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Abstract. This research centers on predicting drug-drug interactions (DDIs) using a novel 
approach involving graph neural networks (GNNs) with integrated attention mechanisms. In this 
method, drugs and proteins are depicted as nodes within a heterogeneous graph. This graph is 
characterized by different types of edges symbolizing not only DDIs but also drug-protein 
interactions (DPIs) and protein-protein interactions (PPIs). To analyze the chemical structures of 
drugs, we employ a pretrained model named ChemBERTa, which utilizes simplified molecular 
input line entry system (SMILES) strings. The similarity between drug structures based on their 
SMILES strings is determined using the RDkit tool. Our model is designed to establish and link 
heterogeneous graph neural networks, taking into account the DPIs and PPIs as key input data. 
For the final prediction of interaction types between various drugs, we use the Multi-Layer 
Perception (MLP) technique. This model's primary objective is to enhance the accuracy of DDI 
predictions by factoring in additional data on both drug-protein and protein-protein interactions. 
The forecasted DDIs are presented with associated probabilities, offering valuable insights to 
healthcare professionals. These insights are crucial for assessing the potential risks and 
advantages of combining different drugs, particularly for patients with diseases at different stages 
of progression. 

Keywords: Graph Neural Network, Drug-drug Interaction, Machine Learning, Heterogeneous 
Graph Learning. 

1.  Introduction 
Drug-drug interactions (DDIs), a prominent aspect of adverse drug reactions, occur when the combined 
effects of multiple medications diverge from the expected results if these drugs were used separately [1]. 
These interactions are broadly categorized into pharmacokinetic and pharmacodynamic types. 
Pharmacokinetic interactions involve changes in a drug's absorption, distribution, metabolism, and 
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excretion (ADME), thus altering its bioavailability. For instance, fluoxetine's inhibition of the enzyme 
CYP2D6 increases the effectiveness of metoprolol, a beta-blocker, by slowing its metabolism, while 
simultaneously decreasing the efficacy of codeine by preventing its conversion to morphine. On the 
other hand, pharmacodynamic interactions occur when drugs affect each other's actions through their 
mechanisms of action. An example is the way glucagon can counter the effects of beta-blockers via 
activation of Gs-coupled GPCR, or how ibuprofen can inhibit aspirin’s effect on platelet aggregation by 
blocking its access to the active site of COX-1 [2-4]. 

The relevance of DDIs in healthcare is emphasized by their high incidence rate and the wide range 
of their impacts, from beneficial synergistic effects to reduced drug effectiveness, and even potentially 
fatal side effects [2]. This challenge is particularly acute in hospitals, where patients often receive 
complex medication regimes involving multiple drugs. The likelihood of encountering DDIs in such 
settings is significantly higher due to the variety of medications prescribed and frequent changes in 
dosages and drug types. Hospitalized patients, typically more critically ill than those treated as 
outpatients, have a diminished capacity to cope with these pharmacological challenges. A study in a 
major university hospital in the Netherlands reported that 27.8% of 21,277 admissions were affected by 
at least one DDI [5]. While hospitals have implemented electronic DDI alert systems, these can lead to 
'alert fatigue', where the high volume of alerts, many of which may be of low clinical relevance, increases 
the risk of overlooking critical alerts. Additionally, these systems are often limited to known DDIs from 
existing literature, offering limited guidance on newer drugs or untested drug combinations [5]. This 
highlights the need for continuous research and development of more advanced and comprehensive DDI 
detection and management tools in healthcare settings. 

Graph Neural Network (GNN) is a form of machine learning algorithm widely used in biological and 
chemical problems due to the ability of graphs to represent information whose structure and connections 
cannot be described by simple ordering, such as the connectivity and spatial relationship of components 
within small molecules and macromolecules. According to Gligorijevic´ et al. (2021), they used multiple 
machine learning techniques for protein function prediction, such as CNN-based DeepGO, BLAST 
baseline, LSTM language model, and GCNs (Graph Convolutional Networks) in the form of DeepFRI, 
which are used for annotation transfer and to extract features from proteins, taking into account their 
graph-based structure of interconnected residues represented by contact maps [6]. 

