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Abstract. Flight delays in the United States pose a significant global challenge. With the 

continuous growth of the aviation industry, the increasing number of flights raises demands on 

transportation infrastructure, making flight delay a serious challenge affecting the aviation 

industry and passengers. Through comparative analysis, we found that the average flight duration 

and departure times of delayed flights were significantly later than those of non-delayed flights. 

Additionally, the delay rates were highest in California and lowest in Texas for both departure 

and arrival locations. Using cluster analysis, major airlines in the United States were classified 

into three categories. Factor analysis was employed to analyse the correlations among different 

factors. Logistic regression revealed a positive correlation between departure times, flight 

durations, and flight delays. Conversely, the day of the week showed a negative correlation with 

flight delays. These studies provide practical insights for improving flight punctuality and 

enhancing the aviation transportation system. This, in turn, aids airlines in optimizing operations 

and mitigating the adverse impacts of delays on the economy and passengers. 

Keywords: comparative analysis, cluster analysis,  factor analysis, logistic regression. 

1.  Introduction 

The aviation industry has long been regarded as one of the most vital sectors in modern society, 

connecting diverse regions and cultures while providing robust support for global economic 

development. Over the years, the aviation industry has experienced steady growth, averaging 

approximately 5% per annum over the past three decades [1]. As shown in Figure 1, except for the year 

2020, which was significantly impacted by the COVID-19 pandemic, the United States has witnessed a 

continuous increase in air passenger traffic year after year [2]. As one of the world's largest aviation 

markets, the United States faces a prominent issue of flight delays. This problem encompasses not only 

technical challenges but also extends its ramifications to various economic and social domains. Flight 

delays have far-reaching consequences, affecting multiple sectors. For passengers, they disrupt original 

plans and schedules, resulting in additional financial burdens and psychological stress [3-5]. Airlines, 

on the other hand, bear the economic losses and reputation damage associated with delays, leading to 

increased operational costs. Economically, delays have repercussions on tourism, business activities, 

and freight transportation, among other aspects [6,7]. Societally, delays impact the environment, 

employment, and more. 
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Figure 1. Air passenger volume in the United States over the years. 

The issue of flight delays represents a global challenge [8,9], impacting not only the United States 

but also involving aviation transportation systems across various countries and regions worldwide. As 

the demand for global travel continues to rise, the increasing volume of flights exerts pressure on 

transportation infrastructures, consequently elevating the risk of delays. Given the multifaceted nature 

of this problem, a thorough investigation into the interplay of various factors and their relationship to 

flight delays is imperative. Such a comprehensive analysis seeks to yield valuable insights, improving 

punctuality, reducing economic costs, and fostering sustainability within the global aviation industry. 

In-depth research is pivotal in identifying more effective solutions to better serve the needs of both 

travelers and economic systems. 

Many attempts have been by researchers in the past for predicting flight delays. Kim et al. [10] 

implemented a deep learning approach using recurrent neural networks (RNNs) to forecast flight delays. 

Ding et al. [11] presented a method for simulating arrival flights and a multilinear regression algorithm 

to forecast delays. Nigam et al. [12] employed logistic regression to combine weather data with airport 

information for predicting departure time delays. Manna et al. [13] established an accurate prediction 

model for both arrival and departure delays of flights by applying gradient-boosted decision trees. 

Chakrabarty et al. [14] proposed a machine learning model using a gradient boosting classifier to predict 

arrival delays of American airline flights at the five busiest airports in the United States. 

In this paper, unlike conventional studies that primarily focus on forecasting flight delays, the 

emphasis is placed on an investigation of the primary factors influencing flight delays and the 

relationships among these factors. The goal is to facilitate future improvements in the aviation system 

and the reduction of delay rates. The methodology employed involves a comparative analysis, revealing 

significant associations between various flight characteristics and whether delays occur. Key findings 

include a disproportionate representation of WN flights in the delayed group, while DL flights dominate 

the non-delayed group. Additionally, there are noteworthy correlations between departure dates and the 

occurrence of delays, with Wednesdays having the highest proportion of delays among delayed flights 

and Thursdays among non-delayed flights. Furthermore, significant disparities are observed in average 

flight durations and departure times between the delayed and non-delayed groups, with delayed flights 

experiencing both longer average flight times and later departure times. Moreover, the location of the 

origin and destination states exhibits a significant relationship with the occurrence of delays, with 

