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Abstract. Nowadays, wireless communication plays an important role in various fields of our 

lives, and in order to ensure good communication performance, reliable channel models are 

important. In this paper, we present a comprehensive survey of Machine Learning (ML) based 

channel modeling methods to help with the estimation and prediction accuracy on wireless 

channel modeling. To begin with, we start with a review of the traditional methods of wireless 

communication channel modeling, basically empirical method and deterministic method. Then, 

we introduce several ML methods to address limitations of traditional ways will be used for 

channel modeling, such as Support Vector Machine (SVM), Random Forests, autoencoder, Deep 

Learning, etc. Lastly, we demonstrate the application of ML methods including deep learning, 

SVM, and random forests on wireless channel modeling. Through learning the underlying 

channel distribution, Deep Learning methods have already demonstrated remarkable 

performance in channel modeling for different scenarios in some previous learning. Also, by 

training with suitable kernels and conducting sufficient training iterations, optimal hyperplanes 

can be identified, Support Vector Machines (SVM) can then be utilized to predict channel 

characteristics based on input features. Random Forests can identify the most relevant features 

influencing the channel and optimize system design by handling complex and high-dimensional 

data through iterative feature selection and splitting criteria. These methods achieve competitive 

accuracy with respect to traditional methods, however, there are still challenges and issues to be 

addressed in the application of machine learning methods for communication channel modeling. 
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1.  Introduction 

In the rapidly evolving digital era, wireless communication has solidified its role as a pivotal driver for 

technological advancement and societal transformation. From personal devices to intricate global 

networks, it permeates every facet of our modern existence. This ubiquity not only offers unparalleled 

convenience and connectivity but also propels societal development, enhancing the overall quality of 

life. 

The essence of reliable communication lies at the heart of these applications, underscoring the 

imperative need for dependable channel models. These models elucidate the intricacies of signals as 

they propagate, detailing aspects like path loss, multipath effects, and shadowing. A precise channel 

model stands as a cornerstone for the design and performance assessment of wireless systems. 

Historically, the realm of wireless communication channel modeling has been dominated by 

traditional methods. However, as communication ecosystems have grown in complexity, there has been 

a rising demand for more adaptive and flexible modeling techniques. Enter ML - a transformative 

technology that has reshaped countless industries by extracting meaningful insights from vast amounts 

of data [1].  

ML, with its myriad of algorithms and methodologies, offers a fresh approach to channel modeling. 

Deep learning, a subset of ML, utilizes neural networks with many layers to analyze various factors 

affecting signal transmission. Techniques like convolutional neural networks (CNNs) are particularly 

adept at processing spatial data, making them ideal for understanding the intricate patterns in wireless 

channels. SVM, on the other hand, can classify and predict non-linear data, offering a robust tool for 

dynamic channel environments. Random forests, a form of ensemble learning, leverage multiple 

decision trees to arrive at more accurate and stable predictions. 

The efficiency of ML lies not just in its diverse techniques but also in its adaptability. As wireless 

communication environments continuously evolve, ML models can be retrained and updated, ensuring 

they remain relevant and accurate. This dynamic nature of ML stands in stark contrast to traditional 

methods, which often require manual recalibration. 

This study aims to provide a systematic review and analysis of conventional wireless communication 

channel modeling techniques, whilst placing significant emphasis on how ML technologies are 

revolutionizing and enhancing modeling capabilities within this domain. Traditional methodologies, 

including geometry-based stochastic models and deterministic ray-tracing techniques, have laid a solid 

foundation for understanding and predicting the behavior of wireless channels. However, these 

approaches encounter challenges when dealing with the dynamic and complex nature of channels within 

highly variable environments. In contrast, ML-particularly advanced techniques such as deep learning, 

SVM, and random forests-demonstrates an exceptional ability to handle large-scale complex data and 

to uncover subtle patterns and trends, which is invaluable for channel modeling in wireless 

communications [2]. 

Synthesizing existing literature and practical case studies, this research further reveals the strengths 

of ML-based approaches to wireless communication channel modeling. ML methodologies can 

automatically adjust model parameters to adapt to environmental changes, thereby improving the 

generalizability and predictive accuracy of models. Moreover, ML models offer the capability for 

continuous learning and adaptation with minimal human intervention. This paper not only elaborates on 

the application of various ML techniques to wireless communication channel modeling but also presents 

a perspective on their limitations and potential future directions. By integrating traditional models with 

ML techniques, we aim to provide a robust analytical and predictive tool for researchers and engineers 

in the field of wireless communications, guiding them in the design and optimization of communication 

systems. 

