Proceedings of the 6th International Conference on Computing and Data Science
DOL: 10.54254/2755-2721/68/20241506

Improving OpenDevin: Boosting code generation LLM
through advanced memory management

Runyu He!?, Anyu Ying!, Xiaoyu Hu'
!Carnegie Mellon University, S000 Forbes Ave, Pittsburgh, PA 15213, United States

2runyuh @andrew.cmu.edu

Abstract. OpenDevin, a code generation Al tool, has emerged as a powerful assistant for both technical and
non-technical users, offering a practical approach to coding challenges. Unlike traditional code generators
that merely output code, OpenDevin excels by executing code directly in a console, allowing for immediate
testing and verification. This functionality not only streamlines the coding process but also enhances
learning and troubleshooting, making it accessible to a broader audience. In this project, we address several
key challenges to improve OpenDevin’s effectiveness, especially in handling multi-round conversations
and contextually relevant code generation. Our team identified and tackled two main challenges faced by
OpenDevin: variety of input, and multi-step conversations. Through incorporating a series of functions to
parse, summarize, and organize LLM agent’s memory logs, we significantly improved OpenDevin agent’s
capabilities among a variety of tasks. The integration of efficient memory management led to a notable
increase in accuracy—from 44.4% to 88.9% —in multi-round conversations, highlighting the importance
of effective memory management in Al-powered coding tools. This report details our methodology, the
challenges we faced, and the solutions we implemented, showcasing OpenDevin’s potential to revolutionize
the way users from various backgrounds engage with coding tasks.

Keywords: Code Generation, Large Language Models, Memory Management, Al Copilot, Multi-Round
Conversations

1. Introduction

As the development of large language models progresses, code generation has emerged as a notable
trend. Recently, several high-quality code generation language models have been introduced. DeepSeek-
Coder [1] excels in standard programming tasks, surpassing all existing open-source code LLMs across
various benchmarks. StarCoder 2 [2], another model excelling in code generation, offers performance
on par with its contemporaries and showing particular strength in data science-related tasks.

Embedded with evolving code generation models, various coding agents address a broad spectrum
of coding scenarios. For instance, GitHub Copilot [3] integrates directly within IDEs like VSCode
to provide code completion, thereby enhancing developer productivity. Similarly, the SWE-agent
[4] specializes in solving software engineering problems, particularly those found on GitHub, and
outperforms pure standard models like GPT-4 and Claude 3 on SWE-bench benchmark. Frameworks
like Devin [5] and OpenDevin [6] are designed to function akin to software engineers, efficiently tackling
programming issues.

As these agents evolve, understanding their technological foundations, the challenges they face, and
their impact on software development becomes crucial. In this work, we explored the infrastructure of

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

311



Proceedings of the 6th International Conference on Computing and Data Science
DOL: 10.54254/2755-2721/68/20241506

OpenDevin, identify some of its issues, and propose solutions.

OpenDevin is an advanced framework that leverages code generation models to tackle comprehensive
software engineering problems. This system features a conversational user interface, utilizes large
language models, and incorporates a robust frontend and backend architecture. Designed to handle
full software development projects from planning to execution, OpenDevin goes beyond the capabilities
of a typical coding assistant. A distinctive feature of OpenDevin is its ability to execute code directly
through its user interface, providing immediate feedback to streamline learning and debugging processes.
It harnesses large language models tailored with specific prompts to effectively address complex
software issues. Additionally, OpenDevin is equipped with a suite of tools including internet browsing
capabilities, further enhancing its functionality for comprehensive software engineering tasks.

However, OpenDevin, still under development, performs well for individual user requests but
struggles with sequences of requests. Our analysis identified key issues in memory management affecting
its performance. To address these challenges, we developed a test dataset and pipeline to serve as
benchmarks for OpenDevin’s ongoing development. This dataset focuses on evaluating the tool’s
accuracy across different coding challenges and its capacity for handling multi-round interactions. Based
on this dataset, we improved OpenDevin’s memory management by implementing a summarizer for
relevant historical information, an indicator to differentiate tasks, and a classifier to distinguish between
types of tasks. These enhancements are crucial for maintaining context awareness throughout multi-
round interactions, significantly improving user experience by allowing the LLM to provide continuous,
coherent assistance akin to a human collaborator.

