

random simulations to evaluate the effectiveness of taking different actions in the current game state. In

normal simulations, Rollouts often require hundreds of steps to determine the game's final outcome,

making it computationally intensive. Therefore, there is a need for a policy function that can make quick

selections, achieved through training a simple neural network as the Rollout policy.

The training objective of the Rollout policy network is similar to that of the Supervised Learning

(SL) policy network—both aim to emulate expert action selection to improve decision-making during

the Monte Carlo Tree Search. DeepMind used 8 million human expert state-action pairs to train this

network [9]. Ultimately, it can complete calculations in just 2 microseconds, which is one-thousandth

of the time required by the SL network, but its accuracy is only 24.2 percent [9]. Similar to the SL policy

network, data collection for the Rollout policy network is based on game records of professional players,

including board states and corresponding correct actions. However, the rollout policy network differs in

that it linearly combines attributes of each board state (such as board position, average value, visit count,

etc.) to generate a vector representing the board state.

This step aims to transform the current state of the board into a numerical vector that the neural

network can process. This vector serves as the input to the Rollout Policy Network, which then outputs

a probability distribution over all possible actions. Since this is a probability distribution, the Softmax

function is typically used to convert it into probability values. During training, the network adjusts its

weights to minimize the loss function, bringing its output probability distribution closer to the correct

action distribution. This constitutes the entire training process, and through multiple rounds of training,

the network's output becomes more accurate, resembling human action choices.

Once training is complete, the Softmax function generates probabilities for each possible action

whenever the current board state is input. Thus, in AlphaGo's MCTS, the Rollout process involves

linearly combining the current board state, using weights to weigh different features to generate a vector

representing the current game situation. Subsequently, the Softmax activation function yields a

probability distribution for each possible action. Finally, based on the probability distribution output by

Softmax, the Rollout Policy selects the following action. In other words, the Rollout Policy's process

first selects a leaf node for expansion in the selection part, then inputs the current situation into the

Rollout Policy Network to perform a series of random simulations (rollouts). In each simulation, we

obtain probabilities for each action in the current situation and then use a certain strategy to select the

next action (usually the action with the highest probability for movement). This process is repeated until

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/79/20241297

55

a terminal state is reached (e.g., the game result is determined). This constitutes the entire simulation

process.

What sets the trained Rollout Policy apart from a traditional rollout is that the Rollout Policy Network

is trained through supervised learning, guided by expert data, and employs deep reinforcement learning

techniques for more precise action evaluation and selection. Its strategy is closer to that of human experts

rather than being entirely random. Traditional random rollouts typically estimate action values through

multiple random simulations without using deep reinforcement learning. However, unlike the

Supervised Learning policy, this network sacrifices the quality of moves to achieve faster move

generation.

Unlike the SL policy, the Rollout policy extracts local features and trains a linear model based on

them. In contrast, the SL policy network utilizes global features and deep learning models for training.

2.6.3. Reinforcement Learning Policy Network

The Reinforcement Learning (RL) policy network is also a deep convolutional neural network. The RL

policy network is initialized with the Supervised Learning (SL) policy network, and it is continuously

optimized through self-play while adjusting the optimization objectives based on the original supervised

learning network. Its primary focus is not only to mimic expert moves but to win games.

In the RL training process, the previously trained policy network plays against a randomly selected

previous version of itself. The Policy Gradient Algorithm is then employed to train the RL policy

network. If an action leads to a higher reward (winning), its probability of occurrence is increased, and

if an action leads to a lower reward (losing), its probability is decreased. The primary principle is to

maximize rewards to adjust the probabilities of actions. This entire process involves reinforcement

learning. After training, the RL policy network achieves a win rate of approximately 80 percent when

playing against the supervised learning network [9].

2.6.4. Value Network

The Value Network in reinforcement learning is a neural network used to evaluate the value of a game

state. Its primary task is to estimate how likely AlphaGo is to win or lose in the current game state. It is

trained using regression with the objective of minimizing mean squared error through stochastic gradient

descent. The training method for the Value Network also involves reinforcement learning. It uses policy

gradient methods to continually improve the performance of the reinforcement learning value network.

Through iterative processes and parameter updates, the goal is to enhance the estimation of win rates in

game states.

During the self-play process of the RL policy network in reinforcement learning, a new dataset is

generated. To prevent overfitting, the training data for the Value Network is derived from 30 million

board positions generated by self-play from the trained RL policy network. Each board position is

sampled from individual complete games. However, the training data is collected diversely during each

game. This includes using the SL policy network to make moves for the first n moves, followed by

random moves, and finally relying on the RL policy network to make moves until the game’s conclusion.

