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Abstract. Chord Progressions (CP) constitute a fundamental element within musical 

compositions. Skillful application of harmonies can captivate audiences through the colors and 

emotions they elicit. While existing research has predominantly focused on generating 

stylistically coherent CPs and accompaniments, relatively few studies have delved into the 

optimization of generating specific CPs of interest across diverse harmonic contexts. On this 

basis, this study aims to address this gap by fine-tuning a foundational CP model using datasets 

generated through three distinct strategies. Subsequently, the performances of the strategies are 

compared using both existing and novel evaluation metrics. According to the analysis, the results 

reveal that the model fine-tuned using the third strategy demonstrates proficiency in producing 

the target CPs across diverse contexts and modes of generation in a musically coherent manner. 

This approach opens up avenues for creative learning and sharing of stylistic chord progressions 

through exchanging customized fine-tuned chord models. 
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1.  Introduction 

The use of harmonies in musical compositions has held a timeless fascination. Consider Claude Debussy, 

the celebrated French composer known for his nuanced use of harmony and texture; his compositions 

have captivated musicians, scholars, and the public for generations [1]. Interesting use of chords imbues 

compositions with colors, emotions, and significance, to the extent that it is sometimes possible to 

identify the composer based on the stylistic chord progressions used in the composition [2]. 

Computational models of chord progressions (CP) have garnered increased attention in the past few 

decades for a range of applications, including music generation, human-machine co-performance, and 

compositional tools. For instance, Morris et al. employed Hidden Markov Models (HMM) to harmonize 

melodies with user-specified parameters [3], while Chuan and Chew utilized Markov chains to generate 

harmonization that emulates certain styles [4]. Choi et al. trained Long Short-Term Memory (LSTM) 

networks on sequences of jazz chord progression texts for music generation [5]. Carsault et al. trained 

both Multiple-Layer Perceptron (MLP) and LSTM structures for creating stylistically coherent CPs, 

integrated into the DYCI2 system for human-machine co-improvisation [6]. ChordRipple leveraged 

Word2vec to embed CPs and suggest contextually relevant and surprising chords to composers, resulting 

in more adventurous and compelling compositions [7]. More recently, the use of transformer 

architectures in modeling CPs has gained increasing attention [8]. Transformers are known for their 
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superior ability to model sophisticated long-term dependencies. Li et al. trained a transformer-based 

model to predict CPs with given melodies [9], while Chen et al. explored expressive coloring and voicing 

of jazz CPs using Multi-Head Self-Attention (MHSA) [10]. Furthermore, Dalmazzo et al. provided a 

detailed investigation of the tokenization and encoding methods for transformer networks on a large 

chord corpus [11]. 

Modeling diverse CPs for accompaniment generation and human-machine co-creation is interesting 

and useful; however, less attention has been devoted to modeling musicians’ stylistic disparities and 

enhancing the generation of specific interesting chord progressions. ChordSequenceFactory [12], for 

instance, employs chord transition probabilities to model CPs, enabling both CP generation from scratch 

and rearrangements using stylistic CPs from musical pieces. Nonetheless, enhancing the generation of 

specific CPs necessitates meticulous manipulation of the matrix generations, and this approach may not 

generalize well to long contexts or large chord vocabularies. Such endeavors hold promise for enriching 

musical understanding and creativity. For example, examining how different musicians select chords 

within the same contexts provides insights into their unique habits and mindsets. Moreover, composers 

and improvisers often seek a broad array of harmonic choices to unleash their expressive potential, yet 

developing this intuition takes time and practice. As Ref. [7] reveals, novice composers may feel 

uncertain about the effect of novel CPs and their integration into their compositions. A possible solution 

lies in learning the CPs step by step, focusing on particular progressions of interest. By playing these 

CPs across various keys and contexts, musicians can build up intuition and become more acquainted not 

only with their distinct sounds but also with the techniques for quick reproduction, such as memorizing 

chord notes and chord relations, keyboard positions, and hand position changes. 

Therefore, this study aims to develop a customizable model to help users learn specific stylistic CPs 

of interest. The study first trains a foundation model using a nano Generative Pre-trained Transformers 

(https://github.com/karpathy/nanoGPT) on the Choco chord corpus [13], then proposes three fine-tuning 

strategies to enhance the generation of the interested CPs. Section 2 provides detailed explanations of 

the data, training, and strategies, while Section 3 evaluates the models’ performance using existing and 

new metrics, including an analysis of a text-based user interface. The study’s limitations and future 

directions are covered in Section 4, and Section 5 summarizes the study’s findings. This paper makes 

two main contributions: the design and evaluation of three fine-tuning strategies to influence the 

foundation model’s behavior, resulting in improved generation of musically coherent CPs; and the 

proposal of a new mode of generation that can illuminate chord novelty assessment and offer a creative 

approach to learning and sharing chord styles.  