The systematic and relatively predictable nature of drug interactions has led to the use of many 
machine learning algorithms, including GNNs, to tackle the problem of DDI prediction [2]. As all drug 
interactions lie in the binding and reaction of drug molecules with enzymes and receptors as well as that 
between enzymes and receptors, knowledge graphs incorporating these as nodes and their interactions 
as edges would be extremely valuable for DDI prediction. The use of graph neural networks to learn the 
topological neighborhood representation of drugs in the knowledge graph for DDI prediction was first 
pioneered by Lin et al (2020), who have achieved the extremely high F1 of 95.7% on binary 
classification of whether a given DDI exists [7]. Chen et al. combined 2D drug molecular graphs and 
large-scale knowledge graphs in their MUF- FIN model, and was able to achieve performance 
surpassing all previous models on both binary- class, multi-class and multi-label DDI prediction [8]. 
The use of language models to extract and incorporate textual information into DDI prediction by GNN 
is also a fruitful approach, as shown by the 3DGT-DDI architecture by He et al [9]. Their model 
represents the 3D structure of each drug as a 3D graph and uses SchNet to extract their 3D characteristics 
and combines this information with a SCIBERT-based text feature extraction model, giving an 84.48% 
macro F1 score in the DDI Extraction 2013 shared task dataset. 

In this study, we introduce an innovative model that integrates graph attention neural networks with 
advanced pre-trained language models. This model is designed to predict drug-drug interactions (DDIs) 
effectively, utilizing the chemical structures of drugs, protein amino acid sequences, and a molecular 
biology knowledge graph. Our knowledge graph is a heterogeneous graph comprising two node types - 
drugs and proteins - and three edge types, including drug-drug, drug-protein, and protein-protein 
interactions, plus an edge representing similarity between neighboring nodes. For input, our model takes 
the chemical structure of drugs in SMILES format. It then employs edge prediction to determine the 
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potential DDI edges originating from a given drug node, along with the likelihood of each edge's 
existence. We leverage the pre-trained language model CHEMBERTa to extract features from the 
SMILES representations, forming the drug node embeddings. For protein node embeddings, we utilize 
ESM-1b, which extracts features from protein amino acid sequences [10]. The similarity measure 
between feature vectors of two distinct drugs serves as a basis for the edge weight, indicating chemical 
similarity. Edges with weights below a predetermined threshold are not included in our graph. 

Our model stands out due to its lightweight and dynamic nature. It allows for continual enhancement 
of DDI prediction accuracy as more drug-protein interaction information is fed into the system. This 
adaptability enables the model to be quickly retrained with new data. Such features make our model a 
valuable tool for augmenting current literature-based DDI alert systems in hospitals, especially for new 
and less-researched drugs and combinations. Its capability to evolve with emerging data ensures that our 
alert predictions remain accurate and up-to-date. 

2.  Methods and Materials 

2.1.  Datasets 

2.1.1.  DrugBank 
In 2018, the DrugBank Multi-Typed DDI dataset was curated for the first time as the Gold Standard 
DDI dataset for training the DeepDDI model [11]. The dataset consists of 86 types associated with at 
least five drug pairs. It contains 192,284 DDIs from 191,878 drug pairs. It also clearly labels each drug 
with the DrugBank ID SMILES string expressions corresponding to it [12]. 

2.1.2.  PrimeKG 
PrimeKG is a comprehensive medical heterogeneous knowledge graph that connects over 100,000 nodes 
across ten types, such as drugs and proteins [13]. Each node has been labeled with clinical descriptors 
from trustworthy medical data sources, and it is connected by 29 types of edges containing over 4 million 
relationships. 

The data extraction process involves identifying them with DrugBank IDs based on the protein 
sequence. Then, the ID of each drug should be mapped to the corresponding DrugBank ID in order to 
identify the same drugs in both datasets. By employing this method, it is possible to improve the 
accuracy and applicability of drug-drug interaction forecasts. 

 
Figure 1. Meta path for Drug-Drug Interaction. 

Drug-Protein Interaction and Protein-Protein Interactions, which illustrates that there may be docking 
happening between drug-protein interactions. 

As illustrated in Figure 1, the utilization of drug-protein interactions and protein-protein interactions 
can improve the efficacy and accuracy of drug-drug interaction prediction. The establishment of a chain 
association has the potential to affect the molecular interactions. 
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2.2.  Data Analysis 

                         
 

(a) 2D relations between three types of interactions.               (b) 3D relations between three types of interactions. 
Figure 2. Meta path in dataset 

We used the DrugBank Multi-Typed DDI (TDcommons) dataset to predict potential drug-drug 
interactions. In addition, the Drug-Protein and Protein-Protein interactions data extracted from the 
PrimeKG database are used as a supplement for improved prediction. As portrayed in Figure 2a and 
Figure 2b, a brief illustration of DDIs, DPIs, and PPIs is provided. Brompheniramine, megestrol acetate, 
and methimazole were chosen to demonstrate drug and protein interactions. In the meta path, both 
Brompheniramine and megestrol acetate can interact with a specific protein. This implies that one drug 
has the potential to influence the other drug by altering the protein’s quantity. 