This diverse data collection approach helps increase the diversity of training data to guard against

overfitting.

In summary, the purpose of the Value Network is to use it to evaluate the likelihood of winning a

game state. This deep network is used in conjunction with the Rollout Policy Network during the

simulation process to determine the value of leaf nodes.

2.6.5. Process of MCTS in AlphaGo

In AlphaGo, the Monte Carlo Tree Search (MCTS) process involves several crucial steps. Firstly, it is

imperative to train the policy model, rollout model, and value model offline. Then, the MCTS process

follows the conventional flow, starting from the root node and progressively generating edges for each

layer and nodes for the first layer. The unique aspect here is the integration of the supervised policy

network into the tree policy. The approach adopted is PUCT (Probabilistic UCT), which essentially

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/79/20241297

56

combines UCT with an SL policy. At each time step t during a simulation, an action a is selected from

states using the formula:

𝐴 = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑄(𝑠, 𝑎) + 𝑢(𝑠, 𝑎)}

 𝑎 ∈ 𝐴(𝑠) (3)

Here, 𝑄 represents the average value, and 𝑢(𝑠, 𝑎) is a bonus term, computed as:

 𝑢(𝑠, 𝑎) ∝
𝑃 (𝑠,𝑎)

1+𝑁(𝑠,𝑎)
 (4)

The numerator represents the probability of action an obtained from the supervised policy network,

while the denominator accumulates the count of selecting that action in simulations up to the current

step. This bonus term ensures that the average value is directly proportional to the action’s prior

probability 𝑃 (𝑠, 𝑎) and inversely proportional to the number of times 𝑁 (𝑠, 𝑎) the action has been

chosen. Consequently, PUCT tends to explore paths with high prior probabilities P and low visit counts,

which haven’t been extensively explored. From another perspective, due to this supervised learning

strategy, the focus can be on actions with high probabilities from the outset, eliminating the need for a

gradual learning curve as in the traditional UCT. This considerably enhances the efficiency of MCTS

tree search.

It’s worth noting that although reinforcement learning networks are more potent, AlphaGo employs

an SL policy rather than an RL policy for PUCT. In practical terms, SL POLICY results are better suited

for MCTS searches. While both policies serve the same purpose of providing a prior bias for action

selection, SL policy, being closer to human choices, offers a broader range of action choices. Human

choices involve a diverse spectrum of promising moves, thereby widening the selection range.

Conversely, after further optimization, RL policy narrows down the selection range. When training the

value network, the objective is to determine the final win rate if both sides play optimally. This is why

the strongest RL policy is utilized for training.

Using this strategy, we select an action, enter a new leaf node as in the previous step, and then start

rollout, or simulation. Here, we no longer employ a random strategy but rather utilize a learned rollout

policy. This policy is chosen for its computational efficiency, enabling us to swiftly simulate an entire

game and obtain a result. Ultimately, we obtain a rollout result denoted as r (+1 for winning and -1 for

losing).

Next comes the backup step, where, in MCTS, we assign the result obtained from the rollout as the

value to the leaf node. However, in AlphaGo, the evaluation of a leaf node occurs in two ways: one is

the win rate 𝑉0 of that leaf node derived from the value network, and the other is a rollout value r

obtained from the rollout policy. We pass the rollout result 𝑟 to the leaf node and calculate the value V

for the leaf node through a weighted average. The equation for calculating 𝑉 is as follows:

 𝑉 (𝑠) = (1 − 𝜆) × 𝑉0(𝑠) + 𝜆 × 𝑧 (5)

Here, 𝑉 (𝑠) represents the value of the leaf node, 𝑉0 is the win rate obtained for the leaf node through

the value network, and r represents the rollout value. The remaining steps are similar to MCTS: we

calculate and update the total value W and the average value Q for the leaf node and all its ancestors,

along with updating the visit count 𝑁 . We may also adjust parameters and weights for functions like

PUCT.

In conclusion, one iteration of Monte Carlo tree search in AlphaGo consists of the following steps:

1. Extracting relevant features based on the current state of the board and the moves made so far. 2.

Estimating the probabilities P of placing stones in unoccupied positions on the board using the SL

learning policy network. 3. Inputting the placement probabilities P into the PUCT function to obtain the

A and determining the next node to visit by selecting the action with the highest 𝐴 . 4. Expanding a node

if the visit count of a leaf node reaches a predefined threshold. 5. After selecting the leaf node for

simulation, assessing the game’s value separately using the value network and rollout policy network,

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/79/20241297

57

and then calculating the leaf node’s temporary value V through a weighted average. 6. Backing up the

values through the transmission of information and updating the attributes of nodes.

