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Abstract. Due to the rapid development of internet technology, recommendation systems have 

played a crucial role in improving user experience and enhancing user retention. Knowledge 

graphs (KG), a technique capable of capturing complex semantic relationships and contextual 

information, are gradually included in recommendation systems to augment their accuracy and 

intelligence. This paper reviews the application of knowledge graphs in recommendation 

systems, analyzing their unique advantages in handling user-item relationships. This paper 

comprehensively analyzes embedding methods based on tensor decomposition and translation, 

which primarily designed for static knowledge graphs. This study thoroughly explains the 

advantages and disadvantages of these methods in practical application. Moreover, this paper 

discusses the challenges faced by dynamic knowledge graphs, such as temporal data processing, 

real-time updates, and inference, proposing potential solutions and future research areas. 

Integrating knowledge graphs with machine learning techniques enhances the ability of social 

media recommendation systems to understand user preferences and deliver highly personalized 

recommendations effectively. This study provides theoretical support and practical guidance for 
the implementing of knowledge graphs in recommendation systems, holding significant 

academic value and practical significance. 
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1.  Introduction 

With the advancement of internet technology, this world has witnessed an era of information explosion. 
The abundance of online content, such as products, movies, and news, not only provides users with a 
wide range of options but also leads to the problem of information overload. This is evident when users 
attempting to quickly and effectively sift through a substantial volume of information to find what they 
requires. The proliferation of information in the internet era has become an acute issue requiring 
immediate attention. 

The emergence of recommendation systems helps enhance users experience by providing more 

accurate information. Recommendation systems can automatically assist users in discovering preferred 
information from a large volume of data, offering more personalized data services. Traditional methods 
for developing recommendation systems include content-based recommendation systems and 
collaborative filtering-based (CF-based) recommendation systems. However, both options have 
significant disadvantages [1]. 
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To address the limitations of traditional recommendation systems, some scholars have introduced 
knowledge graphs (KG) in recommendation systems. A knowledge graph is a database that represents 
the relationships between entities using a graph structure [2]. It facilitates researchers better understand 
and organize information and knowledge. In recommendation systems, the interconnections among 

various types in the knowledge graph help improve the accuracy of suggestions and increase the 
diversity of recommended items. What’s more, KG enhances the transparency of recommendation 
algorithms. 

This paper aims to review the current status and advancements in the application of KG in 
recommendation systems. This research will introduce the basic principles and methods of knowledge 
graph technology. Furthermore, it will discuss the current challenges and obstacles, and offers both 
theoretical foundations and practical insights on the utilization of knowledge graphs in recommendation 
systems. 

2.  Research Background 

2.1.  Classification of Recommendation Systems 

The concept of recommendation systems was introduced by Resnick in 1994, since then, it has been 
widely used as a subclass of information filtering systems [3]. The main purpose of recommendation 
systems is to suggest items that users might be interested in. These items or content can include movies, 
music, books, news articles, products, etc.  

Current recommendation algorithms fall into three categories: content-based, collaborative filtering-
based (CF-based), and hybrid. 

Content-based algorithms analyze item characteristics to recommend similar items to users. While 

effective, they often lack diversity and fail to meet varied user needs. 
CF-based algorithms use user-item interactions, split into user-based, item-based, and model-based 

recommendations [4]. User-based methods find similar users to predict preferences but struggle with 
large datasets and cold starts. Item-based methods calculate item similarities, offering low complexity 
but less personalization. Model-based methods, using techniques like Probabilistic Matrix Factorization 
(PMF) and Singular Value Decomposition (SVD), predict user behavior effectively but require 
substantial data and resources [5-6]. 

Hybrid algorithms combine different techniques to leverage their strengths and mitigate weaknesses. 

Pre-fusion methods merge independent recommendation lists, post-fusion presents lists separately, and 
inter-fusion integrates results using advanced algorithms. While enhancing accuracy and coverage, 
hybrids face challenges in determining optimal algorithm weights and ensuring data compatibility. 

To address the limitations of traditional systems, researchers are increasingly incorporating 
knowledge graph technology to enhance recommendation performance. 

2.2.  Knowledge Graphs and Their Advantages 

Knowledge graphs are a structured method of representing knowledge, used for organizing and 
managing vast amounts of information and knowledge. They represent relationships between entities in 
a graphical structure, enabling computers to better understand and infer knowledge. In 2012, Google 
introduced the concept of knowledge graphs to identify and disambiguate entities in text, enriching 
search results with semantic summaries, and providing links to related entities in exploratory searches. 

