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Abstract. Fully homomorphic encryption (FHE) in privacy-preserving machine learning (PPML) 

is a current area of research value, aiming to achieve the protection of users’ private data by 

applying the concept of full homomorphic encryption to machine learning privacy preservation. 

The integration of the two involves extensive model modifications and performance issues. The 

current difficulties mainly focus on how to improve encryption efficiency through hardware or 

software, and how to apply homomorphic encryption to neural network models such as RNN 

that process sequence data. This paper introduces this complex research field, outlines two 

machine learning service models (MLaas and AIaas) that are concerned by the industry, 

summarizes the most advanced research technologies based on these two models in recent years, 

and discusses the technical difficulties and future research directions. As a difficult problem that 

has never been overcome in cryptography in recent decades, homomorphic technology has 

received extensive attention from experts and scholars and ushered in new opportunities in the 

current explosive development of machine learning.  
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1.  Introduction 

With the wide application of machine learning in many fields, such as image recognition, self-driving 

cars, medical image segmentation, natural language processing, and content pushing, the amount of 

training data and intermediate results is getting huge as well as the problem of users’ private data 

protection, which is becoming more and more prominent. Machine learning algorithms usually need to 

train and predict on a large amount of user data, and in this process, the users’ private data (e.g. personal 

identity information, bank account information, facial picture information) may lead to privacy leakage 

and abuse. These private data may be used by criminals to carry out some malicious activities, resulting 

in economic or psychological losses to the user. At the same time, it leads to a decrease in the user's 

trust in the service provider, reduces the use of abandons certain machine learning training platforms or 

frameworks, and hinders the application and development of models. Therefore, at present, the privacy 

protection issue is highly valued by scholars and enterprises in the field of machine learning. 

Existing approaches to addressing privacy preserving machine learning (PPML) fall into three main 

categories. Federated Learning (FL) is a distributed machine learning technique that ensures data privacy 

by performing model training on user devices and then aggregating the updated model parameters to a 

central server for integration, thus realizing the server's imperceptibility to user data. Split Learning (SL) 

is a distributed and private privacy-preserving technique that decomposes the training of deep learning 

models into two phases: local computation and centralized server computation, which enables large-
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scale training of machine learning models while preserving data privacy without the need to transmit 

the data to a centralized server. Homomorphic Encryption (HE) is an asymmetric cryptography 

technique that is capable of performing addition or multiplication computations on a ciphertext without 

decrypting it. This allows the data to remain encrypted while computations are performed, enabling data 

processing and computation in untrustworthy environments and safeguarding data privacy. 

Although homomorphic encryption is computationally inefficient and may make machine learning 

or deep learning model training time larger, it is still a valuable encryption technique in sensitive 

scenarios where data privacy needs to be protected. The main objective of this paper is to provide an 

overview of the state of the art in using homomorphic encryption for machine learning privacy 

protection and summarize the current technical difficulties, and then discuss the future directions of 

homomorphic encryption applications in machine learning. 

This paper is organized as follows: Section II outlines the history of technology iterations and 

mainstream algorithms for homomorphic encryption; Section III details homomorphic cryptography-

based privacy preservation techniques for machine learning; and Section IV discusses and concludes on 

the major challenges and future opportunities faced by homomorphic encryption in machine learning 

privacy preservation. 

2.  Homomorphic Encryption 

In 1978, Ron Rivest, Adi Shamir, and Leonard Adleman, the inventors of the RSA encryption algorithm, 

first introduced the concept of Privacy Homomorphisms [1], describing a method that allows 

computations to be performed directly on encrypted data without decryption. Twenty years later, Craig 

