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Abstract. Image classification plays a pivotal role in numerous applications, with substantial 

implications for daily life, including diagnosing disease from medical images and management 

of images in autonomous vehicles. However, such sort of research in this field continuously 

challenges scientists in terms of choosing datasets, testing accuracy, and improvement of models, 

etc. In this paper, we focus on the performance of two prominent models GoogleNet and residual 

attention network. We construct two models on the Python platform according to available 

online resources. To assess their capabilities, we employ the CIFAR-100 dataset, a widely used 

benchmark dataset. Despite the simplicity of our implementations, GoogleNet comprises 

approximately 75 convolutional layers and inception modules, and the Residual Attention 

Network incorporates multiple attention modules within its architecture. These characteristics 

demonstrate the models' potential for achieving exceptional classification results. Through 

comprehensive testing and visualization, we aim to provide insights into the efficacy of these 

models in the context of image classification. Our study contributes to a broader and profounder 

understanding of their suitability for real-world applications. According to our diagrams and 

analysis, we conclude that although attention56 is suitable to be adopted in image classification 

concerning its structure since the model is unstable and invalid in a wide range of training image 

data on dataset SIFAR100 it might not be exploited in practice. However, as to the model 

GoogleNet, with an increasing number of training, it obviously is prone to robustness and solid 

capability of noise resistance. Therefore, GoogleNet is a suitable one to be employed in image 

classification. 

Keywords: GoogleNet, CIFAR100, image classification, Transformer model. 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/79/20241537

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

113



1.  Introduction 

Image classification plays a critical role in Computer Vision (CV), Its ability to automatically categorize 

images has prompted significant social and economic progress. In fields such as healthcare, image 

classification aids in diagnosing diseases from medical images, improving patient care. Moreover, 

autonomous vehicles, enable safer navigation and accident prevention. Its impact on diverse sectors 

underscores its importance as a transformative technology, shaping our modern world. 

However, so far, researchers have encountered so many technique issues puzzling them so much in 

the realm of CV, since it has grappled with challenges that underlines the complexity of interpreting 

visual data in term of CV data structure itself to conventional CV technique. According to Lai’s research 

[1], one of the primary challenges lies in image recognition, traditional machine learning such as SVM 

can only applied to deal with one-dimensional data while the images are represented in matrix form. 

Thereby, researchers have to first stretch the image matrix to a one-dimensional vector and in the 

process of transformation, it might abandon adjacent information which potentially loses some crucial 

features as a negative result. 

Such low efficiency of extraction of features from images poses huge hurdles for traditional AI to 

develop further. Fortunately, in recent decades, deep learning has gradually found a more adaptive form 

in CV. Deep learning such as CNN in CV first represents the base color in the image as a matrix of 

values and then condenses them into 3D tensor storing stacks of features maps tied to images. To output 

a 3D tensor, it needs to pass images through a series of convolutional and pooling layers. In this repeated 

process, images’ relevant data and segments will be stored in a smaller representative matrix. Finally, 

extracted features are sent to a fully connected layer, which generates accurate prediction [2].  

On the other hand, the transformer models are another solution that originates from Natural 

Language Processing (NLP) first introduced in the paper "Attention Is All You Need" by Vaswani et al 

[3], which has several advantages in NLP tasks. The first one is their scalability, Transformers can be 

scaled up to handle large datasets and complex tasks effectively. Secondly, the attention mechanism is 

another merit, the self-attention mechanism allows the model to focus on relevant parts of the input, 

making it highly interpretable. While transformers were initially designed for sequential data, they have 

been adapted for image classification tasks. Their advantages make them increasingly outstanding in 

this realm of CV. Their strong scalability provides scientists with the possibility to further develop 

models. As highlighted in "Five Reasons to Embrace Transformers in Computer Vision" [4], Vision 

Transformers, including models like Google's ViT-MoE with 15 billion parameters, have set new 

records in ImageNet-1K classification. Furthermore, similar to NLP, transformers applied to images 

provide interpretable attention maps, which can be useful for understanding where the model focuses 

when making classification decisions. These whole reasons are motivations for scientists to introduce 

transformers into CV. 

To put it into a nutshell, in the realm of CV which empower social development profoundly and 

prompts economic progress, researchers come across some fatal technique hurdles that conventional 

machine learning can’t deal with perfectly and thus they come up with new method deep learning such 

as CNN, and transformer to resolve. Owing to their whole new structure, the new advantages they bring 

make scientists gradually prompt CV development further. 