California showing the highest delay rate and Texas the lowest. Employing cluster analysis, major U.S. 

airlines are categorized into three groups based on departure times and flight durations. Factor analysis 

is employed to reduce dimensionality in continuous data, analyze their interrelatedness. Logistic 

regression is employed to examine the relationships between delay occurrence and various factors, 

revealing positive associations with departure times and flight durations, as well as negative associations 

with departure times during specific time intervals within a week. 
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The rest of this paper is organized as follows. Section 2 introduces the basic information of the dataset. 

In Section 3, we use comparative analysis to analyze the significant relationship between various factors 

and delays. In Section 4, We categorized American airlines using cluster analysis. In Section 5, factor 

analysis was employed to explore the correlation among variables. In section 6, We used logistic 

regression analysis to examine the correlation between various factors and flight delays. 

2.  Dataset Introduction 

The dataset is sourced from Kaggle[15]. As shown in Table 1, the dataset comprises information such 

as airline, flight number, departure station, destination station, departure date (1-7 representing the day 

of the week), departure time (measured in minutes from midnight), flight route length, and whether the 

flight was delayed (with two values, 0 for no delay and 1 for delay). Since there are no missing values 

in the dataset, it contains 539,383 samples with a total of 8 attributes. Among these attributes, Time and 

Length are continuous, while the remaining six are categorical. 

Table 1. Feature Study 

ID Attribute/Feature Name Attribute Type 

F1 Airline Categorical 

F2 Flight Categorical 

F3 AirportFrom Categorical 

F4 AirportTo Categorical 

F5 DayOfWeek Categorical 

F6 Time Continuous 

F7 Length Continuous 

F8 Delay Categorical 

3.  Comparative analysis 

In this section, we conducted a detailed analysis of the significance of various factors in relation to flight 

delays. 

3.1.  The Significant Relationship Between Different Flights and Flight Delays 

Following the construction of a contingency table and subsequent chi-square test, Table 2 and Table 3 

shows a highly significant two-tailed p-value of 0.000, underscoring a significant discrepancy between 

flights categorized as delayed and those categorized as non-delayed. Within the delayed flights, 

Southwest Airlines (WN) had the highest proportion, constituting 27.3%. Conversely, among the non-

delayed flights, Delta Air Lines (DL) held the majority share at 11.2%. Importantly, a more in-depth 

analysis revealed a notably higher rate of delays for flights operated by airlines based in the western 

region compared to those based in the eastern region. 

Table 2. Delay * Airline Crosstabulation 

   9E … DL … WN … YV Total  

Delay 

0 

Count 12460 … 33488 … 28440 … 10391 299119 

% within 

Delay 
4.2% … 11.2% … 9.5% … 3.5% 100.0% 

% within 

Airline 
60.2% … 55.0% … 30.2% … 75.7% 55.5% 

1 

Count 8226 … 27452 … 65657 … 3334 240264 

% within 

Delay 
3.4% … 11.4% … 27.3% … 1.4% 100.0% 

% within 

Airline 
39.8% … 45.0% … 69.8% … 24.3% 44.5% 
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Total 

Count 20686 … 60940 … 94097 … 13725 539383 

% within 

Delay 
3.8% … 11.3% … 17.4% … 2.5% 100.0% 

% within 

Airline 
100.0% … 100.0% … 100.0% … 100.0% 100.0% 

Table 3. Chi-Square Tests 

 Value df Asymptotic Significance (2-sided) 

Pearson Chi-Square 38193.571a 17 0.000 

Likelihood Ratio 38787.957 17 0.000 

N of Valid Cases 539383   

3.2.  The Significant Relationship Between Departure Date and Flight Delays 

Upon constructing a contingency table and conducting a chi-square test, Table 4 and Table 5 obtained a 

remarkably significant p-value of 0.000, indicating a substantial disparity in departure dates between the 

delayed and non-delayed categories. Notably, Wednesday departures constituted the majority among 

delayed flights, comprising 17.6% of the total. Conversely, Thursday departures were most prevalent 

among non-delayed flights, representing a share of 16.8%. 