Gentry in his doctoral dissertation, first proposed a theoretical Fully Homomorphic Encryption (FHE) 

scheme, which enables additive homomorphic computation, but the scheme is very inefficient and 

cannot be applied. In 2009, Gentry first proposed an ideal lattice-based multiplicative homomorphic 

encryption scheme [2]. This scheme is often referred to as the first-generation fully homomorphic 

system. In 2010, Gentry [3] described in detail how to realize fully homomorphic encryption and 

proposed for the first time an integer-based homomorphic encryption scheme DGHV[4], marking a 

major breakthrough in homomorphic encryption technology. In Gentry's paper, he also proposed a 

special handling trick for ciphertexts, bootstrapping [5], which makes the noise of a system of finite rank 

always below a critical value. In 2011, Brakerski and Vaikuntanathan [5] proposed the BGV as a fully 

homomorphic system based on the LWE assumption. This is a homomorphic encrypted system of finite 

order that can be transformed into a fully homomorphic system by bootstrapping techniques. It is 

common to call the BGV system a second generation fully homomorphic cryptosystem. In 2013, Gentry, 

Sahai and Waters proposed the new GSW fully homomorphic cryptosystem [6]. This system is similar 

to BGV and is often referred to as a third generation fully homomorphic cryptosystem. Since then, there 

have been numerous proposals on how to improve the operational efficiency of fully homomorphic 

systems, but the current overhead problem of homomorphic computation has not yet emerged as a very 

advantageous solution, either at the hardware level or at the algorithmic level. 

Homomorphic encryption can directly calculate the ciphertext without affecting the content of the 

plaintext, and the result is the same as the result of first calculating the plaintext and then encrypting it. 

Therefore, homomorphic encryption eliminates the step of decryption and then encryption, and avoids 

the leakage of user data during the decryption process at the server side, which is also the reason why it 

is favored in privacy protection. 

The two main computational operations are addition and multiplication. It can be assumed that there 

are plaintexts m1 and m2, belonging to the same plaintext space M. Where E represents the encryption 

operation and D represents the decryption operation. 

HE addition operation: 

 𝐸(𝑚1) + 𝐸(𝑚2) = 𝐸(𝑚1 + 𝑚2) , ∀𝑚1, 𝑚2 ∈ 𝑀              (1) 

 𝐷(𝐸(𝑚1) + 𝐸(𝑚2)) = 𝐷(𝐸(𝑚1 + 𝑚2)) = 𝑚1 + 𝑚2, ∀𝑚1, 𝑚2 ∈ 𝑀        (2) 
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HE multiplication operation: 

 𝐸(𝑚1) ∗ 𝐸(𝑚2) = 𝐸(𝑚1 ∗ 𝑚2) , ∀𝑚1, 𝑚2 ∈ 𝑀                 (3) 

 𝐷(𝐸(𝑚1) ∗ 𝐸(𝑚2)) = 𝐷(𝐸(𝑚1 ∗ 𝑚2)) = 𝑚1 ∗ 𝑚2, ∀𝑚1, 𝑚2 ∈ 𝑀          (4) 

Homomorphic encryption can be categorized into three classes based on the number and class of 

operations that can be supported: 

Partially Homomorphic Encryption (PHE): PHE scheme can support additive or multiplicative 

homomorphism, but not both additive and multiplicative, relatively high efficiency. Common PHE 

schemes are RSA [7], GM [8], EI-Gamal [9], Paillier [10]. 

Somewhat Homomorphic Encryption (SHE): SHE supports a finite number of computational 

operations on the ciphertext, addition and multiplication can occur at the same time, but not an infinite 

number of computations. Common SHE schemes are BGN[11], CKKS [12]. 

Fully Homomorphic Encryption (FHE): FHE has the highest level of homomorphic properties and 

allows arbitrary computations on the ciphertext, including any number and any type of addition and 

multiplication operations. The emergence of FHE scheme is considered as a major breakthrough in the 

field of homomorphic encryption. The common FHE schemes are BGV [5], BFV [13]. 