 

Figure 1. Music genre distribution (Photo/Picture credit: Original). 
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2.  Data and method 

2.1.  Choco dataset 

The model is trained on sequences of Harte-style chord notations obtained from the Choco Dataset [13], 

which encompasses a variety of musical styles, including jazz, pop, and classical. Fig. 1 provides an 

approximate breakdown of the style distribution within the dataset, indicating jazz and pop as the 

predominant styles. The dataset comprises chord progressions extracted from a total of 20,086 musical 

pieces, amounting to 1,456,821 individual chords. To augment the dataset, the CPs are transposed to 18 

equivalent keys around the circle of fifths. It is important to note that this transposition process does not 

consider converting notations to enharmonic equivalents based on music theory conventions. For 

instance, in E major, the pitch D sharp is conventionally notated as D# rather than Eb. However, during 

transposition, all D# are converted to Eb.  

Although additional musical features such as chord duration and time signature can influence the 

choice of CPs, the training data used in this study consists of symbolic chord notation only. Such an 

approach has certain limitations as pointed out by [14]; however, the focus of this study lies in exploring 

the creative potential of fine-tuning chord models. Future research endeavors may consider enhancing 

model performance and musical expressiveness by incorporating encodings of more musical features. 

2.2.  Fine-tuning dataset 

In addition to the Choco Dataset, the model undergoes further fine-tuning using chord progressions 

extracted from a single musical composition of interest. For illustrative purposes, this study utilizes the 

chord progressions from a game soundtrack (WitchSpring2, “parting and gathering”). The list of chord 

symbols are: F:maj7, E:min7, D:min7, C:maj, Bb:9(#11), F:maj7, E:min7, A:min, F#:hdim7, 

D:hdim7/b3, E:min7, A:min, F:maj, E:min7, A:7, D:min7, and C#:min7.  The fine-tuning data is 

augmented using the following three strategies: 

• Raw sequence: The complete CP is transposed to 18 equivalent keys, serving as the baseline approach. 

• Increasing context: Starting from the given CPs of interest, new CPs are created with progressively 

more chord symbols from the CPs preceding the target progressions (A, BA, CBA…). These 

sequences are then transposed to 18 equivalent keys. 

• Generated context: Leveraging another chord model trained on sequences of reversed chord symbols, 

previous chord symbols are generated from the given CPs of interest. The generated symbols are 

combined with the target CPs and transposed to 18 equivalent keys. 

While Strategy 1 provides a baseline with all subsets of the progressions having equal frequency of 

occurrences, in practice, musicians are often more interested in certain unconventional subsets. To 

address this, the study proposes to augment the frequency of preferred subsets in the dataset used for 

fine-tuning, increasing the likelihood of the model predicting these CPs. The CP of interest in the listed 

chords is F#:hdim7 -> D:hdim7/b3, because the progression creates an unusual color due to the use of 

non-diatonic pitches in both chords as well as the stylistic sound of consecutive half-diminished seventh 

chords. Another famous use of this progression occurs in the opening piano part of Sergei 

Rachmaninoff’s Piano Concerto No.2 mvt. 2. The study hypothesizes that both Strategy 1 and 2 may 

perform poorly when faced with a more diverse chord context, for example, unseen combinations of 

CPs. To tackle this challenge, Strategy 3 is introduced. This strategy involves training another model to 

generate a musically appropriate and more diverse context preceding the target chord progression. 

Context generation is achieved using recursive sampling paths with specified depths.  
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Figure 2. 2-gram distribution per strategy (Photo/Picture credit: Original). 

Fig. 2 reveals the 2-gram chord distribution of the three generated datasets, represented as 

percentages. An N-gram chord distribution analyzes occurrences of potential subsets of size n within 

CPs. Notably, the distribution considers all n-gram chord progressions in equivalent alternative keys, 

prioritizing the relationship between chords. This metric is valuable as the relationship between adjacent 

chords often holds greater significance in music composition, performance, and listening. While 

Strategy 1 exhibits uniformly distributed 2-gram CPs, both Strategy 2 and 3 demonstrate an increase in 

percentage from the 7th to the 9th 2-gram CPs, encompassing the CP of interest. 