Table 4. Delay * DayOfWeek Crosstabulation 

   1 … 3 4 … 7 Total 

Delay 

0 

Count 38739 … 47492 50201 … 38186 299119 

% within Delay 13.0% … 15.9% 16.8% … 12.8% 100.0% 

% within 

DayOfWeek 
53.2% … 52.9% 54.9% … 54.6% 55.5% 

1 

Count 34030 … 42254 41244 … 31693 240264 

% within Delay 14.2% … 17.6% 17.2% … 13.2% 100.0% 

% within 

DayOfWeek 
46.8% … 47.1% 45.1% … 45.4% 44.5% 

Total 

Count 72769 … 89746 91445 … 69879 539383 

% within Delay 13.5% … 16.6% 17.0% … 13.0% 100.0% 

% within 

DayOfWeek 
100.0% … 100.0% 100.0% … 100.0% 100.0% 

Table 5. Chi-Square Tests 

 Value df Asymptotic Significance (2-sided) 

Pearson Chi-Square 1178.121a 6 0.000 

Likelihood Ratio 1182.169 6 0.000 

Linear-by-Linear Association 370.233 1 0.000 

N of Valid Cases 539383     

3.3.  The Significant Relationship Between Flight Duration and Flight Delays 

In Table 6, we can see that the average flight duration for non-delayed flights was 129.66 minutes, 

whereas for delayed flights, it was 135.37 minutes. We observed that the average flight duration for 

Table 2. (continued). 
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delayed flights was significantly longer than that for non-delayed flights. In Table 7, normality tests 

were conducted on the 'Length' data. The p-values for both the delayed and non-delayed groups were 

less than 0.05, rejecting the assumption of normal distribution. Thus, non-parametric tests were 

employed. The null hypothesis stated that there was no significant difference in flight duration ('Length') 

between delayed and non-delayed flight groups. Table 8 shows that according to the independent 

samples Mann-Whitney U test, the significance value was 0.00, clearly rejecting the null hypothesis. 

This rejection indicates a significant difference in flight duration ('Length') between the delayed and 

non-delayed flight groups. 

Table 6. Descriptives 

Delay  Statistic Std. Error 

Length 

0 

Mean 129.66 0.126 

95% Confidence Interval for Mean 
Lower Bound 129.41   

Upper Bound 129.90   

1 

Mean 135.37 0.146 

95% Confidence Interval for Mean 
Lower Bound 135.08   

Upper Bound 135.66   

Table 7. Tests of Normality 

Delay 

 Kolmogorov-Smirnova 

 Statistic df Sig. 

Length 
0 0.115 299119 0.000 

1 0.115 240264 0.000 

Table 8. Hypothesis Test Summary 

 Null Hypothesis Test Sig.a,b Decision 

1 
The distribution of Length is the same 

across categories of Delay. 

Independent-Samples 

Mann-Whitney U Test 
0.000 Reject the null hypothesis. 

3.4.  The Significant Relationship Between Departure Time and Flight Delays 

In Table 9, the average departure time for non-delayed flights was 12:45, whereas for delayed flights, it 

was 14:09. We observed that the average departure time for non-delayed flights was significantly earlier 

than that for delayed flights. In Table 10, normality tests were conducted on the 'time' data. The p-values 

for both the delayed and non-delayed groups were less than 0.05, rejecting the assumption of normal 

distribution. Non-parametric tests were therefore employed. The null hypothesis stated that there was 

no significant difference in departure time ('Time') between delayed and non-delayed flight groups. 

Table 11 shows that according to the independent samples Mann-Whitney U test, the significance value 

was 0.00, clearly rejecting the null hypothesis. This rejection indicates a significant difference in 

departure time ('Time') between the delayed and non-delayed flight groups. 
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Table 9. Descriptives 

Delay  Statistic Std. Error 

Time 

0 

Mean 765.24 0.519 

95% Confidence Interval for Mean 
Lower Bound 764.22   

Upper Bound 766.25   

1 

Mean 849.41 0.538 

95% Confidence Interval for Mean 
Lower Bound 848.35   

Upper Bound 850.46   

Table 10. Tests of Normality 

Delay 

 Kolmogorov-Smirnova 

 Statistic df Sig. 