3.  Fully Homomorphic Encryption in PPML 

3.1.  ML-as-a-service (MLaas)  

ML-as-a-service (MLaas) is a platform for outsourcing machine learning application integration to third-

party platform providers. As part of cloud computing services, it can provide users (enterprises, 

universities or individual learners) with a large number of basic machine learning resources, such as 

cloud servers, APIs, and training data, making it possible for users to use machine learning algorithms 

without having to build their own services and directly using encapsulated MLaas tools. Due to the 

increasing demand for AI model application and training in the current market, many Internet companies 

or cloud server providers have listed MLaas as one of the most important development modules, 

including Google's Prediction API [14] (soon to be replaced by Cloud Machine Learning Engine), 

Amazon ML [15], and Amazon ML [16], and Microsoft's Azure ML [13].  

The training process and model design of most MLaas platforms on the market are invisible to the 

user, which means that the user is only selecting the modules they want to use for splicing and parameter 

modification and uploading private data for machine learning application development or model training 

when using MLaas. In this process, the user is not able to know the details of the training. The data 

uploaded by the user is processed and stored on the server side. Obviously, we can't assume that the 

service provider is able to guarantee data privacy and security in all aspects. In 2024, BMW, a globally 

recognized car manufacturer, was caught in a cloud storage security crisis. Researcher Can Yoleri 

reported that during a routine scan, he accidentally discovered that BMW's cloud storage servers (also 

known as "storage buckets") on Microsoft's Azure platform had been misconfigured and set to public 

access instead of the expected private state. This serious misconfiguration resulted in BMW's private 

keys, internal data, and other sensitive information being exposed to the public. This comes on the heels 

of a similar security issue exposed by Mercedes-Benz, another well-known automaker. Security lab 

RedHunt reportedly discovered a GitHub private key from a Mercedes employee's code repository, 

which had access to all of the code on Mercedes' internal corporate GitHub servers. Therefore, service 

providers should actively explore a series of security measures for the privacy protection of MLaas 

platforms. 

3.2.  AI-as-a-service (Alaas) 

With the development of AI technology, most cloud service providers are no longer satisfied with 

implementing a single machine learning algorithm, but have begun to develop AIaas platforms based 

on AI technologies in multiple fields, such as natural language processing, computer vision, speech 

recognition, and so on. One of the key advantages of AIaaS is its comprehensiveness. It provides users 
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with a unified platform to easily access and integrate various AI capabilities. This includes many of the 

machine learning services offered by MLaaS, such as model training, evaluation, and deployment, as 

well as functions in other AI areas, such as sentiment analysis for natural language processing and image 

recognition for computer vision. Therefore, AIaaS is more suitable for those application scenarios that 

require a combination of multiple AI technologies, such as intelligent assistants, intelligent customer 

service, intelligent decision support systems, etc. 

3.3.  Current Technology 

HE can provide a solution. According to the previous description, it is not difficult to think that 

homomorphic encryption can be used to realize the invisible operation of the cloud server on user data, 

i.e., the server does not know the private key and does not need to really decrypt the user data, but it 

directly processes the ciphertext and returns the processed ciphertext to the user, and the user side 

decrypts it using the private key to get the final result. In this process, first of all, the processor does not 

decrypt the private data, which avoids some privileged attackers (e.g., company insiders or outsourcing 

party personnel) who have direct access to the training data and the training process from inserting 

arbitrary poisoned data into the training set, controlling the data labels, or even directly modifying the 

training data. Currently, many researchers are actively exploring options to apply HE to MLaas and 

AIaas. 

Adrien et al. [17] proposed a deep neural network based fully homomorphic encryption (FHE) 

framework TT-TFHE for extending Torus FHE (TFHE) on tabular data and image datasets. It uses a 

novel family of convolutional neural networks called Truth-Table Neural Networks (TTnet).TT-TFHE 

provides an easy-to-implement automated toolkit based on Python's open-source Concrete library (CPU-

driven, with support for lookup tables) for reasoning about encrypted data. Experimental results show 

that TT-TFHE outperforms all other FHE setups in terms of time and accuracy. For MNIST and CIFAR-

10 image datasets, TT-TFHE also outperforms other TFHE settings by far and competes well with other 

FHE variants such as BFV or CKKS, while maintaining 128-bit encryption security. In addition, TT-

TFHE has a low memory footprint, giving it a big advantage over other FHE frameworks that require 

tens to hundreds of gigabytes of user memory. And it can be easily scaled to multi-threaded and multi-

user server-side. 