2.3.  Tokenization  

The study predominantly adopts the tokenization method proposed by [11]. A Harte chord symbol is 

decomposed into a tuple of tokens, consisting of the chord root (e.g., Bb, A), quality (e.g., min, maj), 

added notes, and bass. For example, the symbol Bb:maj(11, 13)/5 will be parsed into ‘Bb’, ‘maj’, ‘add’, 

‘11’, 13’, ‘/’, ‘5’. Each chord is separated by a ‘.’ token, while a [eos] token is inserted between 

individual sequences of CPs to denote the start of a new piece. This tokenization process results in a 

final token vocabulary size of 75, with a total of 82,107,585 tokens obtained.  

2.4.  Model 

The study initiates by training a nano GPT foundation model on the dataset. The model has a fixed block 

size of 256, with 384 embeddings, 6 layers, and 6 attention heads. Training extends over 2000 iterations 

(~8 epochs), using a batch size of 64 * 20 (utilizing gradient accumulation) and a 1e-4 learning rate, 

which cosine decays down to 1e-5. Similar to [11]’s observation, no signs of overfitting were observed 

during training, suggesting that the model can be bigger and trained with more epochs. Subsequently, 

all trainable units of the model undergo fine-tuning for 50 epochs using a learning rate of 3e-5 on datasets 

generated by the three strategies outlined earlier. No further modification of the model structure occurs 

during fine-tuning. The training and validation loss, together with the HITS@k metric, are recorded for 

both the base model and fine-tuned models. Additionally, the study utilizes the n-gram chord distribution 

as a metric for evaluating fine-tuned models. HITS@k metric is calculated by Eq. (1), where I is a 

function that returns 1 if the target’s rank is smaller than k and 0 otherwise: 

 𝐻𝐼𝑇𝑆@𝑘 =
1

𝑛
∑ (𝐼 𝑟𝑎𝑛𝑘𝑖 ≤ 𝑘)𝑛

𝑖=1          (1) 

The N-gram chord distribution is assessed in two modes of generation: 

• Generation from scratch: The fine-tuned model generates tokens from an initial [eos] token until a 

predefined maximum token length. 

• Joint generation: Both the foundation model and the fine-tuned model generate tokens 

simultaneously from an initial [eos] token. Kullback-Leibler (KL) divergence is calculated between 
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the output distributions of the two models. If the divergence exceeds a predefined threshold, the token 

generated by the fine-tuned model is selected. Otherwise, the token from the foundation model is 

appended to the token sequences as context for next-token prediction.  

The “joint generation” mode is intended to simulate how a user interacts with the system for chord 

suggestion. By selecting tokens based on KL divergence thresholds, the system simulates the degree to 

which users follow suggested chords. A higher threshold implies that only chords with a significant 

difference in probability distribution are selected. The foundation model in this context represents the 

user’s habitual chord selection given a harmonic context, while the fine-tuned model embodies a new 

mindset for chord selection. A significant KL divergence suggests that the fine-tuned model has learned 

distinct patterns or preferences compared to the foundation model, given the same harmonic context.  

3.  Results and Discussion 

3.1.  Foundation model 

Table 1 reveals the training/validation loss and HITS@k metric for both the foundation model and fine-

tuned models. The foundation model exhibits no sign of overfitting during training and thus can be 

trained with more layers/heads and more epochs. An interesting observation is the notable discrepancy 

between the HITS@1 and HITS@3 scores. This suggests that while the model can reasonably predict 

the next chord, its confidence in the prediction might be misplaced. Moreover, the training data size is 

considerably larger (about 5 times bigger) than the dataset used in [11]. Training a larger GPT model 

with more epochs can potentially capture stylistic and contextual information more accurately. 

Table 1. Training Loss, Validation Loss, HITS@k 

 Train Loss  Val. Loss HITS@1 HITS@3 HITS@5 

Foundation Model 0.721 0.723 0.722 0.919 0.957 

Model - reversed 0.742 0.744 0.760 0.921 0.957 

3.2.  Fine-tuned models 

According to Table 2, the fine-tuned models exhibit increasing training/validation loss across the three 

strategies. Given that the dataset generated by the first strategy contained the least variations, it is 

expected that the model would converge quickly to a low training and validation loss with the highest 

HITS@k score. Conversely, Strategy 3, with the most diverse chord context, demonstrates the worst 

performance across all metrics in the table. In addition, only Strategy 3 shows a tendency to overfit 

around 40 epochs of training. Table 3 illustrates the HITS@k metrics of the three fine-tuned models on 

the foundation model’s validation dataset. Each model shows a significant drop, suggesting a deviation 

from the original model. Notably, Strategy 3’s model consistently exhibits the lowest scores.  

