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Abstract. This paper reviews a recently developed uncertainty-aware motion planning algorithm 

vastly applied to autonomous vehicles. Many vehicle manufacturers shifted their focus from 

improving vehicle energy conversion efficiency to autonomous driving, aiming to bring a better 

and more relaxed driving experience to drivers. However, many past motion planning algorithms 

used for autonomous driving were immature, so many errors were reported. These errors may 

put human drivers in life-threatening danger. Consisting of two connected systems supported by 

a well-trained graph neural network, the uncertainty-aware motion planning algorithm uses two 

related sub-systems to predict the motion of surrounding object and make necessary maneuvers 

accordingly. Using evidence from many research papers, an uncertainty-aware motion algorithm 

is an efficient and safe solution to insufficient consideration of the surrounding environment of 

vehicles. Even though its ability is primarily limited by the accuracy of sensors and the 

complexity of background, the unique advantage of this algorithm gives an alternative direction 

to the development of algorithms in autonomous vehicles. 

Keywords: autonomous vehicle, graph neural network, uncertainty-aware motion planning, 

sensors, environment. 

1.  Introduction 

The first autonomous vehicle was designed and developed in the 1980s by Ernst Dickmanns and his 

team at the Bundeswehr University Munich in Munich, Germany. It achieved a speed of 59.6 miles per 

hour (95.9 km/h) on streets without traffic [1]. With government support and increasing demand from 

the public, autonomous vehicles gradually required more reliable motion planning algorithm to ensure 

safety of passenger and driver. However, in the mid-1980s, even the most advanced motion planning 

algorithm was hardly able to generate collision-free path with multiple moving obstacles around ego 

vehicle [14]. The major breakthrough of this problem is due to invention of idea of deep learning (DL) 

in 1986 by Rina Dechter Dechter [15]. Application of this idea into autonomous vehicles allow algorithm 

to calculate non-linear function importing GNN (Graphic Neural Network), and furthermore, allow 

vehicles to predict motion of surrounding obstacles [16]. Uncertainty-aware motion planning algorithm 

was then invented but was optimized in 2022[2]. Many other motion planning systems are developed to 
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give vehicles the ability to operate under specific environments but using essentially same algorithm 

and neural network. 

An on-road motion planner designed in 2012 uses The Dynamic Programming algorithm to find 

multiple desired trajectories first and apply a focused trajectory search to find the best path [2]. Another 

motion planner proposed in 1991 uses vehicle kinematics, dynamics, and terrain topography to find a 

global optimal way and minimize motion time [3]. These planners are highly adaptive to the dynamic 

environment and can be applied to other path-dependent cost functions. However, they give slight 

consideration to the sudden or dangerous maneuvers of surrounding vehicles. 

The main focus of motion planning in autonomous vehicles is to avoid approaching obstacles while 

selecting the shortest path(energy-saving) or maximum speed (time-saving) to reach the desired 

destination [4]. A practical motion planner should also be adaptive to the changing environment. That 

is, the motion planner needs the capability of predicting the motion of surrounding objects and alter the 

vehicle’s path accordingly. 

The recent popularization of autonomous vehicles and the development of motion planning 

algorithms shift the planner's focus from efficiency to safety. Autonomous car requires not only fast and 

efficient motion but also the ability for danger prediction and prevention. In this paper, we will discuss 

a recently developed motion planner for autonomous cars: driving environment uncertainty-aware 

motion planner. 

The experimental validation of the uncertainty-aware motion planner has demonstrated a notable 

enhancement in safety for submerged and aerial vehicles [5]. The planner can be designed in various 

ways to cater to distinct objectives. Currently, there exist multiple approaches for addressing 

uncertainty-aware motion planning challenges. The efficiency of a highway-based mobility planner 

utilizing a Graphic Neural Network (GNN) prediction model is demonstrated in a study [5]. Additionally, 

the Augmented Markov Decision Processing (A-MDP) and model predictive control algorithm (MPC 

algorithm) approach offers a robust strategy for addressing this issue. 

The utilization of uncertainty-aware planners has the potential to assist autonomous vehicle 

manufacturers in enhancing vehicle safety and mitigating the occurrence of car accidents. Section II will 

go into the essential concepts and mechanisms associated with the uncertainty-aware motion planner. 