In the following sections, this report will discuss: the infrastructure of OpenDevin, the specially
designed test dataset and associated test pipeline, enhancements made to the monologue agent within
OpenDevin, and the experimental results and analysis based on this dataset.

2. Background
2.1. OpenDevin Architecture

Console Output Action
Agent Action Controller

Controller dd_history(
[ User Input }—» Server dispatch()
get_action_prompt().
Y
[ Agent Output } - Monologue |[«——add_event() Agent

LLM «—Ilm_completion()

Figure 1. Infrastructure of the OpenDevin framework.

In this section, we first analyze the infrastructure of OpenDevin [6]. As identified in the graph,
OpenDevin’s message ingestion and generation process involves several key stages and components.

312



Proceedings of the 6th International Conference on Computing and Data Science
DOL: 10.54254/2755-2721/68/20241506

User input, such as requests to “Write a python file to convert temperature from Celsius to Fahrenheit”,
are passed through the system’s server. The agent controller oversees the operational loop of the agent,
managing critical scenarios, such as preventing dead loops, and ensuring smooth transitions between
stages. All past actions and observations are stored within the monologue, a dedicated memory container
that preserves the context of each interaction. OpenDevin is compatible with various LLMs; users
specify their choice of LLM and provide the corresponding API key to tailor the processing capabilities
to specific tasks. The agent, leveraging historical data stored in the monologue, plans and executes tasks
step by step, utilizing the accumulated knowledge and strategic plans formulated in previous steps. This
infrastructure enables OpenDevin to handle complex software engineering tasks efficiently, providing
immediate and context-aware responses to user requests.

2.2. OpenDevin Evaluations

In the development of OpenDevin, SWE-bench [4] serves as a critical roadmap. SWE-bench is an
evaluation framework designed to assess the capabilities of language models in software engineering,
featuring 2,294 real-world problems from GitHub issues and pull requests across 12 popular Python
repositories. This framework challenges language models to make complex edits across multiple code
structures, testing their reasoning abilities and interaction with code execution environments. Despite
its rigorous demands, current models, including advanced ones like SWE-Llama, show limited success.
This underscores SWE-bench’s role as an essential benchmark for developing more sophisticated coding
agents.

While SWE-bench is a robust benchmark for developing Al software engineers like OpenDevin,
it is not without limitations. In real-world scenarios involving complex software design, there should
be continuous interaction between the agent and the user, which the benchmark does not currently
accommodate. These interactions allow the user to clarify commands, highlight errors, and contribute
new ideas based on previous progress. Moreover, the benchmark focuses on highly technical software
queries, yet in practice, agents will encounter a diverse range of users, including those without coding
experience. Recognizing these gaps, we propose our own dataset in the following section to further the
development of OpenDevin.

3. Design

3.1. Testing Data

To supplement the ineffectiveness in SWE-bench [4], we have curated a new test set with four categories
of questions:

(i) Variant of coding request
(i1) Variant of non-coding request
(iii) Unrelated question series

(iv) Related question series

These categories are designed to rigorously test the OpenDevin agent [6] in a more realistic
setting, encompassing tasks frequently posed by both programmers and non-programmers across both
development and commercial environments.

Additionally, these question types highlight areas where the original OpenDevin model exhibited
deficiencies during our preliminary experiments. For instance, when presented with coding requests in
the form of emails or product reports, the original model often lost focus on the core request. Similarly,
when confronted with non-coding requests such as “write a calculator.py and write a calculator-user-
guide.txt,” the baseline model typically generated only the code, neglecting the accompanying non-
coding directives. Furthermore, when processing a series of related or unrelated questions within a
single session, the agent sometimes either ignored subsequent requests after the initial one or forgot all
preceding requests.

313



Proceedings of the 6th International Conference on Computing and Data Science
DOL: 10.54254/2755-2721/68/20241506

Table 1. Examples of prompts are shown in the table in four categories.

Test Purpose Prompt 1 Prompt 2 Prompt 3

Python3: Write a
Variant of coding function to find the

longest common pre- | N/A N/A
request[7] .

fix string amongst an

array of strings.