2.  Background and Relative Research 

The process of image classification involves categorizing input images into predetermined classes, 

which is a significant undertaking within the realm of computer vision. Conventional approaches to 

picture classification typically depend on manually crafted feature extraction techniques. However, the 

emergence of deep learning has led to significant advancements in image classification, particularly 

through the utilization of Convolutional Neural Networks (CNNs). 

By employing multi-layer convolution and pooling operations, Convolutional Neural Networks 

(CNNs) have the capability to autonomously acquire high-level information from the initial image. By 

employing deep learning techniques, Convolutional Neural Networks (CNNs) have the capability to 

effectively extract and analyze various features such as texture, shape, and edges present in an image. 
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This enables CNNs to attain enhanced accuracy in the task of image classification. Prominent deep 

learning models, like AlexNet, VGG, and ResNet, have consistently achieved exceptional outcomes in 

picture classification competitions, thereby substantiating the superior efficacy of deep learning in the 

domain of image classification.  

The advancement of deep learning has led to the accumulation of extensive research in the field of 

image classification within AI models.  

In the subsequent essay, we shall provide four distinct models. 

The ResMLP architecture is a novel approach to picture categorization that is constructed 

exclusively using multi-layer perceptions. There are numerous perks associated with it. Firstly, it is 

important to note that in ResMLP, the self-attention layer is substituted by a linear layer. The ResMLP 

architecture exhibits enhanced stability during training, which can likely be attributed to the presence of 

linear layers. Notably, linear layers have the advantage of visualizability, enabling the visualization of 

interactions across patch embeddings [5]. 

The Vision Transformer (ViT) has demonstrated considerable success in picture classification tasks 

when compared to traditional Convolutional Neural Networks (CNNs). The transformer architecture 

offers a flexible and modular framework for constructing and customizing models to meet diverse needs. 

The attention mechanism of the model facilitates the acquisition of knowledge on the connections 

between patches, hence enabling the model to gather information at both the local and global levels [6]. 

MobileNet is a lightweight deep neural network that exhibits a reduced parameter count while 

achieving superior classification accuracy. These models are characterized by their tiny size, low 

latency, and low power consumption, making them suitable for a wide range of use cases with specific 

resource limitations. These techniques have the potential to be further developed and utilized in various 

applications such as classification, detection, embeddings, and segmentation [7]. 

Multi-layer perceptron (MLP) models are capable of addressing intricate nonlinear situations. The 

system effectively manages substantial volumes of input data. Generates rapid forecasts subsequent to 

the completion of training. It is possible to acquire the same levels of accuracy even when working with 

smaller sample sizes [8].  

In summary, each of these models possesses distinct advantages over the others and can be 

effectively employed in various contexts. 

Transformer models have achieved immense success in natural language processing. BERT 

(Bidirectional Encoder Representations from Transformers) is an example of an impressive pre-trained 

Transformer model that achieved significant improvements across many natural language processing 

tasks - text classification, named entity recognition, and question answering among them [9]. Through 

pre-training on massive text datasets it achieved impressive performance gains [10-11]. GPT-3 

(Generative Pre-trained Transformer 3), another powerful Transformer model, gained widespread 

attention for its extraordinary text-generating abilities. Transformers have proven themselves capable of 

creating high-quality articles, conversations, and code to demonstrate their immense power as text 

generators [10]. Furthermore, these models have demonstrated notable achievements in cross-domain 

transferability [11]. Baidu introduced the ERNIE model (Enhanced Representation through Knowledge 

Integration), which is a Transformer-based pre-trained language model trained on extensive 

multi-domain data for superior performance across various natural language processing tasks. ERNIE 

excels at cross-domain transfer. In particular, in the medical domain, ERNIE has demonstrated 

impressive cross-domain results by pre-training on general domain data before fine-tuning medical text 

tasks later on. ERNIE stands out for its capacity for knowledge transfer across different domains [11]. 

Facebook recently unveiled their Cross-Lingual Language Model with Recalibrated Cross-Langual 

Training, also built upon Transformer architecture, known as XLM-R (Cross-Lingual Language Model 

with Re-calibrated Cross-Langual Training). Pre-training on multilingual data enables XLM-R to 

effectively engage in cross-domain tasks involving different languages, most notably cross-lingual 

sentiment analysis tasks; it excels particularly in this regard due to being capable of moving these tasks 

even with limited data in target languages [12]. 
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Transformers may have initially been developed to perform natural language processing tasks; 

however, their unique model architecture and self-attention mechanism have found widespread 

applications within image processing as well. Studies demonstrate how transformer models can 

effectively capture global dependencies within image data, improving tasks such as recognition and 

segmentation. Transformer models' self-attention mechanism enables them to model relationships 

among positions in input data--something immensely helpful for object recognition and feature 

extraction in images. By making necessary modifications, Transformer models can also be adjusted 

specifically to image processing applications for faster extraction of local or global features in images 

thereby improving the performance of image-related tasks [13]. 