Phong et al. [18] proposed a new system for deep learning that uses additive homomorphic encryption 

to protect gradients on cloud servers. While previous CryptoNets [19] relied on pre-trained neural 

network weights and focused on predicting individual data items, the new system aims to train weights 

over multiple data sources. The new system utilizes an asynchronous stochastic gradient descent (ASGD) 

method and additive homomorphic encryption to protect privacy during deep learning, ensuring that no 

participant information is disclosed on an honest-but-curious server while maintaining accuracy 

comparable to that of non-privacy-preserving deep learning systems. In contrast, CryptoNets do not 

involve the training of weights and their performance is limited by sigmoid activation function 

substitution and computational overhead. The new system also allows learning participants to upload 

and download parts of the encrypted gradient, adapting to the needs of different scenarios. 

Martin et al. [20] have produced a toolset, HE-MAN, that allows homomorphic inference using 

plaintext models in the Open Neural Network Exchange (ONNX) format to process encrypted input data 

while preserving the privacy of the model and input data. CryptoNets was the first example of neural 

network inference using fully homomorphic encryption (FHE), but its performance was limited by the 

simplification of the activation function and computational overhead. HE-MAN addresses this challenge 

by supporting homomorphic versions of ONNX canonical operations such as element-level addition, 

multiplication, matrix multiplication, convolution, average pooling, ReLU activation, and padding, 

providing a homomorphic runtime time for a subset of ONNX neural networks. Unlike CryptoNets, HE-

MAN does not require network-specific optimizations or manual selection of cryptographic parameters, 

but automatically derives secure and accurate cryptographic parameters. In addition, it supports 

Concrete and TenSEAL libraries for different usage scenarios. HE-MAN-Concrete utilizes calibration 

data to optimize ciphertext spacing, while HE-MAN-TenSEAL implements arbitrary linear operations 
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via vector-matrix multiplication, sacrificing efficiency for a more flexible model structure. Although 

HE-MAN does not currently include the ability to train models, it facilitates privacy-preserving machine 

learning services, allowing model owners to provide inference services without revealing sensitive 

information. Future directions may include support for additional operations in the ONNX specification 

for more comprehensive support. 

Dongwoo et al. [21] present CONVFHE, a technique for neural network (NN) evaluation on 

encrypted data, with a particular focus on achieving low-latency single-input inference. By optimizing 

the way FHE evaluates convolutions and convolutional layers, e.g., using vectorized representations and 

an improved bootstrap process that packs the inputs into the polynomial coefficients of the ring, a single 

convolution can be evaluated by a single multiplication without any rotation to achieve homomorphic 

encrypted inference that is more efficient and suitable for both deep and wide CNNs. In the Extension 

(Ext) step, the data is extracted and rearranged to fit the bit reversal order. When the input size is much 

smaller than N, the input can be sparsely packed to reduce the bootstrap time. This method is suitable 

for mixed-method privacy-preserving machine learning (PPML) inference to reduce the communication 

cost of convolution. In addition, for CNNs with larger kernels and lower depths, this approach allows 

for better runtime without sacrificing accuracy. 