Write a program that | Write a txt file about
Variant of non-coding | calculates subtraction | the potential direction N/A
reques of two arguments, | of improvements of

called subtraction.py. | your code

Write a python file that | Write a python file that
Unrelated question se- | converts a temperature | converts a temperature N/A

ries

in Celsius to Fahren-
heit.

in Fahrenheit to Cel-
sius.

Related question se-
ries

Create a bash script
that lists and counts
files by type in a given
directory.

Expand the script to
include options for the
user to specify which
file types to count
or exclude from the
count.

Integrate a feature in
the script that archives
all files of a specified
type into a single zip
file.

3.2. Testing Pipeline

As OpenDevin is rapidly evolving due to the efforts of numerous developers, building a testing pipeline
compatible with different OpenDevin versions presents a significant challenge. To partially address
version control in testing automation, we have developed a Selenium Webscraper that can automatically
interact with the frontend of OpenDevin. This approach ensures that our testing pipeline remains
compatible with any backend modifications, provided that the frontend remains consistent with our
version.

Our testing automation, powered by Selenium, systematically processes all test cases and the sub-
tasks within each test, feeding them sequentially to the OpenDevin agent. It also captures and stores
all chatbox outputs and coding results in folders organized by text index. Subsequently, we conduct a
human evaluation of the recorded outputs from OpenDevin for each task.

4. Methodology

In this section, we explore the memory management strategies employed by OpenDevin, particularly
focusing on the enhancements to the performance of the monologue agent. OpenDevin consists of
several components, including a user interface, a comprehensive framework that features both backend
and frontend systems. It utilizes LLMs for performing software engineering tasks through various agents,
with the monologue agent currently being the primary one.

The monologue agent operates by using a memory container called “monologue” to store all historical
information, such as actions and observations. For each user request, the agent will start a loop to process
this task step by step. Between steps, it will ask itself to re-think current situation and log thoughts into
the monologue[8]. To prevent looping issues, the agent incorporates prompts that prevent excessive
introspection and an agent controller that intervenes if the process stalls. Moreover, when the monologue
becomes overly saturated with data, it compacts older, less relevant information.

However, these logic flows are merely concatenated together in the monologue, which can lead to
several issues. A primary concern is the accumulation of irrelevant historical information that impede

314



Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/68/20241506

relevant info S0t | Monologue
- - {'action': 'run', 'args': {'command': 'python3 xxx.py',

J ‘background': False}} Past historical

information

{'observation': 'run', 'content': 'The result of ...", 'extras':
{'command_id': -1, 'command': 'python3 xxx.py', 'exit _code': @}}

New Request Summazey {'action': 'start', 'args': {'thought': 'Now, I start a Indicator of

new task: ..'}} new task

{'action': 'run', ‘args': {'command': 'ls’', R .
‘background': False}} New information

Processed

relevant info . New Task
Monologue

Figure 3. The blue lines are historical informa-

Figure 2. The summarizer processes monologue tion, and the orange line is the indicator.

based on relevance.

the LLM’s processing capabilities for new tasks [9]. On average, the monologue of coding agent would
accumulate over 2400 words of messages ( 3200 tokens) in completing a single task. LLMs struggle
more with extracting and utilizing information from extended inputs, particularly when key information
is embedded deep within them [10]. Aiming to reduce the length of irrelevant histories and focus LLM’s
attention to the relevant information and request, we propose a summarizer in figure 2, which sifts
through the monologue to retain only the most relevant information for the current task. Whenever it
receives a new user request, this summarizer compares the request with each piece of history in the old
monologue, and provides a processed monologue. This process engages LLM to assess the relevance
using prompting and a few examples [11]. This approach is crucial, especially when the agent processes
multiple tasks sequentially, ensuring that each task is handled with a clean slate.

Another issue is that it would be harder for the agent to figure out the logic flow among different
tasks. To make it even worse, it is exacerbated by the agent’s final statements at the end of tasks, such
as “all completed”, which could confuse the handling of subsequent tasks. We introduce an indicator
as shown in figure 3 among histories of different tasks, which clearly denotes the start of new tasks and
provide contextual information about them. This indicator resembles an action within the monologue
and is accompanied by enhanced prompts that help the agent recognize the start of a new task and the
conclusion of the previous one. Other instructions are also added in the prompts, including expressing
the order of the historical information, explicitly explaining the indicator, and the relation between the
current task and the historical information.