Transformer models' unique encoder-decoder structure gives them an advantage when dealing with 

sequential data, where conventional models require manual configuration of feature extractors and 

decoders whereas Transformer models automatically learn key features of input data through 

self-attention mechanisms to generate output sequences during decoding - providing exceptional results 

across a broad spectrum of tasks across many domains. 

Transformer models have achieved extraordinary success in natural language processing, while their 

distinctive encoder-decoder structure and self-attention mechanism open them up for applications in 

image processing. Transformer models excel at extracting both local and global features from images 

efficiently - driving advancement in image processing technologies. 

3.  Methodology and Technology 

The architecture of the Transformer model can be categorized into four distinct modules: the Input 

module, the Coding module, the Decoding module, and the Output module. The construction of the 

input module comprises two main components: the source text embedding layer and its corresponding 

position encoder, as well as the target text embedding layer and its corresponding position encoder. The 

architecture of the encoder module is as follows: The structure consists of a series of N encoder layers 

that are layered together. Each layer of the encoder is composed of two sublayers that are interconnected. 

The initial sub-layer connection architecture comprises a multi-head self-attention sub-layer, a 

normalization layer, and a residual connection. Similarly, the subsequent sub-layer connection 

architecture encompasses a feedforward fully connected sub-layer, a normalized layer, and a residual 

connection. The subsequent component is the decoder module, which is comprised of a series of 

N-stacked decoder layers. Every decoder layer is composed of three interconnected sublayer structures. 

The initial sub-layer connection structure comprises a multi-head self-attention sub-layer, a 

normalization layer, and a residual connection. The second sub-layer connection structure comprises a 

multi-head attention sub-layer, a normalization layer, and a residual connection. The third sublayer 

connection structure comprises a feedforward fully connected sublayer, a normalized layer, and a 

residual connection. The final component of the module structure is the output module, which consists 

of a linear sheaf and a SoftMax layer. 

The notable aspect of this approach lies in the effective integration of a highly parallelizable 

decomposable attention mechanism with a feedforward network. This finding suggests that attention 

mechanisms possess inherent strength and that the sequential recurrent processing of data is not a must 

for attaining the quality improvements observed in recurrent neural networks (RNNs) with attention. 

Jakob Uszkoreit, a researcher from Google, then suggested the substitution of Recurrent Neural 

Networks (RNNs) with self-attention mechanisms, so initiating the endeavor to assess the viability of 

this concept. Transformers employ an attention method to simultaneously process all tokens, wherein 

they compute "soft" weights between tokens in consecutive levels. The attention mechanism exclusively 

relies on information from lower layers to compute its output. Consequently, it may be efficiently 

computed for all tokens simultaneously, resulting in enhanced training speed. 
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Figure 1. Transformer structure 

 

Figure 2. Encoder-decoder structure 

GoogleNet stands out as an innovative deep convolutional neural network architecture thanks to its 

Inception structure, designed to increase performance during image classification tasks by 

simultaneously capturing features at various levels using multi-scale convolutional kernels. 

GoogleNet's Inception Structure offers an efficient sparse feature representation. By extracting 

information at different scales via multiple convolutional kernels and then fusing them together, a more 

complete representation of an image can be reached. Furthermore, this structure introduces various 

convolutional kernels of differing scales parallelly capturing distinct features within images, further 

improving accuracy in classification accuracy. 

Inception Module is the basic building block, which is composed of four components: 1x1 

convolution, 3x3 convolution, 5x5 convolution, and 3x3 max pooling. In the end, however, the results 

are concatenated along the channel dimension, which is the core concept of the Inception module. The 

basic structure of Inception is realized by stacking multiple convolution layers, pooling layers, and 1x1 

convolution layers. Different features in the image are captured by using convolution kernels of 

different sizes at each layer and then connected along the channel dimension. Through this structure, the 

network can learn features at different scales at the same time to achieve a more comprehensive 

representation of image content. 
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GoogleNet exhibits several unique characteristics when used for image classification tasks: 

1. Multi-scale Feature Extraction: Inception employs convolutional kernels of differing sizes to 

capture both local and global features in images simultaneously, providing the model with enough 

power to detect objects of various sizes within them and provide accurate identification capabilities for 

object identification purposes. 