2.  Traditional method on wireless channel modeling 

Wireless communication has been widely adopted in various sectors, including military and civilian 

fields, thanks to its inherent advantages such as mobility, scalability, and convenience. In order to ensure 

high-quality communication, it is crucial to have accurate channel models that serve as references for 
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theoretical analysis, performance evaluation, and system deployment of wireless communication 

systems between transmitters and receivers. This section will discuss two traditional methods commonly 

used for channel modeling. 

The channel modeling methods refer to the approaches used to characterize the wireless 

communication channel in a deterministic or statistical manner. Commonly, wireless communication 

channel models can be classified into two categories, the empirical models and the deterministic models.  

The empirical models are mainly based on observations, extensive measurements, and statistical 

analysis of real-world wireless environments. This paper discusses three significant empirical models 

focusing on path loss [1]. The first one is the Hata-Okumura model, which presents urban area 

propagation loss as a standard formula, along with additional correction factors for application in other 

situations. Although this model neglects obstacle parameters such as hills and buildings, it performs with 

high accuracy in urban and suburban environments but may not be suitable for mountainous or densely 

built-up areas. 

As an extension, the European Cooperation for Scientific and Technical Research (COST-231) model 

was proposed. COST-231 introduces additional environmental parameters and correction factors that 

focus on frequency dependency, terrain and urban parameters, building effects, as well as damping 

factors to increase its applicability in urban environments. Comparing the predicted value of COST-231 

model with the measured value in a city, the average error of path loss is within ±3 dB and the standard 

deviation is 5-7 dB. Also, ECC-33 is derived from the Okumura model with some modifications to its 

assumptions so that it can more closely represent a fixed wireless access system. The ECC-33 model is 

known to be more accurate in mountainous and suburban environments. 

Deterministic models utilize specific geographical and morphological information, as well as 

electromagnetic wave propagation theory or optical ray theory, to analyze and predict wireless 

propagation models. Compared to empirical modeling methods, deterministic modeling does not require 

a large amount of measured data, instead, it only needs a detailed understanding of the propagation 

environment to make more accurate predictions about signal propagation. Common deterministic 

modeling methods include ray tracing and finite-difference time-domain (FDTD) method. Wahab 

Khawaja introduced a study that employed ray tracing to model AG channels in various environments 

such as urban, suburban, rural, and oversea at 28 GHz and 60 GHz [2]. Furthermore, Mattia Lecci made 

a great effort to simplify the computational complexity of ray tracing for mmWave channel modeling 

by limiting the maximum reflection order and removing some low-power multipath components [3]. 

Zhiyuan Shi employed the FDTD method to simulate the transient impulse response which enabled them 

to calculate the channel parameters, facilitating the development of a channel model for effective 

communication between unmanned aerial vehicles (UAVs) and vessels [4]. 

3.  Wireless Communication Channel Modeling with ML Techniques 

SVM stand out in the ML landscape for their adeptness at both classification and regression tasks, 

especially in the domain of channel modeling. At the core of SVMs is the principle of determining an 

optimal hyperplane that distinguishes data into distinct classes, with ‘optimal’ implying the hyperplane 

that maximizes the margin between two data sets, thereby minimizing potential misclassification. While 

they excel at linear classification, real-world channel conditions often introduce non-linear data patterns. 

Addressing this, SVMs employ the kernel trick, transforming data into a higher-dimensional space 

where it becomes linearly separable without the computational heft. Various kernel functions, such as 

the polynomial, radial basis function (RBF), or sigmoid, enable SVMs to cater to diverse non-linear 

patterns. For instance, in urban environments with varied obstructions, wireless signals encounter 

multiple states. Trained on data from various environments, SVMs can predict the wireless channel’s 

state in real-time, facilitating efficient signal processing and resource allocation. Their ability to 

efficiently delineate both linear and non-linear channel conditions underscore SVMs’ invaluable role in 

modern communication systems. 

Random Forests, as an ensemble learning method, have emerged as a formidable solution to 

overfitting in channel modeling by harnessing the collective wisdom of numerous decision trees. Each 
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tree is cultivated from a distinct subset of training data through bootstrapping, introducing a degree of 

randomness that equips each tree to capture varied data patterns. For instance, while one tree might excel 

at understanding signal propagation in urban environments peppered with skyscrapers, another might 

specialize in the clearer, sparser terrains of the countryside. As predictions are made, rather than relying 

on individual trees, which may hold specific biases or errors, the Random Forest amalgamates their 

outputs, typically leaning towards a ‘majority vote’ approach. This ensemble mechanism inherently 

smoothens out anomalies and inaccuracies. In practical terms, this means that when dealing with diverse 

channel conditions, such as those found in mixed urban and rural landscapes, Random Forests can offer 

holistic and precise insights, making them indispensable in the multifaceted realm of communication 

systems. 