This information aims to enhance readers' understanding and familiarity with recently emerging 

technologies. Section III will examine the diverse applications of an uncertainty-aware motion planner 

in complex scenarios. This will demonstrate its capacity to adapt to a dynamic environment. Section IV 

discusses the problems that must be overcome to seek a more efficient planner. 

2.  Core Principles 

This section introduces the core mechanism of uncertainty-aware motion planners. Even though each 

system or algorithm is presented separately, we should focus on the cooperation between each system, 

which, in general, forms the fundamental framework of the planner. Slightly different from traditional 

motion planners, in which the trajectories are generated based on the current environment around the 

vehicle, the uncertainty motion planning system includes both perception and prediction systems. The 

ladder is used to predict the future behavior of surrounding objects and design the vehicle’s path by 

taking that into account. The vehicle equipped with this system has been proven to have a lower 

possibility of having a car accident than a vehicle with traditional motion planning system. 

2.1.  Model Predictive Control Algorithm (MPC Algorithm) 

MPC Algorithm is used to optimize the prediction made in a highly complex dynamic system [13]. This 

is different from other predictor, such as a linear-quadratic regulator, which its optimization strategy 

only minimizes the cost. MPC Algorithm can take into account future event while optimizing the current 

prediction. That is, the algorithm covers more diverse factors that make the final decision more reliable. 

In the same highway case, ego vehicles not only need to predict the motion of merging vehicle but 

also need to consider the sudden maneuvers of other vehicles. The main advantage of applying the MPC 

Algorithm in this case is that it is more sensitive to environmental change. With a high success rate, it 
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is able to predict sudden speed changes and lane changes. This significant result makes this algorithm 

highly essential in most motion planning system. 

2.2.  Graph Neural Network 

GNN is becoming a new research hotspot in the vehicle trajectory prediction due to its ability to extract 

interaction information between vehicles. [5]. The most astonishing function of this network is that it 

cannot only predict the behavior of surrounding vehicles but also give uncertainty of this prediction due 

to the existence of situations which the network didn’t encounter during the learning process. 

 

Figure 1.  A 2D model is established to demonstrate the function of an uncertainty-aware motion 

planning algorithm. It provides a typical problem that uncertainty-aware motion planning algorithm 

need to solve when apply to the vehicle. An ego vehicle needs to make maneuver so the vehicle on lane 

#1 can merge into lane #2 without colliding with another surrounding vehicle.  

As a generalization of Convolution Neural Network, GNN employs convolutional graph filters [16]. 

The output of the first layer can be represented by a nonlinearity σ and is given as [17]: 

                                                                   𝐲𝟏 =  σ [𝐳𝟏] = σ [∑ h1k𝐒𝐤𝐱

K

k=0

]                                                        (1) 

Where z can be given as: 

                                                                              𝐳 = ∑ hk𝐒𝐤𝐱

K

k=0

 = 𝐇(𝐒)𝐱                                                        (2) 

These outputs allow system to make trajectory prediction, which makes this algorithm extremely 

powerful and applicable. 

The traditional trajectory prediction approach uses t-pattern trees. This method is only functional in 

the short-distance prediction but incorrect for the long distance [19]. This is because when each objects’ 

data is captured, it keeps on diminishing as algorithm begins to process next set of data. In 2021, Divya 

Singh and Rajeev Srivastava proposed a method to reduce this diminishing effect by highlighting the 

pattern before giving it to the input [18]. This gives the neural network stronger ability to handle long-

term information and produces more reliable prediction. 

2.3.  Augmented Markov Decision Processing (A-MDP) 

Uncertainty-Aware Motion Planning is an advanced approach that takes into account environmental 

elements and aims to effectively address uncertainties throughout the process of motion path planning. 