2. Parameter Efficiency: With 1x1 convolutional layers, Inception's structure helps minimize 

network parameters by mitigating the risk of overfitting while speeding up both training and inference 

processes. 

3. Information-Rich Feature Representation: By concatenating features across scales along a channel 

dimension, networks are able to learn a more information-rich feature representation which enhances 

their expressive capacity by better distinguishing among image categories. 

4. Mitigating Gradient Vanishing: Gradient vanishing can have detrimental effects on training 

stability and convergence speeds for traditional deep networks, but Inception structures provide 

intermediate layers with varied depths and scales, enabling gradients to flow more freely while 

mitigating gradient vanishing issues. 

To sum up, GoogleNet's Inception structure has the characteristics of high parametric efficiency and 

multi-scale feature extraction information, which can enhance the effect of image classification tasks. 

Meanwhile, its parallel structural network can further improve the performance of image classification 

by capturing features at different levels. 

 

Figure 3. Inception module with dimension reduction 

 

Figure 4. Inception module structure 
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4.  Experiment 

The CIFAR-100 Dataset plays a critical role in our experiment. Standing as a cornerstone in the realm of 

CV, it encapsulates several key attributes so that we consider it as our experimental dataset. To start with, 

according to a document from Krizhevsky, A [14], as fundamental structure, it owns 100 classes 

containing 600 images in each class. With each class, there are 500 training images and 100 testing 

images. The 100 classes in the CIFAR-100 are further divided into 20 superclasses. Each individual 

image is associated with a "fine" label (the specific class membership) and a "coarse" label (broader 

superclass affiliation). Meanwhile, designers offer various versions of CIFAR-100 to groups of users 

with different demands to import and exploit. Furthermore, inside each individual class, a whole group 

of images are associated with the real world such as vehicles, animals, and so on. As a result, it can assist 

users in testing algorithms’ real-world applicability. On the other hand, with 20 superclasses and 5 

subclasses each, such complexity challenges the model with both robustness and precision in 

classification with diverse categories of images. These merits make us exploit it as our experimental 

datasets.  

As to the choice of models, we select residual attention networks and GoogleNet as training targets. 

Considering our research orientation, GoogleNet is expected since its efficiency, power, and memory 

use prompts it to outcompete other models. Additionally, the residual attention network is an improved 

convolutional LSTM algorithm, to improve the accuracy of information by extracting salient regions of 

images efficiently [15]. In other words, their appealing qualities have garnered attention, making them a 

trending topic in image classification. 

In terms of architecture, we first implement the GoogleNet model according to the experiment of 

Szegedy et al [16]. This architecture mainly consists of three parts: prelayer, inception module, and 

maxpool. To begin with, the prelayer serves as the initial extraction of features with batch normalization, 

ReLU activation, and 3 convolutional layers totally. Moreover, the maxpool layer with 2 strides 

functions as max-pooling operations that downsample the spatial dimensions of the feature maps. Lastly, 

the main purpose of the inception module is to capture features at various scales and combine them. The 

module which is the main building of GoogleNet contains multiple parallel convolutional layer 

pathways along with different sizes of kernels. In our experiment, we contain a total of 8 convolutional 

layers. To sum up, the whole structure contains one prelayer with 3 convolutional layers, 9 inception 

modules with 8 layers each, and 75 layers in total.  

In terms of the architecture of the transformer model, we construct such a model according to Wang 

et al [17]. This architecture has two different versions attention56 and attention92, they are both 

composed of attention networks. Inside the network, there are several attention modules. To implement 

the module, we first need one preprocessing-residual unit before splitting the trunk branch which 

functions to perform feature processing, and the mask branch serving as a feature selector during 

forward inference, and gradient update filter during backpropagation. Meanwhile, the truck branch 

consists of two residual units and one between two adjacent max-pooling layers with a sigmoid 

activation function by default. Thereby, the number of them can be altered. On the other hand, the fabric 

of the residual attention network contains one pre-convolutional layer to process input initially. 

Moreover, the four stages and first three stages contain three attention modules respectively to capture 

features and prepare for classification. Besides, there is another global average pooling layer that 

aggregates spatial information for each channel. Lastly, the linear layer performs the last classification. 

In general, this architecture is designed to extract features at various scales and levels of abstraction and 

then transform them to enable effective classification.  