Variational Autoencoders (VAEs), esteemed as generative models, excel at deciphering and learning 

complex data distributions, a capability crucial for capturing the nuances of channel states in 

communications [1]. Unlike traditional models that might only offer a surface-level understanding, 

VAEs delve deep, encapsulating underlying channel state dynamics which can be essential for adaptive 

communication strategies. On a similar note, autoencoders, characterized by their encoder-decoder 

architecture, have redefined the landscape of communication systems. More than just reproducing input 

as output, they’ve brought transformative changes to the field, especially in end-to-end communication 

designs [2]. By integrating processes that were traditionally separate, such as signal modulation and 

demodulation, autoencoders facilitate a cohesive optimization of these tasks. This integrated approach, 

where both modulation and demodulation schemes are honed simultaneously, ensures that the 

communication process is not just streamlined but also remarkably efficient, paving the way for more 

resilient and adaptive systems. 

Deep learning’s ascendancy in recent years owes much to its unparalleled ability to decipher complex, 

non-linear relationships. In the realm of wireless channel modeling, DNNs shine particularly in dense 

urban environments fraught with signal reflections and multi-path fading. CNNs, traditionally associated 

with image processing, have found utility in spatial data processing within the wireless domain, 

particularly beneficial for MIMO (Multiple Input Multiple Output) systems where spatial data is 

paramount. RNNs and their more advanced cousins, LSTMs, are tackling the challenges of mobile 

communication where data’s temporal dimension cannot be ignored, ensuring seamless communication 

in high mobility scenarios [3]. 

Dynamics of wireless environments, replete with ever-moving users, rapidly changing topologies, 

and an ever-increasing density of communicating devices, present a modeling quagmire. Here, 

reinforcement learning’s promise shines brightest. Algorithms like Q-learning are no longer just 

theoretical constructs but are actively tailoring transmission strategies in real-time. By constantly 

ingesting environmental feedback, they optimize both beamforming directions and power allocation, 

ensuring peak performance even in tumultuous conditions. 

Emerging paradigms, such as Generative Adversarial Networks (GANs), are revolutionizing channel 

simulations. By generating synthetic channel conditions, GANs obviate the need for exhaustive real-

world data collection, making model training more versatile and comprehensive [4]. Furthermore, the 

tenets of Federated Learning, advocating decentralized learning while preserving data privacy, dovetail 

perfectly with wireless communication’s inherent structure. This approach promises not just enhanced 

user privacy but also more efficient models by reducing redundant data transmissions [5]. 

To conclude, ML’s symbiosis with wireless communication channel modeling is crafting a future 

where communication is not just fast but intelligent, adaptive, and efficient. As technological milestones 

like 6G loom on the horizon, the confluence of these domains will undoubtedly dictate the trajectory of 

next-generation communication systems [6, 7]. 
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4.  Wireless Communication Channel Modeling Technology Based on Various ML Techniques 

4.1.  Deep Learning 

ML, particularly deep learning, offers significant potential for enhancing wireless communication 

channel modeling. These models have shown superiority in capturing the complex, non-linear 

relationships inherent in wireless communication systems, which traditional methods often struggle to 

handle [8]. 

A critical application of deep learning is predicting Channel State Information (CSI). Accurate and 

timely CSI is crucial for optimizing wireless communication performance. Deep learning models, such 

as convolutional neural networks, have been utilized for CSI prediction. a CNN-based model was 

proposed to predict future CSI based on historical data, and the results demonstrated significant 

improvement over traditional methods [9].The model effectively learned the temporal correlation in the 

CSI, thus enhancing the prediction accuracy. 

In the context of millimeter-wave (mmWave) channel modeling, deep learning also presents 

promising opportunities. mmWave is a key part of 5G and beyond, but its high frequency and 

susceptibility to blockage create unique challenges for channel modeling [10].proposed a deep learning 

model based on GANs to accurately model mmWave channels. The GAN was trained to generate 

channel responses that were statistically similar to the real channel responses, demonstrating the 

potential of deep learning in this area. 

MIMO (Multiple-Input Multiple-Output) channel modeling is another area where deep learning has 

shown promise. MIMO, which involves using multiple antennas at both the transmitter and receiver, 

can significantly enhance wireless communication performance. However, it also greatly increases the 

complexity of channel modeling. A deep learning-based model for MIMO channel estimation is created. 

The model was designed to learn the underlying channel distribution, leading to more accurate channel 

estimations and thus improved system performance. 

While the potential of deep learning for wireless communication channel modeling is clear, 

challenges remain. Deep learning models require substantial data and computational resources. 

Moreover, they often operate as “black boxes,” making it hard to interpret their predictions. Hence, 

future research should aim to tackle these challenges and further investigate the potential of deep 

learning in this domain.  