The basic unit of a KG is the "entity-relation-entity" triplet, defined as G = (E, R, S), in which E 
represents entities in the knowledge base that correspond to real-world objects or concepts, such as 
people or products. Each entity has a unique identifier and may possess multiple attributes to describe 

its characteristics, such as text, numbers, or dates. R represents relationships, which denote connections 
or associations between entities. Relationships describe certain connections or interactions between 
entities, such as "owns," "located_in," or "is." S represents the set of triplets in the knowledge base. Each 
triplet consists of a head entity, a relationship, and a tail entity.  
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Knowledge graphs provide rich semantic information that helps recommendation systems better 
understand the relationships between users and items. This allows for more accurate capturing of user 
interests and needs, enhancing the accuracy and personalization of recommendations. Additionally, 
knowledge graphs assist in addressing the cold start problem by using related information to provide 

personalized recommendations for new users, mitigating the cold start impact. Knowledge graphs also 
offer better explanation and transparency for recommendation systems. 

3.  Methods for Knowledge Graph-Based Recommendation Systems 

The embedding approach is one of the most representative methods for constructing knowledge graph-
based recommendation systems. Embedding-based methods preprocess knowledge graphs using 

Knowledge Graph Embedding (KGE) algorithms, mapping entities and relationships from the 
knowledge graph to continuous vectors in a low-dimensional vector space (i.e., embeddings) to capture 
semantic associations between entities. Machine-learning models can effectively learn from these 
feature vectors. There are two widely used triplet fact embedding methods created by researchers. 

3.1.  Tensor Factorization Based Methods 

Tensor is a general term for high-dimensional arrays, and tensor factorization is the process of 
decomposing a high-dimensional array into multiple lower-dimensional matrices [7]. This method 

represents triplets (h, r, t) in a knowledge graph as a three-dimensional tensor. By decomposing this 
tensor, high-dimensional data is mapped to a lower-dimensional space, capturing complex interactions 

between entities and relationships. Specifically, each triplet (h, r, t)  in the knowledge graph 
corresponds to an element in the tensor, representing the weight of the connection between head entity 
h and tail entity t through relationship r [8]. This section will discuss several common methods. 

RESCAL is a representative method of this category. It first constructs a three-dimensional tensor 
similar to a graph adjacency matrix, and then decomposes the tensor to obtain an asymmetric 
relationship matrix [9]. Its scoring function can be expressed as: 

 Xk ≈ AR
k
AT  

where Xk  represents the three-dimensional tensor, A is an n × r  matrix representing the latent 

components of entities, r represents the features (or dimensions) of each entity [10], and R is an r × r 
asymmetric matrix specifying the interactions between the latent components of entity objects. This 
matrix can model the interactions between different entities based on specific relationships, revealing 

the latent semantic features of entities. 
RESCAL was one of the earliest tensor decomposition-based methods proposed. It has a simple 

structure and strong expressive capability, making it well-suited for the high-dimensional and sparse 
nature of knowledge graph relationships. However, it has high computational costs and limited 
scalability. 

DistMult is a simplified version of the RESCAL model. In DistMult, relationships are represented as 
diagonal matrices, meaning each relationship only requires a vector representation instead of a full 

matrix. Because relationships are represented by diagonal matrices, DistMult can only capture 
symmetric relationships [11]. Its scoring function can be expressed as: 

 fr(h, t) = h
T
Mrt  

where the diagonal matrix Mr  is composed of the vector of relationship r. This scoring function 
essentially is the sum of the element-wise product of three vectors.  Since each relationship only 
requires a vector representation, the number of parameters in DistMult is less than models that need a 

full matrix representation for relationships. Consequently, DistMult has lower computational 
complexity and higher computational efficiency compared to other more complex models. Therefore, it 
is rather easy to handle large-scale knowledge graphs. However, its most obvious drawback is the 
inability to model asymmetric relationships. 
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HolE (Holographic Embeddings) is another commonly used model that captures complex 
interactions between entities and relationships by combining the advantages of tensor decomposition 
and holographic techniques [10]. Specifically, HolE uses circular correlation to model the interactions 
between entities and relationships. Circular correlation is a method that combines two vectors, h and t, 

to effectively capturing their higher-order interactions. The calculation of circular correlation is defined 
as follows: 

 (h ⋆ t)k = ∑ hit(i+k) mod ni   

where n is the dimension of the vectors. Therefore, HolE's scoring function can be defined as: 

 fr(h, t) = rT(h ⋆ t)  

HolE accelerates the computation of circular correlation, making it more computationally efficient 
than traditional tensor decomposition methods. What’s more, since circular correlation is asymmetric, 
the HolE model can capture asymmetric relationships, representing the complex interactions between 
entities and relationships. At the same time, the number of parameters in the HolE model is relatively 

small, and close to DistMult, but it can represent more complex relationships. However, the main 
drawback of HolE is the implementation of circular correlation being relatively complex, making the 
model more challenging to implement. 