After several repeated training along with testing, we can gradually depict a relatively exact diagram 

with a sea of collected data and we can find some extraordinary traits of the GoogleNet. In a general 

view of four curves, the GoogleNet gradually convergences to a comparatively high accuracy and low 

average loss rate in the ladder pattern which proves that the two models are able to prevent error 

increasingly efficiently. Meanwhile, their fluctuation rates all tend to smoothness with increasing 

number of training with respect to variance. This reflects the two models’ stability and robust noise 

resistance ability. As to the regional curve of each graph, we can generalize 60 epochs as a period. Every 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/79/20241537

119



time, GoogleNet finishes a period, their accuracy will get hugely enhanced and the loss rate is going to 

get eliminated obviously. Before a threshold period, the loss rate and accuracy rate will get local peaks 

and valleys. Such sudden increase or decrease possibly means that this model might learn some useful 

data and make themselves better at dealing with noise information.   

 

Figure 5. Loss rate of GoogleNet model 

 

Figure 6. Accuracy of GoogleNet model 

However,when we analyze the attention56 curves generated from training data, it has a tremendous 

difference from the analysis of the GoogleNet model’s curve. In general, these two graphs don’t have 

any convergence and spots are likely to distribute randomly. Moreover, the model merely fluctuates 

unexpectedly and the x coordinates show that the model runs correctly until the 50th epoch finishing 

which doesn’t correspond to our expectation. Although we attempt to resume it with a series of tries, no 

indication shows the model can operate correctly after the 50th epoch. In a specific view of these two 

graphs, as to the accuracy and loss graph, its maximum point is close to 0.14 and 0.055 respectively 

which are still unexpected.  

 

Figure 7. Loss rate of attention56 model 
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Figure 8. Accuracy of attention56 model 

We conducted a comprehensive comparison between our Transformer network (Attention59) and the 

state-of-the-art GoogleNet using the CIFAR-100 dataset. The table below summarizes the key metrics: 

Table 1. Comparisons Transformer with GoogleNet on CIFAR-100 

Network dataset params convergence accuracy 

(highest) 

loss (lowest) 

GoogleNet cifar100 55.7M 11 0.5025 0.02291 

Attention59 cifar100 6.2M - 0.2207 0.025 

 

The convergence refers to the number of iterations when a relatively stable accuracy is achieved. 

Since the learning rate was changed during the experiment, the first learning rate was the first 60 epoch 

samples (In fact, it is almost impossible to observe convergence since the performance of the 

Transformer is so unstable). We can clearly see that model GoogleNet performs much better than 

Attention 59 in terms of convergence and accuracy of final convergence. 

In general, according to the behaviors of the two models on dataset CIFAR100, it’s more likely that 

the GoogleNet model is a more suitable one to be adopted in the classification of images since it can be 

implemented and trained with a wide range of sample data validly. Besides, GoogleNet’s capability of 

noise resistance and robustness is heavily proven. After several periods of training, it evidently 

convergence to relatively high accuracy and low loss rate, and its fluctuation rate is gradually 

controllable. However, as to residual attention network, it is unable to accept a sea of image data. Its 

practice is, thus, not supported. 

To sum up, although the chosen models have potential, various models still have their own 

limitations and merits which means they might be skilled in different areas. As GoogleNet has a flexible 

scale and level to extract features, it is increasingly ideal for researchers to collect data from wide 

categories of abstract entities. Furthermore, its multiple-layer structure can enhance the accuracy of 

extraction in models. Finally, its error calculation and correction of error methods are beneficial to 

prevent overfitting and underfitting possibilities. The whole traits make researchers find the huge 

potential of this sort of model in image classification.  

5.  Conclusion 

Numerous factors contribute to variations among different models. These factors include data 

preprocessing and organization, neural network model selection and construction, choice of loss and 

optimization functions, and parameter tuning. Data preprocessing is crucial due to common issues like 

incomplete, noisy, inconsistent, redundant, imbalanced, outlier-prone, and duplicate data. Model 

architecture significantly impacts performance, and selecting appropriate loss and optimization 

functions improves training outcomes. Therefore, optimizing these aspects is essential for successful 

model application. 

In conclusion, Transformer models have shown remarkable potential in computer vision, particularly 

in image classification, object detection, and image generation tasks. Their versatility extends to 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/79/20241537

121



addressing various visual challenges. Future research should focus on optimizing pre-training 

techniques, enhancing position coding methods, exploring novel adaptation approaches, and improving 

fine-tuning stability. As technology evolves, innovative architectural designs and attention mechanisms, 

along with powerful pretraining and data augmentation strategies, will continue to shape the future of 

Transformer-based models in computer vision. We look forward to further advancements in this field to 

address real-world problems. 
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