Kwok-Yan Lam et al. [22] proposed a new model of Hybrid FHE-based PE-NNN that decomposes 

deep neural networks into a plaintext evaluation part and a ciphertext evaluation part, aiming to solve 

the privacy problem in AI-as-a-Service. The basic FHE-based PE-NN model limits its use in practical 

applications due to the high computational cost of executing deep neural networks (DNNs) on encrypted 

data. To solve the above problem, the model divides the DNN into a plaintext evaluation part and a 

ciphertext evaluation part. First, the user side executes the open network (OON) and runs it locally in 

plaintext to extract features and send these features to the server. Then the server evaluates the private 

network on the encrypted data and returns the encrypted predicted output. Ultimately, only the user with 

the private key can decrypt and view the results. The advantage of this model is that it can reduce the 

number of expensive homomorphic encryption evaluations on the server by assigning part of the 

computational tasks to the user side, and achieve very good system efficiency. At the same time, it 

guarantees that only the public network is made public, and the user's private network is protected, so 

that the user can protect the input data and the prediction results by homomorphic encryption, and 

prevent the cloud server from obtaining sensitive information. 

4.  Challenges 

How to design a fully feasible, fully homomorphic encrypted machine learning privacy preservation 

system remains a research direction worth exploring. Unlike the federated learning approach, fully 

homomorphic encrypted machine learning privacy preservation can avoid borrowing a large amount of 

data for training at the user's end and greatly reduce the burden of users’ memory footprint. In this 

section, a brief list of existing challenges in this area as well as a discussion of potentially viable 

solutions will be presented. 

Performance issues: the biggest bottleneck of homomorphic cryptography is its slow speed. The 

overhead of FHE is about 10,000 times that of an unencrypted computation. Currently, it can be 

accelerated in both hardware and software directions. Hardware is mainly based on hardware devices 

such as GPU\FPGA\ASIC, which is realized by shortening word length, reducing bootstrap operations, 

lowering memory bandwidth requirements, and expanding GPU microarchitecture. Nowadays, with the 

help of hardware acceleration technology, the best computing performance under ciphertext can reach 

14,173 times that of CPU performance [23]. Software means mainly the optimization of fully 

homomorphic encryption algorithms. The idea can be the apportionment of bootstrap operations, 

reducing the overhead of rotary key generation, the use of new data structures and so on. At present, the 

results of hardware acceleration are relatively better. 

Application on RNN: The current application of homomorphic encryption in AI mainly focuses on 

the combination with CNN, which is because HE is easier to implement on CNN. However, the 

processing of time series data is also very important, especially with the rapid development of AI video 
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generation technology, such as OpenAI's new Vincennes video model SORA. The difficulty is mainly 

focused on how to deal with the input and output sequences that become longer, visualize the debugging 

process, reduce the training overhead caused by a large number of encryption and decryption, and so on. 

Poor usability of HE: Since problems such as computational overhead have never been well solved, 

research on homomorphic cryptography has been advancing slowly and there are no good tools to serve 

AI researchers for direct use. This makes it particularly difficult to study the application of HE in PPML. 

Researchers need to have both knowledge and an in-depth understanding of computer security and AI 

to come up with breakthrough solutions. In order to advance the field, it is recommended to establish a 

good community and repository for HE development. 

5.  Conclusion 

This paper analyzes the feasibility of homomorphic encryption applied in PPML, summarizes the latest 

research results and techniques, and discusses the existing technical difficulties. Homomorphic 

encryption plays a crucial role in privacy preserving machine learning (PPML), especially in protecting 

the privacy of sensitive user data. Although its computational inefficiency may lead to an increase in 

training time, its unique ability ensures the security of data during processing. Since the concept of 

privacy homomorphism was introduced in 1978, homomorphic encryption has undergone significant 

development, ranging from initial theory to full homomorphic encryption schemes for practical 

applications. This paper analyzes the feasibility of homomorphic encryption applied in PPML, 

summarizes the latest research results and techniques, and discusses the existing technical difficulties. 

The current challenge still lies in how to optimize the efficiency of homomorphic encryption for a wider 

range of practical scenarios. Future opportunities in the field may lie in further algorithmic 

improvements and hardware optimizations to reduce the overhead of homomorphic computation while 

enhancing its utility in the field of machine learning. Overall, homomorphic encryption offers promising 

avenues to address the privacy concerns of PPML, but the technical hurdles that remain to be overcome 

require continuous efforts from researchers. 
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