Additionally, another issue of the memory system is that it has a fixed pipeline to process the
user request, which is efficient in handling coding request, but struggles with non-coding requests like
summarization and question-answering. To better accommodate these types, we implement a classifier as
depicted in figure 4 to discern between coding and non-coding requests by prompting the LLM to make
this determination, and the default type is set to coding to prevent ambiguities in hard-to-decide cases.
This allows for specialized handling strategies, by restricting coding-specific actions such as command
execution for non-coding requests, and encouraging more explanatory interactions in the chat window.

Criginal Design:

Improved Design:

B

Classifier Processor

Non-coding
Processor

Figure 4. Classifier for coding and non-coding request.

315



Proceedings of the 6th International Conference on Computing and Data Science
DOL: 10.54254/2755-2721/68/20241506

By implementing these enhancements in the monologue agent within OpenDevin, we have
successfully achieved continuous iteraction. For instance, a user might initially request OpenDevin to
write a Python file and subsequently ask it to “explain the functions in the previous task.” Owing to
the agent’s ability to manage monologues across tasks, it effectively handles complex, sequential user
interactions. Detailed qualitative analysis will be discussed in the following sections.

5. Results

Our experimental evaluation of the testing models involved four types of tests: 1) Variant of coding
request, 2) Variant of non-coding request, 3) Unrelated question series, and 4) Related question series.
For the Variant of coding request, we further divided the tests into two subcategories: Leetcode style and
email style.

The results demonstrate a noticeable improvement in the performance of the improved model across
most categories when compared to the baseline model. Specifically, for the Variant of coding request
(Leetcode style and email style), the accuracy remained stable at 80% for the Leetcode style while it
improved from 14.29% to 42.86% in the email style subcategory. In the Variant of non-coding request,
the accuracy improved from 44.44% to 88.89%. The Unrelated/Related question series also showed
enhanced performance, improving from 71.43% to 85.71% and 50% to 70%. All the tests were run on
gpt-3.5-turbo agent.

Table 2. Accuracy of Baseline vs. Improved Models (in %)

Test Type Subcategory  Baseline Model Improved Model
Variant of coding request Leetcode style 80 80

Email style 14.29 42.86
Variant of non-coding request - 44.44 88.89
Unrelated question series - 71.43 85.71
Related question series - 50 70

Our accuracy assessment relies on human evaluations of both chatbox and code outputs. A task is
deemed a failure if the chatbox explicitly indicates that the task will not be completed, or if ”All Done”
is not output within 10 minutes. Conversely, if the task is marked as completed by the chatbox’s ”All
Done” output, our annotators then review the output files of the specific task to determine its accuracy.
The Inter-Annotator Agreement rate for this evaluation stands at 92%.

6. Discussion

6.1. Limitations of the Current Testing Pipeline

Our current testing pipeline primarily relies on frontend tests, which simulate the process of entering test
cases into the OpenDevin chatbox and subsequently scraping the output code. This approach is inherently
limited by its dependence on the UI maintaining a consistent appearance. Any modifications to the
UI or frontend could potentially disrupt the test pipeline’s functionality. To mitigate these limitations,
we propose an enhancement to the testing pipeline that involves direct integration with OpenDevin’s
backend. By modifying the UI code and backend, we could enable the system to automatically process
uploaded test case files, generate output files, and save these files to local computers. This enhancement
would not only make our testing process more robust against frontend changes but also streamline the
entire testing workflow, allowing for more efficient and reliable testing of OpenDevin’s capabilities.

6.2. Challenges with Complex and Non-Explicit Coding Requests
The performance discrepancy observed in OpenDevin’s processing of various coding request formats
poses a significant challenge. While direct coding questions, such as those from LeetCode, are handled

316



Proceedings of the 6th International Conference on Computing and Data Science
DOL: 10.54254/2755-2721/68/20241506

with high accuracy, the performance decreases when these questions are embedded in more complex
contexts like emails or project briefs. For example, when tasked with interpreting a detailed project brief
for a weather forecasting app, OpenDevin struggles to separate project planning and coding instructions.