Table 2. Training Loss, Validation Loss, HITS@k 

 Train Loss  Val. Loss HITS@1 HITS@3 HITS@5 

Strategy 1 0.066 0.066 0.973 0.985 0.990 

Strategy 2 0.182 0.183 0.925 0.967 0.980 

Strategy 3 0.323 0.383 0.867 0.941 0.965 

Table 3. HITS@k on Original Dataset. 

 HITS@1 HITS@3 HITS@5 

Strategy 1 0.515 0.771 0.855 

Strategy 2 0.523 0.748 0.836 

Strategy 3 0.517 0.734 0.817 
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Figure 3. 2-gram and 4-gram chord distribution per strategy (Photo/Picture credit: Original). 

Subsequently, this study commences with an analysis of the foundation model’s n-gram chord 

distribution on the CPs from the game soundtrack, followed by a comparison of the fine-tuned models’ 

performance in two modes of generation. For consistency, all models predict 60 tokens (approximately 

20 chords) 100 times, and the occurrences of n-gram CPs are averaged per iteration. As demonstrated 

by Fig 3, the most frequent CP generated by the foundation model is the E:min7 -> A:7 -> D:min 

progression (CP 11 and 12), commonly known as the “ii-V-i” progression, a prevalent pattern found 

across many styles. However, the few occurrences and the absence of other chord progressions indicate 

a significant stylistic difference between the target CP and the foundation model’s generated CP. As 

seen from Fig. 3, the CPs generated by strategy 1 exhibit a mostly uniform distribution in both the 2-

gram and the 4-gram chord distribution. This suggests that the model’s predictions largely adhere to the 

chord order observed in the original dataset. In contrast, Strategies 2 and 3 demonstrate a noticeable 

increase in the occurrence of 2-gram chord progression number 6, 7, and 8, encompassing the CP of 

interest. Due to how Strategy 2’s dataset is structured, the results for Strategy 2 reveal a progressively 

higher occurrence of the 2-gram and 4-gram CP. Strategy 3’s generation contains target chord 

progression to the greatest extent despite its poor performance in terms of loss and HITS@k metric.  

For joint generation, the 2-gram chord distributions generated from three KL divergence thresholds 

(1, 3, 5) are recorded for comparisons (seen in Fig. 4). It is evident that the chosen level of KL divergence 

threshold influences all three models in producing correct 2-gram CPs. Higher levels of KL divergence 

thresholds decrease the likelihood of the fine-tuned model’s predictions being chosen. This can lead to 

the generated chords being less familiar to the fine-tuned model, further hindering its ability to produce 

the correct CPs. Furthermore, while the graphs illustrate an increase in the 2-gram distribution for all 

strategies as KL divergence decreases, only Strategy 3 consistently achieves a significantly higher 

frequency in the target CP compared to the other models. Since varying levels of KL divergence 

thresholds can generate different contexts, this indicates that Strategy 3 is the most responsive to 

different harmonic contexts and capable of guiding users toward the target CP.  

Additionally, the difference in KL divergence can serve as a metric for chord novelty. Previous 

scholars have utilized metrics such as overall chord frequency in a set [7] or distance-based metrics [4] 

to assess chord novelty. However, an equally important aspect of chord novelty is its perceived newness 

and interest to individual users, which can be highly subjective due to levels of musical training [15] 

and aesthetic interest [16]. By fine-tuning a foundation model on two stylistically distinct sets of CPs, 

chord novelty can be effectively represented by the KL divergence between the two fine-tuned models 

during predictions. As observed in the study, the KL divergence will be small for common CPs but 

significantly larger if one of the models learns to respond differently when given the same chord context.  

This reflects not only the statistical differences between the two sets but also signs of disparities in habits 

and mindsets, which are indicators of relative chord novelty to individual users.  
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Figure 4. Joint prediction for KLD=1,3,5 (Photo/Picture credit: Original). 

3.3.  Usage case and analysis 

A demonstration and use-case analysis are presented here, involving a text-based interactive interface 

with the model fine-tuned by Strategy 3. Table 4 contains example outputs, where “tok_seq” represents 

the tokenized user input, and “suggested chord” represents the model’s prediction along with its 

probability. The user interacts with the interface by entering a Harte-style chord symbol at a time, and 

the terminal colorizes the log to indicate the model’s confidence in its predictions. 