Length 
0 0.115 299119 0.000 

1 0.115 240264 0.000 

 

Table 11. Hypothesis Test Summary 

 Null Hypothesis Test Sig.a,b Decision 

1 
The distribution of Time is the same 

across categories of Delay. 

Independent-Samples 

Mann-Whitney U Test 
0.000 Reject the null hypothesis. 

3.5.  The Significant Relationship between Departure States and Flight Delays 

The numbers 1-51 correspond to the alphabetical order of the states in the United States, with 52 

representing non-contiguous states. 

As shown in Table 12 and Table 13, a cross-tabulation and chi-squared test revealed a two-tailed 

asymptotic significance level of 0.000, indicating a significant difference between the delayed and non-

delayed flights based on the departure state. Among delayed flights, the highest proportion of departures 

were from California, accounting for 13.0%. In contrast, among non-delayed flights, the majority of 

departures were from Texas, constituting 10.7%. 

Table 12. Delay * StateFrom Crosstabulation 

   1.00 … 5.00 … 43.00 … 52.00 Total 

Delay 
0 Count 2354 … 28214 … 32000 … 1442 299119 

1 Count 1319 … 31167 … 27300 … 952 240264 

Total Count 3673 … 59381 … 59300 … 2394 539383 

Table 13. Chi-Square Tests 

 Value df Asymptotic Significance (2-sided) 

Pearson Chi-Square 8700.620a 50 0.000 

Likelihood Ratio 8768.074 50 0.000 

Linear-by-Linear Association 236.421 1 0.000 

N of Valid Cases 539383     
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3.6.  The Significant Relationship between Arrival States and Flight Delays 

In accordance with the data presented in Table 14 and Table 15, a cross-tabulation and chi-squared test 

revealed a two-tailed asymptotic significance level of 0.000, indicating a significant difference between 

the delayed and non-delayed flights based on the arrival state. Among delayed flights, the highest 

proportion of arrivals were in California, accounting for 13.1%. In contrast, among non-delayed flights, 

the majority of arrivals were in Texas, constituting 11.4%. 

Table 14. Delay * StateTo Crosstabulation 

   1.00 … 5.00 … 43.00 … 52.00 Total 

Delay 
0 Count 2119 … 27798 … 34014 … 1143 299119 

1 Count 1603 … 31553 … 25276 … 1260 240264 

Total Count 3722 … 59351 … 59290 … 2403 539383 

Table 15. Chi-Square Tests 

 Value df Asymptotic Significance (2-sided) 

Pearson Chi-Square 7312.299a 50 0.000 

Likelihood Ratio 7341.980 50 0.000 

Linear-by-Linear Association 443.173 1 0.000 

N of Valid Cases 539383     

4.  Cluster analysis 

In this study, we utilized departure time, departure date, and flight duration as features and employed 

the K-means algorithm to categorize U.S. airline companies. The selection of an appropriate K value, 

representing the number of clusters, was a crucial step. We carefully determined this value and 

proceeded with iterative executions of the K-means algorithm until convergence was achieved, 

ultimately yielding the final clustering results. 

4.1.  Cluster Analysis of Results 

Based on the scale of this dataset, we chose the value of K to be 3. In Table 16, we use the k-means 

algorithm and observed distinct characteristic differences among the different clusters. The three clusters 

share the same departure dates and have similar flight durations. However, what sets them apart is that 

Cluster 2 has the latest departure times, Cluster 3 has the earliest departure times, and Cluster 1 falls in 

between the two. 

Table 16. Final Cluster Centers 

 Cluster 

 1 2 3 

DayOfWeek 4 4 4 

Time 801 1128 487 

Length 130 131 136 

4.2.  Classification of U.S. Airlines Using Clustering Analysis Results 

By conducting contingency table analysis shown in Table 17 and performing chi-squared test shown in 

Table 18, we found a significant two-tailed asymptotic significance level of 0.000, indicating a 

noteworthy relationship between airlines and the identified clusters. Consequently, we classified the 

airlines as follows: F9, FL, OO, US, YV, and B6 were categorized into Cluster 2, characterized by the 

latest departure times; AS, DL, UA, WN, and AA were placed into Cluster 3, characterized by the 
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earliest departure times; CO, EV, HA, MQ, OH, XE, and 9E were assigned to Cluster 1, with departure 

times falling between the two aforementioned clusters. 