3. AI from DeepMind

3.1. Alphago

On March 9, 2016, AlphaGo achieved a monumental victory against the seventeen-time world Go

champion, Lee Sedol, with a score of four to one. Behind this remarkable feat lay the utilization of two

neural networks: one being the policy network, employed to narrow the search space by retaining high-

probability nodes and discarding low-winning probability moves; the other being the value network,

used to assess the board’s positional value. Despite AlphaGo reaching the pinnacle of human

performance at that moment, it did not entirely dominate humanity. In the fourth game of the man-

versus-machine showdown, Lee Sedol secured a miraculous victory with his” Divine Move,”

demonstrating the ingenuity of the human mind. However, nine months later, AlphaGo Master [10]

emerged onto the stage, achieving a flawless 60: 0 record against numerous world-class Go players,

including Ke Jie. Following this, the Go world embarked on a new era, a revolutionary era – the era of

AlphaGo Zero [10].

3.2. Alphago Zero

AlphaGo Zero [10] has achieved remarkable feats, surpassing human performance with an astonish- ing

record of 100 wins to 0 losses, even surpassing the previous version of AlphaGo that defeated Lee Sedol.

AlphaGo Zero stands apart from its predecessors in several significant ways. Firstly, it relies entirely

on self-play and reinforcement learning, devoid of any dependence on human expertise or knowledge.

Given the fundamental rules of Go, AlphaGo Zero gradually elevates its own capabilities through self-

play and training. Unlike previous versions, AlphaGo Zero utilizes a single neural network, eliminating

the need for separate policy and value networks. Additionally, it employs an entirely new reinforcement

learning algorithm, diverging from traditional Monte Carlo Tree Search distributions. What’s truly

astonishing is that AlphaGo Zero, in a mere 40 days, achieved its current high level of performance

through approximately 29 million games of self-play training [10].

3.3. Alphazero

Alpha Zero [11] is, in fact, a derivative of AlphaGo Zero, and its overall framework and principles

closely resemble those of the original AlphaGo Zero. However, it introduces further refinements to the

existing algorithm to master chess and shogi, among other games.

AlphaZero still relies on key components such as deep neural networks and Monte Carlo Tree Search

(MCTS). However, it utilizes a distinct training dataset tailored to its need to learn various board games

with different rules. This broadens its applicability to a wider range of games.

4. Conclusion

In conclusion, the advancements in AI showcased through board games like Go have reshaped the

landscape of artificial intelligence. The journey from Alphago’s historic victory to the remarkable feats

of AlphaGo Zero and Alpha Zero demonstrates the power of deep neural networks and reinforcement

learning in conquering complex challenges. These achievements not only signify AI’s prowess in

mastering strategic games but also serve as a catalyst for innovation in diverse domains.

References

[1] Turing, A. M. Digital computers applied to games. Faster than thought (1953).

[2] Garc´ıa-S ánchez, P. Georgios n. yannakakis and julian togelius: Artificial intelligence and

games: Springer, 2018, print isbn: 978-3-319-63518-7, online isbn: 978-3-319-63519-4,

https://doi. org/10.1007/978-3-319-63519-4. Genetic Programming and Evolvable Machines

20, 143–145 (2019).

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/79/20241297

58

[3] Samuel, A. L. Some studies in machine learning using the game of checkers. ii—recent progress.

IBM Journal of research and development 11, 601–617 (1967).

[4] Slate, D. J. & Atkin, L. R. Chess 4.5—the northwestern university chess program. Chess skill in

Man and Machine 82–118 (1977).

[5] Risi, S. & Preuss, M. From chess and atari to starcraft and beyond: How game ai is driving the

world of ai. KI-Ku n̈stliche Intelligenz 34, 7–17 (2020).

[6] Levinson, R., Hsu, F.-H., Marsland, T. A., Schaeffer, J. & Wilkins, D. E. Panel: The role of chess

in artificial intelligence research. In Proceedings of the 12th International Joint Confer- ence

on Artificial Intelligence (1991).

[7] Campbell, M., Hoane Jr, A. J. & Hsu, F.-h. Deep blue. Artificial intelligence 134, 57–83 (2002).

[8] S ẃiechowski, M., Man d́ziuk, J. & Ong, Y. S. Specialization of a uct-based general game playing

program to single-player games. IEEE Transactions on Computational Intelligence and AI in

Games 8, 218–228 (2015).

[9] Silver, D. et al. Mastering the game of go with deep neural networks and tree search. nature

529, 484–489 (2016).

[10] Silver, D. et al. Mastering the game of go without human knowledge. nature 550, 354–359 (2017).

[11] Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and go

through self-play. Science 362, 1140–1144 (2018).

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/79/20241297

59