The utilization of this methodology is prevalent in autonomous mobile systems, including self-driving 

vehicles, robotic devices, and unmanned aerial vehicles, with the aim of guaranteeing their ability to 

move securely and optimally within intricate and unpredictable surroundings. The navigation scenario 

in question is considered to be one of the most complex due to the combination of the subject's great 

agility and the critical importance of accurate and timely condition estimates in order to prevent crashes 

[7]. 
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In a publication from 2019 authored by Lorenzo Nardi and Cyrill Stachniss [8], a novel methodology 

utilizing the Augmented Markov Decision Process (A-MDP) was introduced. Similar to the approach 

taken by Bopardikar et al. [9], the researchers employed a condensed depiction of the robot's belief 

system in order to address more expansive surroundings and make progress in practical scenarios. The 

methodology employed in this study is structured as follows: 

2.3.1.  Augmented State: Augmented state is introduced here to propose integrating robot localization 

uncertainty on road networks including road intersections and variance-based representation of 

uncertainty. The state S is defined as: 

                       𝑆 = { 𝑠 = ( 𝑣, 𝜎2)|𝑣 ∈ 𝑉, 𝜎2 ∈ 𝑊}                                                     (1)  

Where 𝑉 is the intersections, and 𝑊 is a variance set. Each augmented state𝑠 corresponds to the 

normal distribution 𝜘(𝑣, 𝛴), with ∑ = |𝜎
2 0

0 𝜎2
| . 

2.3.2.  Transition Function Considering Position Uncertainty: This function holds significant 

importance in the process of selecting subsequent actions. Fig .2 shows the three key steps that involved 

in the process. 

 

Figure 2. The three key steps when doing the transition function. 

Posterior Probability: To estimate the propagation of position uncertainty, a prediction step 

incorporating a Gaussian distribution and a local localizability map was employed. 

                𝑝(𝑥|𝑠, 𝑎) =  𝜂 ∑ 𝑝(𝑥 = 𝑣𝑖|𝑠)𝑝(𝑥|𝑣𝑖, 𝑎)

|𝑣|

𝑖=1

                                                     (2) 

Where 𝑎 represents the action, 𝜂 is a normalization factor. 

2.3.3.  Reward Function: The objective of the A-MDP reward function is to decrease the average 

journey time by maximizing the negative time, taking into account the presence of uncertainty. The 

incentives for traversing between crossings are determined by considering the road length and the 

velocity of the robot. A penalty is applied in the event that one intersection is not accessible from another. 

Intersections that contribute to the achievement of the goal are rewarded with positive incentives. 

2.3.4.  Navigation Following A-MDP. Solving A-MDP efficiently with policy iteration. π∗  guides 

navigation using estimated robot position bel(x) at intersections, selecting optimal actions based on 

belief states. 

 𝑆𝑏𝑒𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠∈𝑆𝐷𝐵(𝑏𝑒𝑙(𝑥), 𝑠)                            (3) 

Then execute the corresponding action 𝑎∗ = 𝜋∗(𝑆𝑏𝑒𝑙). 

Based on the provided algorithms, we can analyze the advantages and disadvantages of each 

algorithm. Table 1 on page 4 provides a concise comparison of these three algorithms, including not 
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only the pros and cons but also other capabilities such as handling uncertainty and applicability to 

different scenarios. 

Table 1. Comparison of the three algorithms 

3.  Applications 

As a hot topic in recent years, motion planning has been widely used and spread in our daily lives. From 

navigation devices to self-driving cars, it all reflects its close relationship with human life. In this section, 

several related applications are introduced. 

3.1.  Navigator of Mobile Robots Using AMDP 

As previously stated in Section II, the researchers utilized a concise representation of the robot's belief 

system to effectively navigate larger environments and achieve advancements in real-world situations 

[9]. 

In their study, a localization prior is utilized in order to assess the propagation of uncertainty along 

the road network. The resultant policy aims to minimize the anticipated duration of trip while 

concurrently mitigating the occurrence of errors made by the robot during navigation, particularly when 

faced with substantial positional uncertainty. Taking into account the inherent uncertainty of the robot, 

Features Model Predictive 

Control Algorithm 

(MPC Algorithm) 

Model Predictive 

Control Algorithm 

(MPC Algorithm) 

Augmented Markov 

Decision Processing 

(A-MDP) 

Advantages Excellent real-time 

performance and well-

suited for dynamic 

systems. 

Able to process graph-

structured data, 

considering 

relationships 

Provides a 

mathematical 

framework to deal with 

uncertainty, suitable 

for sequential 

decision-making 

problems 

Disadvantages Nonlinear systems 

pose challenges due to 

their high 

computational 

complexity. 