Table 17. Chi-Square Tests 

 Value df Asymptotic Significance (2-sided) 

Pearson Chi-Square 1372.949a 34 0.000 

Likelihood Ratio 1374.006 34 0.000 

N of Valid Cases 539383     

Table 18. Airline * Cluster Number of Case Crosstabulation 

  Cluster Number of Case 
Total 

  1 2 3 

Airline 

9E 7431 6319 6936 20686 

AA 15607 14626 15423 45656 

AS 3387 3862 4222 11471 

B6 5769 6572 5771 18112 

CO 7370 6494 7254 21118 

DL 20607 19760 20573 60940 

EV 10449 8624 8910 27983 

F9 2053 2215 2188 6456 

FL 6875 7504 6448 20827 

HA 1975 1657 1946 5578 

MQ 13113 11179 12313 36605 

OH 4717 3776 4137 12630 

OO 17369 16712 16173 50254 

UA 8330 9176 10113 27619 

US 10991 11678 11831 34500 

WN 31917 30696 31484 94097 

XE 11557 9382 10187 31126 

YV 4731 5018 3976 13725 

Total 184248 175250 179885 539383 

4.3.  Significance of Clustering 

Combining the comparative analysis from the third section, we observed that the average departure time 

of flights not delayed was notably earlier than the delayed flights. Therefore, based on our classification 

of airlines, optimizing airlines within Cluster 2 holds substantial implications. These optimizations 

provide valuable guidance for developing more targeted aviation business strategies and streamlining 

operations. 
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5.  Factor analysis 

5.1.  Adaptability Analysis 

In Table 19, we conducted factor analysis on 'DayOfWeek', 'Time,' and 'Length.' The Kaiser-Meyer-

Olkin (KMO) measure of sampling adequacy was 0.499, indicating a moderate level of adequacy for 

the sample. Additionally, Bartlett's sphericity test yielded a significance value of 0.000, which is less 

than the significance level of 0.01, suggesting a significant relationship among the variables analyzed. 

This supports the suitability of performing factor analysis. 

Table 19. KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.499 

Bartlett's Test of Sphericity 

Approx. Chi-Square 327.320 

df 3 

Sig. 0.000 

5.2.  Common Factor Extraction 

Table 20 shows that the initial eigenvalue of the first component is 1.024, greater than 1. The initial 

eigenvalue of the second component is 1.001, also greater than 1. The initial eigenvalues of the 

remaining components are less than 1. Therefore, selecting two common factors can achieve a 

cumulative contribution rate of 67.506%, indicating that these two common factors can explain 

approximately 67% of the total variance. This result is quite satisfactory. 

Table 20. Total Variance Explained 

Compon

ent 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 

Rotation Sums of Squared 

Loadings 

Total 
% of 

Variance 

Cumulativ

e % 
Total 

% of 

Variance 

Cumulat

ive % 
Total 

% of 

Variance 

Cumulat

ive % 

1 1.024 34.134 34.134 1.024 34.134 34.134 1.020 34.004 34.004 

2 1.001 33.372 67.506 1.001 33.372 67.506 1.005 33.502 67.506 

3 0.975 32.494 100.000             

5.3.  Factor Loadings 

We applied the maximum variance method for factor rotation. In Table 21, we observed that the first 

common factor had substantial loadings on 'Length' and 'Time,' categorizing it as a spatiotemporal factor. 

The second common factor exhibited significant loadings on the 'DayOfWeek,' leading to its 

classification as the 'DayOfWeek' factor. 

Table 21. Rotated Component Matrix 

 Component 

 1 2 

Time 0.772   

Length -0.651   

DayOfWeek   0.918 

5.4.  Explained Variance by Common Factors 

From the results shown in Table 22, it can be observed that the communalities for all three variables in 

the table exceed 0.5. This implies that more than 50% of the information from each original variable is 
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accounted for by the extracted common factors. Therefore, the extracted common factors effectively 

capture a significant portion of the information contained in the original variables. 