The dataset contains a comprehensive list of 1,706 unique drug types and 1,544 specific protein types. 
Based on the calculations performed, the analysis reveals 191,808 distinct types of drug-drug 
interactions, 12,801 distinct types of drug-protein interactions, and 6,793 distinct types of protein-
protein interactions. 

 

Figure 3. The architecture of the heterogeneous graph for two nodes and four edges with Drug-Drug 
interactions, Drug- Protein Interactions and Protein-Protein interactions. 

The heterogeneous graph is constructed as the general structure depicted in Figure 3, which is a 
potent knowledge representation that integrates three distinct datasets: DDIs, DTIs, and PPIs. 
Traditional methods for predicting DDI types rely heavily on analyzing of individual drug pairs. 
However, the heterogeneous graph permits us to model complex interactions and dependencies between 
drugs, targets, and proteins within a unified framework. GNNs can effectively capture these 
interconnected relationships, which leads to more accurate data representations. 
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Table 1. Six types of interaction types which are grouped based on their features 

Numbers Type 
1 Absorption 
2 Distribution 
3 Metabolism 
4 Excretion 
5 Toxicity 
6 Effects (not necessarily bad) 
 
Based on the analysis of a dataset containing 86 types of Drug-Drug Interactions, it has been 

determined that the interactions can be effectively categorized into six distinct groups based on their 
detailed information for their different impact on various human body systems. The types of interactions 
are shown in Table 1: absorption, distribution, metabolism, excretion, toxicity, and effects. Among the 
interaction types 46, 47, and 73, the type 6 interactions, which relate primarily to the effects of the drugs, 
occur most frequently. This emphasizes the importance of understanding the potential effects of drug 
combinations on patients, as these interactions can substantially impact their health outcomes. In 
addition, Figure 4 visually represents the distribution of Drug-Drug Interactions across these six groups. 
It reveals that type 6 interactions are the most prevalent among the various groups, highlighting the need 
to comprehend the impact of drug combinations on patients. 

 
 

Figure 4. Distribution of Interaction Types of Drug-Drug Interactions. 

Figure 4 shows the Type 49 interactions appear most frequently then others and the whole data 
distribution is certainly sparse. 

2.3.  Model Architecture 

2.3.1.  ChemBERTa  
ChemBERTa, a BERT (Bidirectional Encoder Representations from Transformers) language model, has 
been pre-trained on 77M data to analyze and manipulate chemical and molecular data to forecast 
chemical properties and generate molecules [14]. It encodes SMILES strings to hold semantic 
information about drugs, which can provide more informative content. ChemBERTa is useful in drug 
discovery and other chemistry tasks because it can understand chemical language and context. 

2.3.2.  ESM-1b  
ESM-1b, a general-purpose protein language model, can predict protein structure, function, and other 
properties from sequences [15]. It is capable of translating protein sequences into language, which 
provides a contextualized protein sequence representation that captures important features and patterns. 
Our model uses ESM-1b to create a vector that captures the protein’s unique properties. The format can 
be used for protein-protein interaction analysis and assist in predicting drug-drug interactions. 
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2.3.3.  RDKits  
RDKits is free molecular modeling and cheminformatics research software, which provides many 
molecular structure manipulation and analysis tools [12]. It can help us understand complex molecule 
interactions, which is useful in predicting drug-drug interactions, where molecules with information to 
targets are needed for Morgan Fingerprint which will be used to calculate the similarity of molecules in 
our approach. 

2.3.4.  Graph Neural Network (GNN)  
Graph Neural Networks (GNNs) are a category of deep learning architectures designed specifically for 
analysing graph-structured data, such as molecular graphs [16]. GNNs facilitate the acquisition of non-
local connections and higher-level structural information within graph structures, which allows a more 
comprehensive understanding of medication interactions. 