To address these issues, we introduced an input_parsing function aimed at simplifying these complex
inputs into clearer coding requests. Initially, this function used an LLM to reinterpret the inputs, but
the performance improvements were not as expected. For future enhancements, refining this function
to better identify programming-related content is crucial. Incorporating advanced natural language
processing techniques or training models on diverse complex inputs could significantly enhance the
model’s ability to discern and prioritize relevant information, thus improving accuracy in processing
multi-faceted requests.

6.3. Future Directions and Enhancements

Beyond refining the input_parsing function, other potential strategies could involve incorporating
structured data parsing techniques that recognize and organize input according to predefined templates
or key phrases typically associated with coding tasks. Implementing machine learning models trained
on a dataset of similar project briefs and coding requests might also improve the system’s ability to
understand and respond to multifaceted inputs. Another approach could be to develop a feedback loop
within the system where OpenDevin asks clarifying questions when the input is ambiguous or contains
multiple potential tasks, thus ensuring more accurate understanding and response generation.

7. Conclusion

In summary, this research showcases the significant advancements made in enhancing OpenDevin, a
cutting-edge code generation Al tool. By addressing key challenges such as handling diverse input
types and managing multi-round conversations, the research team has substantially improved the tool’s
effectiveness and accessibility for a wide range of users.

The implementation of a summarizer function, an indicator for contextual information, and a
classifier for differentiating coding and non-coding requests has led to notable improvements in the AI’s
performance. Experimental results demonstrate the efficacy of these enhancements, with the improved
model outperforming the baseline across most test categories.

Despite these advancements, the report recognizes the limitations of the current testing pipeline and
proposes strategies for future enhancements, such as incorporating advanced natural language processing
techniques and developing a feedback loop for clarifying ambiguous inputs.

The importance of this research lies in its potential to revolutionize the way users interact with coding
tasks. By making programming more accessible and efficient for both technical and non-technical users,
tools like OpenDevin can democratize the field of software development. As Al-powered coding tools
continue to evolve, they have the capacity to transform the landscape of programming, empowering users
from diverse backgrounds to engage with coding tasks and fostering innovation across various industries.

In conclusion, this research underscores the significance of continuous development and refinement
in Al-powered coding tools. By pushing the boundaries of what is possible with tools like OpenDevin,
researchers are paving the way for a future where coding is more intuitive, efficient, and accessible to all.

Code and Resources
The source code for this project is available at ImprovingOpenDevin: An Experiment In Improving
Domain Specific LLM Agent Through Effective Memory Management.

References
[1] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Y. Wu, Y. K. Li,
Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the large language model meets programming
— the rise of code intelligence, 2024.

317


https://github.com/DavidHe0802/ImprovingOpenDevin
https://github.com/DavidHe0802/ImprovingOpenDevin

(2]

(3]
(4]

(5]
(6]

(7]
(8]

(9]
[10]

[11]

Proceedings of the 6th International Conference on Computing and Data Science
DOL: 10.54254/2755-2721/68/20241506

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, et al. Starcoder 2 and the stack
v2: The next generation, 2024.

GitHub. Github copilot: Your ai pair programmer. https://copilot.github.com, 2021.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan. Swe-
bench: Can language models resolve real-world github issues?, 2024.

Cognition Labs. Devin:  The first ai software engineer. https://www.cognition-labs.com/
introducing-devin, 2024.

OpenDevin. Opendevin: Code less, make more. https://github.com/OpenDevin/OpenDevin, 2024.
Retrieved from GitHub.

Leetcode—the world’s leading online programming learning platform, 2024. Retrieved May 1, 2024.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. Measuring and narrowing the
compositionality gap in language models, 2023.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length on the reasoning
performance of large language models, 2024.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy Liang. Lost in
the middle: How language models use long contexts, 2023.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching networks for one
shot learning, 2017.

318


https://copilot.github.com
https://www.cognition-labs.com/introducing-devin
https://www.cognition-labs.com/introducing-devin
https://github.com/OpenDevin/OpenDevin