The user is concerned 

about the impact of 

graph size on 

computational cost. 

High requirements for 

state space modeling 

and high 

computational 

complexity 

Applicable scene Industrial process 

control refers to the 

management and 

regulation of 

mechanical systems in 

real-time. 

Data in the form of 

graphs, like travel 

routes and social 

networks 

Long-term reward 

problems, sequential 

decision problems 

Ability to deal with 

uncertainty 

The capacity to 

manage ambiguity by 

means of optimization 

problems. 

Able to learn 

complicated 

interactions but not 

very good at dealing 

with uncertainty 

A method for 

modelling uncertainty 

is given, but putting it 

into action may need 

more thought. 

Real time The control input may 

be dynamically 

modified in real time. 

Depends on the size 

and structure of the 

graph 

Depends on problem 

size and solution 

method 

Scalability The method is quite 

effective and may be 

used to systems with 

several variables. 

May face 

computational 

bottlenecks for large-

scale graphs 

The expansion of the 

state space needs to be 

carefully considered 
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the planning methodology exhibits two key characteristics. Firstly, it possesses the capability to choose 

from a range of actions based on the level of uncertainty present. Secondly, in intricate scenarios, it 

generates plans that, on average, are shorter in duration compared to a shortest path policy that operates 

under uncertainty but disregards it. 

3.2.  Autonomous Electric Vehicles 

The demand for fossil fuel has significantly increased due to increasing industrialization and recent 

advancements in the vehicle industry. The emission of greenhouse gases (GHGs) has significantly 

increased as a result of the widespread usage of gasoline-powered vehicles in everyday transportation 

activities, leading to their accumulation and negative impact on the natural environment. Therefore, it 

is imperative to preserve the natural environmental conditions in order to safeguard the well-being of 

the human population. Hence, the conversion of conventional gasoline-powered automobiles to electric 

vehicles and autonomous vehicles is imperative This is also an important application of motion planning 

[10]. 

3.2.1.  Fully Autonomous Shuttle. In the year 2017, an autonomous Shuttle was meticulously constructed 

and developed by an individual named Harry in the country of England. Subsequently, the Shuttle 

underwent rigorous testing in the city of London. In the United Kingdom, areas characterized by limited 

or nonexistent public transportation options, such as the absence of buses or trains in close proximity to 

diverse sites, have undertaken strategic measures to improve the efficiency and effectiveness of public 

transportation services. Therefore, these shuttles are employed in such regions with the aim of enhancing 

transportation efficiency. The activity involves a group of approximately 5 to 6 individuals and 

encompasses a total distance of 12 kilometers. The system is operated by the utilization of advanced 

sensors, sophisticated cameras, LiDAR technology, and other intelligent monitoring and control systems 

[10]. 

3.2.2.  Autonomous Microbus. The Autonomous Robot Bus, a self-driving vehicle, has been introduced 

by Finland. This term is commonly referred to as GACHA. The present vehicle under consideration is 

an autonomous shuttle that is capable of operating in a wide range of weather conditions. This refers to 

the collaboration between Japanese and Finnish land workers. The bus has the ability to operate without 

a driver, utilizing advanced obstacle detection, navigation, and positioning systems. The dimensions of 

the object in question are approximately 2.5 meters in width, 5 meters in length, and approximately 3 

meters in height. The vehicle in question is a quadrupedal mode of transportation that functions at a 

velocity of 45 kilometers per hour and possesses a maximum travel distance of 110 kilometers. 

Additionally, it offers the convenience of both wireless and cable charging options. The vehicle has a 

maximum capacity of 18 individuals, with 11 occupants seated and 7 occupants standing. During the 

winter season, the inhabitants of Finland's distant regions gather in order to foster cleanliness, safety, 

and amicability within their communities. This device is designed to be compatible with a wide range 

of weather conditions, allowing for efficient navigation even in challenging circumstances such as cloud 

cover, heavy rainfall, storms, and fog. 

4.  Challenges 

Uncertainty-aware motion planning system requires support from many other systems in the vehicle. It 

should also be able to solve motion planning problem in a large environment with abundant variables. 

Current challenges that can obstruct further development of this planning system include: (1) 

Insufficient accuracy of sensors; (2) Excessive complexity of calculation in large environment; (3) The 

Challenge of Software Structure and Integration in Autonomous Vehicles. 