The Graph Convolutional Network (GCN) and Graph Attention Network (GAT) models are applied 
in this paper. The GCN is a graph neural network that collects and integrates local neighborhood data 
from a node in a graph structure, which can graph medicine relationships for DDI prediction. Drugs are 
nodes, and their interactions are edges in this graph. It uses a predetermined graph convolution operation 
to iteratively improve node representations by integrating adjacent nodes [17]. The GAT uses attention 
mechanisms to capture adjacent significance during information aggregation, which facilitates nodes to 
assign different attention weights to their neighbors, enabling them to focus on more relevant and 
informative neighbors. The attention mechanism in GAT makes it possible for the model to capture the 
diverse significance of neighboring nodes [10].  

2.3.5.  Link Prediction  
Link prediction is a machine learning and graph analysis specialization that forecasts the probability of 
a connection between two nodes within a given graph. In the context of DDI prediction, the link 
prediction technique can be used to identify potential drug-drug interactions [18]. It assists in developing 
new medicines by analyzing the complex relationships between numerous molecular attributes. 

2.4.  Overview of HGNN-DDI Model 

 
 

Figure 5. Model Architecture of the HGNN-DDI for Drug-Drug Interactions Prediction 
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When building our model, we relied on the Deep Graph Library (DGL), a powerful framework tailored 
for graph neural networks, which enabled us to effectively tackle the complexity of DDIs [19]. The 
architecture of our model is shown in Figure 5, and the implementation of our model proceeds as follows: 
1. Input Processing: The SMILES representations of drugs are put into the ChemBERTa model for 

preprocessing. The chemical structure of proteins is input into the ESM-1b model for feature 
extraction and processing. 

2. Graph Construction: The preprocessed data is represented as a graph, with drugs and proteins as 
nodes and their interactions and similarity as edges. This graph-based representation generates a 
network that elegantly summarises the interactions between different drugs and proteins. 

3. Graph Convolutional Network (GCN): A three-layer GCN is applied to incorporate this knowledge 
effectively. As the model goes through multiple graph convolution layers, it gradually refines and 
consolidates its understanding of DDI interactions, resulting in representations that are abundant in 
features. 

4. Graph Attention Network (GAT): It allows each node to assign different attention weights to each 
neighbor, enabling the node to focus on more significant and instructive neighbors. 

5. Link Prediction and Multi-Layer Perception (MLP): The GNN-derived enriched feature vectors are 
seamlessly incorporated into a Multi-Layer Perception (MLP), which is well-suited for transforming 
the features into a classification scheme. It can capture complex nonlinear relationships, making it 
suitable for accurately predicting interactions between various drugs. 

3.  Experiments and Results 
Through the methods mentioned above, we conducted training and testing of the model on the 
meticulously curated dataset with DDI, DPI, and PPI interactions. Moreover, to improve the ability of 
predictions for unknown drugs, we supplied the model with similarity information calculated by 
SMILES. We established that edges representing the two nodes are similar for molecular pairs exhibiting 
a similarity of over 0.7. 

 accuracy! =
"#!$"%!

"#!$"%!$&#!$&%!
            (1) 

 precision! =
"#!

"#!$&#!
                         (2) 

 recall! =
"#!

"#!$&%!
                               (3) 

 F1! =
'	×	*+,-./.01!	×	+,-233!
*+,-./.01!$+,-233!

                 (4) 

 𝑊! =
%!
∑%!

                                            (5) 

 accuracy56!7896: = ∑𝑊! ∙ accuracy!                 (6) 

 precision56!7896: = ∑𝑊! ∙ precision!               (7) 

 recall56!7896: = ∑𝑊! ∙ recall!                             (8) 

 F156!7896: = ∑𝑊! ∙ F1! 	                                      (9) 
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Figure 6. The f1 score, loss, precision and recall of HGNN-DDI model 

During the testing phase, negative samples constituted 10% of the entire test set, obtained by 
randomly sampling negative edges from the complete test graph. Commonly used evaluation metrics 
such as accuracy, precision, recall, and f1 score are used to assess the performance of the model, which 
equations are shown above. Throughout the model training process, the parameter curves exhibited the 
trends shown in Figure 6. 

As mentioned above, we have tried both HGAT-DDI and HGCN-DDI models, and we apply the 
machine learning evaluation metric of F1, Recall, Precision, and Accuracy to measure the performance 
of our model. By searching the relevant models that applied different models, we compare our model 
with them, for we are all based on the same dataset. The HGAT-DDI model is with the attention 
mechanisms, which means it can focus on more significant models. It is suggested to perform better that 
the HGCN-DDI model. 