4.2.  SVM 

SVM is a powerful supervised learning algorithm widely used in classification and regression tasks. In 

the context of wireless channel modeling, SVM can be employed to predict the channel characteristics 

based on input features [11]. The main idea behind SVM is to find an optimal hyperplane that maximally 

separates different classes or regression targets. 

1. Feature Extraction Before applying SVM, appropriate features need to be extracted from the 

wireless channel data. These features can include statistical parameters, such as mean, variance, and 

higher-order moments, as well as spectral characteristics, such as power spectral density and 

autocorrelation. Feature extraction plays a vital role in capturing the relevant information from the 

wireless channel data. 

2. Training Phase In the training phase, a labeled dataset is used to train the SVM model. The labeled 

dataset consists of input feature vectors and corresponding channel characteristics. SVM learns the 

optimal hyperplane by maximizing the margin between different classes or regression targets [12]. The 

choice of the kernel function, which defines the similarity measure between feature vectors, is crucial 

in SVM. Commonly used kernel functions include linear, polynomial, and radial basis function (RBF). 

Testing and Evaluation After training, the SVM model can be applied to new, unseen data to predict 

the wireless channel characteristics. The performance of the model can be evaluated using various 

metrics, such as mean squared error (MSE) for regression tasks or accuracy, precision, and recall for 

classification tasks. Cross-validation techniques can also be employed to assess the generalization 

capability of the SVM model. 
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4.3.  Random Forests 

Random Forests is another popular ML technique that can be utilized for wireless channel modeling. It 

is an ensemble learning method that combines multiple decision trees to make predictions. Random 

Forests have shown excellent performance in various applications due to their ability to handle complex 

and high-dimensional data. 

Decision Trees At the core of Random Forests are decision trees, which are binary tree-like structures 

that recursively split the input data based on certain features. Each internal node represents a feature and 

a splitting criterion, while each leaf node corresponds to a class or regression value. Decision trees are 

constructed by iteratively selecting the best feature and splitting criterion that maximize the information 

gain or decrease the impurity measure. 

Ensemble Learning Random Forests combine multiple decision trees to make predictions. Each 

decision tree is trained on a randomly selected subset of the training data, known as the bootstrap sample. 

Additionally, at each split, only a random subset of features is considered [13]. This randomness helps 

to reduce overfitting and improve the generalization capability of the model. The final prediction is 

obtained by aggregating the predictions of individual trees, either through majority voting for 

classification or averaging for regression. 

Feature Importance Random Forests provide a measure of feature importance, indicating the 

contribution of each feature in the prediction process. This information can be valuable in understanding 

the underlying characteristics of the wireless channel. By analyzing feature importance, we can identify 

the most relevant features that affect the channel behavior and potentially optimize the system design. 

5.  Conclusion 

This paper has delved into the transformative role of ML in enhancing wireless channel modeling, 

marking a significant shift from traditional empirical and deterministic methods. Techniques lik SVM, 

random forests, and deep learning have been pivotal in optimizing wireless transmission and interpreting 

complex channel data, from locations to movement patterns over time. Particularly noteworthy is the 

advent of federated learning, which harmonizes data from numerous devices while safeguarding privacy. 

This study’s primary limitation is the reliance on data quality and quantity for ML models in wireless 

channel modeling. Inconsistent or biased data can significantly impact model performance. Additionally, 

the computational demands of complex ML algorithms, particularly in real-time applications, pose 

challenges in resource allocation and energy consumption. The ‘black box’ nature of many ML 

algorithms also raises concerns about interpretability, making it difficult to understand their decision 

processes. Furthermore, the rapid evolution of wireless technologies necessitates continuous updates to 

ML models, adding to their complexity and resource requirements. 

Looking ahead, the future of ML in wireless channel modeling is brimming with potential, yet it 

demands focused research and development. Key areas include improving data dynamics through 

enhanced availability and real-time processing, and augmenting the interpretability of complex ML 

models for broader adoption and trust. Developing robust and scalable algorithms that can keep pace 

with the dynamic nature of wireless networks is essential. The integration of emerging technologies, 

such as quantum computing, could significantly advance computational capabilities. Emphasizing 

energy efficiency in algorithms is crucial for their sustainability in large-scale network applications. 

Lastly, the exploration of innovative modeling techniques and new data sources is vital for improving 

the accuracy and reliability of ML predictions. These advancements will pave the way for more 

intelligent, efficient, and reliable wireless networks. 

In summary, while ML has opened new avenues in wireless channel modeling, its journey is 

characterized by continuous evolution and refinement. The future holds the promise of more advanced 

wireless networks shaped by the advancements in ML, but realizing this potential will require dedicated 

and innovative research efforts. 
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