Table 4. Example Output 

tok_seq Suggested 

chord 

probability 

['A', 'min', '.'] F:maj 0.477 

['A', 'min', '.', 'D', 'min', '.'] Cb:hdim7 0.948 

['A', 'min', '.', 'D', 'min', '.', 'E', 'maj', '.'] A:min 0.985 

['A', 'min', '.', 'D', 'min', '.', 'E', 'maj', '.', 'A', 'min', '.'] F#:hdim7 0.973 

['A', 'min', '.', 'D', 'min', '.', 'E', 'maj', '.', 'A', 'min', '.', 'F#', 'hdim7', '.'] D:hdim7/b3 0.998 

 

The model demonstrates increased confidence in predicting the target progression when relevant 

combinations of chord symbols are presented. For instance, when the sequence starts with A:min and 

D:min (a v-i progression), establishing the key of D minor, the model accurately predicts the half-

diminished chord, which should be a minor third below the preceding minor chord. This pattern holds 

for progressions like “A:min, D:min, E:maj, A:min” (i-iv-V-i), where the key of A minor is established. 

Additionally, after the F# half-diminished chord, the model correctly identifies the next half-diminished 

chord, which should be a major third below the previous chord. The responsiveness to various chord 

contexts is valuable in guiding the user to reproduce the CP of interest across keys and in diverse musical 

contexts. It can enhance the user’s understanding of how the progression sounds and unfolds and thus 

facilitates their ability to utilize the CP in their compositions or improvisations.  

However, two drawbacks are observed. Firstly, Strategy 3 tends to predict a half-diminished chord 

after most minor chords. This suggests that the model may be overly reliant on the pattern, which could 

limit its flexibility in generating diverse and contextually appropriate CPs. Additionally, Strategy 3’s 

generated datasets consist of [eos] tokens directly after the target CP, leading to a bias in the model 

predicting the [eos] token after the target progression. To address these two issues, future studies may 

augment the dataset by replacing and extending parts of the CPs using functionally equivalent chords. 

This approach could help introduce more variety into the training data and mitigate the oversimplified 

patterns observed in Strategy 3’s predictions. Additionally, modifying a larger foundation model with 

more advanced fine-tuning methods may enhance the model’s ability to model complex musical 

relationships and generate more nuanced CPs.  
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4.  Limitations and prospects 

This study contains several limitations. To start with, the paper primarily relies on Harte chord symbols 

as context for generating chord progressions. Future studies could explore incorporating additional 

contextual information such as beat position, chord voicings, and rhythms to improve the model's ability 

to discern phrasal structures and generate more nuanced and musically coherent progressions.  Secondly, 

the focus on a single musical piece and CP in this study limits the findings’ generalizability. Future 

research can examine the method on various musical pieces, use a bigger fine-tuning dataset, and explore 

the generation of multiple target chord progressions. Additionally, while the study evaluates model 

performances through several quantitative metrics, studying human participants’ reactions, such as 

assessment of the musical quality and usability of the generated progressions, can provide valuable 

insights into how musicians perceive and interact with the model. Last but not least, the study only 

examined fine-tuning by adjusting all of the trainable units’ weight. More advanced fine-tuning 

techniques, for example, low-rank adaptation, may be explored in future studies.  

In terms of future outlooks, this study has illuminated a novel way to learn harmonic progressions 

that hold great potential for musicians and composers alike. For instance, musicians may find value in 

mastering descending fifth sequences in every key to enhance their improvisational skills. To facilitate 

this learning process, musicians can customize the model with descending fifth chord progressions, 

enabling them to interactively improvise with the model and receive visualized feedback, such as 

highlighting relevant keys on a piano keyboard for the next appropriate harmony. Moreover, the ability 

to fine-tune models with personal improvisation data opens up exciting possibilities for collaboration 

and knowledge sharing among musicians. Users can train and upload their fine-tuned models, thereby 

sharing their unique chord progression styles with others. Through real-time interactions with various 

models, they can explore and learn from each other’s musical styles, fostering a collaborative and 

enriching learning environment. 

5.  Conclusion 

The study developed a customizable model to facilitate users’ learning of specific chord progressions. 

Through training a foundation model on the Choco chord corpus and examining three fine-tuning 

strategies, the study sought to enhance the generation of these CPs. The evaluation of the model’s 

performance revealed promising results, showcasing an improved generation of musically coherent CPs 

across diverse contexts. Additionally, the study designed a new mode of generation that can shed light 

on chord novelty assessment and offer a creative approach to learning and sharing chord styles. These 

findings underscore the significance of the study in advancing automatic chord progression generation 

techniques and providing creative tools for musicians seeking to explore and enhance their intuition for 

harmonies.  
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