Table 2. The performance of different algorithms on the Drugbank dataset 

Model Method F1 Recall Precision Accuracy 
GNN on DDI model GAT 84.72 85.07 84.36 84.65 
 GCN 85.02 86.29 83.78 84.79 
 GraphSAGE 84.18 85.5 82.9 83.93 
GE on DDI graph Node2Vec 79.63 78.35 80.95 88.73 
 DeepWalk 78.8 78.27 79.44 88.64 
GNN on Heterogeneous graph GAT 85.68 86.28 85.99 86.06 
 GCN 88.28 89.01 85.49 89.68 
 GraphSAGE 87.79 88.31 86.94 85.59 

Our model based on 
Heterogeneous graph 

HGCN 
 6 classes 96.91 94.23 97.01 96.86 
86 classes 90.16 88.45 90.88 90.47 

HGAT 86 classes 90.35 90.12 89.68 90.21 
 
We present two matrices: one displays the outcomes for a dataset categorized into eighty-six distinct 

groups, and the other shows the results for the dataset segmented into six different categories. The six 
categories are defined as follows: Class1 pertains to absorption processes, Class2 to distribution, Class3 
to metabolism, Class4 to excretion, Class5 to toxicity, and Class6 to neutral effects, which don't 
necessarily indicate adverse outcomes. On the other hand, the eighty-six categories are based on varying 
degrees of severity in drug-drug interactions. 
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Our experimental findings indicate that the classification accuracy was markedly higher for the 
dataset when it was divided into the broader six classes, as opposed to the more detailed eighty-six class 
structure. In the context of the six-class system, the distinctions between each group are more 
pronounced, thus facilitating the model's ability to differentiate between the classes. However, in the 
86-class scenario, the nuances between some of the categories are less distinct, posing a challenge for 
the model in achieving precise classification. 

Contrary to our expectations, the HGAT model showed minimal improvement compared to the 
HGCN model. In the experiment, the Heterogeneous Graph Convolutional Neural Network model 
achieved a maximum F1 score of 0.969, with precision, recall, and accuracy all exceeding 90%. In the 
dataset with 10% negative samples, the HGAT model’s performance was nearly identical to HGCN, 
with all metrics hovering around 90%. As shown in Table 2 above, it compares performance metrics 
between our algorithm and other algorithms on the same dataset. It is obvious that our model is 
performing better than our models with the combination of Protein-Protein interactions and Drug-
Protein Interactions as well as the Heterogeneous graph to link these complex relationships together and 
demonstrate it clearly. 

Based on this result, the current bottleneck affecting the algorithm’s performance is believed to lie 
within the dataset. Additionally, using the simple MLP classifier without any tricks for classification 
using embedding vectors might also influence the algorithm’s performance, potentially masking the 
distinctive characteristics of the GNN (Graph Neural Network). 

4.  Conclusion and Discussion 
In conclusion, we proposed a novel deep learning framework that combines large-scale pre-trained 
language models with graph neural networks to integrate information inherent to the structure of drugs 
and proteins and the topological information of their position and interaction in the knowledge graph 
for multi-class DDI predictions. We have demonstrated that the efficacy of our model is comparable to 
that of state-of-the-art models that combine both knowledge graphs and drug molecular graphs despite 
being somewhat simpler in architecture and requiring less training time. Moreover, the high performance 
of our simple model is evident from the negligible F1 improvement of the HGAT model over it. Our 
confusion matrix also shows that we have successfully overcome the problem of promiscuously 
interacting drugs, reducing model accuracy that plagues relatively well-performing traditional machine 
learning algorithms such as Decision Trees. 

5.  Future Goals 
Currently, in order to improve the accuracy of drug-drug interaction prediction, heterogeneous graphs 
are being exploited by GNN to improve drug-drug interaction prediction. In addition, we have 
incorporated the examination of Protein-Protein and Protein-Drug interactions into our methodology to 
help the prediction of drug-drug interactions. After performing a preliminary analysis utilizing SMILES 
representations for drug-drug interactions (DDI) and sequence for protein-protein interactions (PPI), we 
acquire the characteristics of drugs and proteins. By including DPIs and PPIs, we achieve our goal of 
overcoming the limitations of the original dataset. Future research objectives include integrating data 
containing molecular 3D conformations. The addition of additional information has the potential to 
increase the comprehensiveness of molecular structure and interaction types, thereby enhancing the 
accuracy and interpretability of our models. The use of SMILES strings data only may contain limited 
information, which should be improved in the future, and additional research should be conducted. To 
increase the exhaustiveness of the experiment, future steps, including validation, hyperparameter tuning, 
and further evaluation, will be taken. 
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Appendix A. Explanation of Measurements of Results 
 