Table 22. Communalities 

 Initial Extraction 

DayOfWeek 1.000 0.843 

Time 1.000 0.658 

Length 1.000 0.524 

6.  Logistic regression 

6.1.  Logistic Regression Model Utility 

The evaluation of logistic regression model aims to measure its accuracy, robustness, and reliability 

through appropriate evaluation metrics. In our study, Table 23 observed a prediction accuracy of 76.1% 

for the non-delayed flight group and 32.4% for the delayed flight group. Considering the entire sample, 

the overall prediction accuracy of the model was 56.6%. Further calculation yielded an F1 Score of 

approximately 0.398. Given the relatively weak correlation in the dataset, such results are deemed 

acceptable. 

Table 23. Classification Table 

Observed 

 Predicted 

 Delay 
Percentage Correct  0 1 

Step 1 
Delay 

0 227585 71534 76.1 

1 162318 77946 32.4 

Overall Percentage     56.6 

6.2.  Influence of Key Predictive Variables 

In this section, we will delve into the utility of the logistic regression model, with a specific focus on 

exploring the correlation between independent variables and the occurrence of flight delays.  

In Table 24, we have observed that later departure time ('Time') is associated with a higher likelihood 

of delays. Likewise, longer flight duration ('Length') tends to increase the probability of delays. 

Additionally, flights departing earlier in the week ('DayOfWeek') demonstrate a higher susceptibility to 

delays. 

Table 24. Variables in the Equation 

  B S.E. Wald df Sig. Exp(B) 

Step 1a 

DayOfWeek -0.029 0.001 400.229 1 0.000 0.971 

Time 0.001 0.000 12189.457 1 0.000 1.001 

Length 0.001 0.000 1060.569 1 0.000 1.001 

Constant -1.175 0.012 10177.916 1 0.000 0.309 

7.  Conclusion 

In this study, we applied data mining methods to investigate the factors influencing flight delays in the 

United States. Through comparative analysis, we conducted an in-depth exploration of the relationships 

between various factors and flight delays. Our findings revealed a significant association between 
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airlines and flight delays. Among delayed flights, Southwest Airlines (WN) had the highest proportion 

at 27.3%, while Delta Air Lines (DL) dominated among non-delayed flights, with a proportion of 11.2%. 

Additionally, a strong correlation was observed between the departure date and flight delays. 

Wednesdays saw the highest percentage of delayed flights at 17.6%, whereas Thursdays led among non-

delayed flights at 16.8%. Moreover, flight delays were significantly related to flight duration and 

departure time. Delayed flights had an average flight duration of 129.66 minutes, slightly shorter than 

the average duration of 135.37 minutes for non-delayed flights. Similarly, the average departure time 

for delayed flights was 12:45, earlier than the average departure time of 14:09 for non-delayed flights. 

We also found that the origin and destination states of flights were significantly associated with flight 

delays. In delayed flights, the origin and destination states in California had the highest proportions, 

while Texas dominated for non-delayed flights. Utilizing cluster analysis, we categorized major U.S. 

airlines into three groups based on departure date, flight duration, and departure time differences. This 

classification provides valuable insights for optimizing the operational strategies of various airlines, 

particularly for the category of airlines departing late. Furthermore, factor analysis uncovered two 

critical factors, namely, a time-space factor and a departure date factor, which collectively explained 

67.506% of the information contained in the data. Finally, logistic regression analysis revealed a positive 

correlation between departure time and flight delays. In other words, later departure times and longer 

flight durations increased the likelihood of flight delays. Additionally, an inverse relationship was found 

between departure dates and flight delays. Flights departing earlier in the week were more likely to be 

delayed. 

This study's strengths lie in its comprehensive data analysis approach, providing a detailed 

exploration of factors contributing to flight delays. By considering multiple variables, we investigated 

airline categorization, highlighted the significance of various factors, and ensured the statistical 

significance and scientific rigor of our findings. These findings offer essential guidance for crafting 

precise aviation operational strategies and avoiding delays. By analyzing the departure states, destination 

states, departure time, departure date, flight duration, and airlines across different dimensions, we offer 

a holistic perspective on the multifaceted causes of flight delays. These highlights underscore the depth 

and breadth of this research and its potential impact on the aviation industry. 
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