4.1.   Insufficient Accuracy of Sensors 

Perception system inside a vehicle include multiple sensors (sensor groups) that collect information 

from surrounding environment and transmit it to other system for analysis. It needs to collect as much 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/55/20241527

228



information as possible so that the algorithm can make fast and correct decision. Current sensors 

including radar, ultrasonic, proprioceptive sensors etc. have limited ability of detecting surrounding 

environment [11]. This problem can be solved by introducing Sensor Fusion. It is fundamental a 

technology that provides connection between multiple sensors by sharing information with each other. 

This section also introduces how Sensor Fusion technology can maximizes potential of each sensor. 

First and most important sensor in the perception is camera, like human eyes. It provides majority of 

visual information to the perception system. It is also a very sensitive component where it can be 

severely affected by surrounding environment such as intensive lighting and harsh weather. By 

introducing Sensor Fusion, even a low-cost entry-level digital camera can efficiently model a 3D indoor 

environment [9]. The application of Sensor Fusion technique in this case consists of using a LiDAR 

sensor, which is used to minimize the tract losses when conducing multi-target tracking by importing 

data from the camera [11]. These data focus on the blind spot where LiDAR cannot detect so the final 

prediction can be more precise than decision made by LiDAR sensor only. Also, applying same 

technique to the odometry and a camera can increase frequency and accuracy of the vision data [11]. 

The final result is tested and the error is contained within an acceptable range. This optimization also 

increases the stability of camera when moving simultaneously with vehicle by making it focus on 

highlighted target, which provide clearer visual information [20]. 

4.2.  Low Computational Efficiency in Large Environment 

A-MDP is an efficient approach for solving uncertainty-aware motion planning problems. However, in 

certain situations, the algorithm still requires a high-complexity computing strategy, especially in the 

city, where there are many intersections. As a matter of fact, in practice, to avoid missing correct 

intersections, planning that takes uncertainty into account at the local scale is more relevant. Therefore, 

A-MDP can be more effective in these situations by combining it with a hierarchically higher-level 

planner [9] 

4.3.  Integration with Other Software Components of Autonomous Vehicle 

Autonomous cars can be characterized as intricate and multifaceted systems. Hence, it is more practical 

for researchers to adopt a compartmentalized approach to the structure of autonomous vehicle (AV) 

software, prioritizing the development of particular subsystems inside the larger framework. By 

enhancing these distinct subsystems, researchers can effectively achieve novel functionalities and 

capabilities for AVs. One often neglected yet crucial obstacle in the field of autonomous system research 

is to the meticulous incorporation of all constituent elements, hence guaranteeing the meaningful and 

correct interaction among diverse software components. The guarantee of achieving the desired final 

output of a system can be challenging due to the complexity of the entire system and the difficulty in 

ensuring that the sum of local process intentions aligns with this goal. The allocation of computational 

resources among different separate activities inside the system is a significant difficulty [10]. 

5.  Conclusion and future work 

This review paper offers a thorough examination of the current methodologies pertaining to Uncertainty 

aware motion planning. The works that have been evaluated emphasize the substantial advancements 

that have been achieved in comprehending the fundamental principles behind algorithms. Over the 

course of time, an increasing number of vehicles equipped with uncertainty-aware technology have been 

introduced to the market. Consequently, a growing number of individuals have embraced this advanced 

product. In order to facilitate further progress, it is imperative to address various issues that have been 

previously mentioned. In future iterations, it is imperative for these vehicles to undergo necessary 

configuration enhancements, such as refining sensor accuracy and optimizing collaboration efficiency. 

In summary, this review highlights the imperative for ongoing investigation and cooperation within the 

domain of uncertainty-aware motion planning. Through the identification and subsequent resolution of 

existing deficiencies, as well as the utilization of emerging technologies and multidisciplinary 

methodologies, researchers have the potential to achieve substantial advancements in the development 
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of more intelligent algorithms and flawless mechanisms. In the progression of our research, it is 

imperative for academics to maintain a state of vigilance, engaging in critical analysis of established 

frameworks, and actively pursuing novel approaches to further our understanding of uncertainty-aware 

motion planning. 
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