 
Figure A.1. The confusion matrix of HGCN model 

 
For the prediction results, we plotted the confusion matrix in Figure A.1. The vertical axis in the graph 
represents the true values, while the horizontal axis represents the predicted values. It can be observed 
that the model’s predictions are not accurate enough for category 0, which corresponds to cases where 
there is no interaction between two drugs. 

However, there has yet to be much adjustment to the number of negative samples in the training set. 
Only 10% of negative samples exist in the training set. These negative samples did not provide enough 
information to the model to predict the absence of interactions between two nodes. As a result, a large 
number of negative samples in the test set were predicted as other categories. Furthermore, among the 
1706 drug interactions, 93% (2716922/2908730) have no relationship, which is a significant proportion. 
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Consequently, the test set contains a wide variety of negative samples, exacerbating this effect. This 
issue can be alleviated by increasing negative sampling in the training set. The model can learn more 
about the absence of relationships by augmenting the number of negative samples in the training set, 
thereby improving prediction performance. 

Additionally, the classification accuracy for the categories at the end of the axes is noticeably lower 
than the average. This is due to the imbalance of samples in the dataset, where the vast majority of the 
later categories have very few instances, sometimes only a few dozen or even less. Such categories make 
it challenging to learn the interaction features, resulting in poor prediction performance. This 
phenomenon can be alleviated through data set balancing methods. However, if substantial improvement 
in predicting these categories is desired, seeking new datasets to complement the existing data is 
necessary. 

 
 

Figure A.2. Results of type 44, 42 and 71 

As shown in Figure A.2, Drugs in Class 44 (Drug A may increase analgesic activities of Drug B), 
42(Drug A may decrease vasoconstricting activities of Drug B), and 71(Drug a may increase myopathy 
rhabdomyolysis activities of Drug B) was seen to have a relatively higher probability of being 
mispredicted into other classes. This may be because of the high amount of DDIs being classified into 
these types in the dataset, with these three classes being the most populated classes. Therefore, these 
interactions may be caused by diverse mechanisms that are difficult to summarize into any one fixed 
pattern, while similar mechanisms mostly cause interactions in any other class. 

To illustrate the impact of negative samples in the test set on the results, we conducted additional 
experiments using different negative sampling strategies. Specifically, we performed two variations: 
one without adding any negative samples and the other with all negative samples added. The confusion 
matrices for these experiments are shown in Figure A.3. 

 

 
Figure A.3. The confusion matrix of different test sets.  

 
(a)……                                                                   (b) 
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On the left is the confusion matrix obtained from testing on a test set that contains all 400,000 
negative samples from the test graph.On the right is the confusion matrix obtained from testing on a test 
set that does not include any negative samples. 

From the graph, it can be observed that the category “No Interaction” exhibits a lower prediction 
accuracy, particularly when it is confused with categories having fewer samples. When the dataset 
includes a significant number of negative samples, the model’s F1 score is 0.871, accuracy is 0.854, 
precision is 0.920, and recall is 0.854. When all negative samples were removed from the dataset, the 
problem was transformed from link prediction to a graph edge classification problem. For this type of 
problem, our model achieved an F1 score of 0.950, accuracy of 0.936, precision of 0.963, and recall of 
0.936. This demonstrates that graph networks can effectively learn features and connections between 
nodes. If further adjustments are made to the dataset, the algorithm’s predictive performance is expected 
to improve further. 

 

Figure A.4. The confusion matrix of HGAT model 

Building upon the previous experiments, to demonstrate that the algorithm’s predictive performance 
bottleneck is a result of the dataset, we conducted additional experiments by replacing the network 
architecture. In the earlier experiments, our graph network utilized a 3-layer GCN, a fundamental 
network structure. In the subsequent experiments, we employed the Graph Attention Network (GAT) 
layer. This network structure has been proven to possess superior feature extraction and information 
aggregation capabilities compared to GCN. The confusion matrix obtained using the GAT layer for 
testing is shown in Figure A.4. 
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