  
Figure 1. RESCAL Model 
Diagram [9] 

Figure 2. DistMult Model 

Diagram [11] 

 
Figure 3. HolE Model Diagram [12] 

3.2.  Translation-Based Methods 

Translation-based methods treat relationships in knowledge graphs as "translation" operations from the 
head entity to the tail entity. The optimization goal is to make the vector of the head entity plus the 
relationship vector close to the vector of the tail entity. This approach uses geometric relationships in 
vector space to represent the associations between entities and relationships. The most representative 
methods in this category are the Trans series of graph embedding methods, including TransE, TransH, 
TransR, TransD, and others [13-16]. 

The basic idea of TransE is to make the vector of the head entity h plus the relationship vector r as 

close as possible to the vector of the tail entity t (h + r ≈ t), using either the l1 or l2 norm to measure 

"closeness". TransE defines a scoring function to measure this association, defined as: 

fr(h, t) = ||h + r − t||l1/l2
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TransE is a simple, intuitive method with high computational efficiency and strong interpretability. 
However, its drawback is that it is difficult to capture complex many-to-many relationships (e.g., one 
entity can be associated with multiple entities). 

TransH is used to handle one-to-many or many-to-one relationships. It maps the head entity h and 

tail entity t onto a specific hyperplane wr, resulting in vectors h⊥ and t⊥. And the relationship vector 

dr is considered a transformation operation of the projected entity vectors on the hyperplane wr. The 
projected entity vectors are: 

 h⊥ = h − wr
Thwr, t⊥ = t − wr

Ttwr  

and the scoring function is: 

 fr(h, t) = ||h⊥ + dr − t⊥||l1/l2
  

The advantage of TransH is that it represents relationships on a relation-specific hyperplane, which 
allows better handling of many-to-many relationships. It projects entities onto different hyperplanes for 

different relationships, providing more flexibility so that the same entity can have different 
representations in different contexts. However, TransH also has its drawbacks. Introducing relation-
specific hyperplanes increases the computational complexity of the model, making training TransH 
potentially more challenging. 

  
Figure 4. Trans E model diagram 
[13] 

Figure 5. TransH model diagram 

[14] 

TransR considers that entities have different aspects, and different relationships focusing on different 

aspects, requiring representation in multiple semantic spaces. Therefore, a relation matrix Mr is first 

established to map entities into the relation-specific space of r, and then optimize the objective hr+r ≈ tr. 
The projected entity vectors are: 

 hr = hMr, tr = tMr  

And its scoring function is similar to TransE, which is expressed as: 

 fr(h, t) = ||hr + r − tr||l1/l2
  

Since entities and relationships are projected and operated in different spaces, TransR can handle 
many-to-many relationships more effectively, avoiding the oversimplification of entity embeddings. 

However, TransR also has significant drawbacks. The projection matrix Mr is determined solely by the 
relationship, ignoring the issue that head entities and tail entities may have different attributes. This 
single relationship projection may not fully capture the complex relationships between entities. 

Based on TransR, TransD further posits that the mapping relationship should be determined by both 
entities and relations. TransD embeds entities and relations in the knowledge graph through dynamic 
mapping matrices, with the improved projection matrix determined jointly by entities and relations. All 
entity objects and relation objects are composed of two vectors: one to represent the semantic 

information of the object itself and another to dynamically construct the mapping matrix. The projection 
matrices for head entities and tail entities are represented as: 

 Mrh = rphp
T + I, Mrt = rptp

T + I  
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where I represents the identity matrix, and rp, ℎp, tp are the mapping vectors used to construct the 

mapping matrix. The projected entity vectors are represented as: 

  h⊥ = M
rh

h,  t⊥ = M
rt
t  

and the scoring function is expressed as: 

 fr(h, t) = ||h⊥ + dr − t⊥||l1/l2
  

TransD’s use of dual projection matrices allows the model to represent entities and relations at a finer 
granularity, addressing the issue of head entities and tail entities possibly having different attributes. 
This makes the model more flexible in capturing the diversity and complexity of entities and relations. 

  
Figure 6. TransR model diagram 
[15] 

Figure 7. TransD model diagram 

[16] 

3.3.  Existing Challenges and Future Research Directions 
Despite their achievements, KG-based recommendation systems face challenges. Current methods 
targeting static knowledge graphs assume a fixed structure during training. Each update, like adding 

new entities or relationships, requires extensive recalculations, consuming significant computational 
resources. Constructing KGs often leads to fact omission, especially in rare relationships or long-tail 
entities, affecting the recommendation system's effectiveness. Future research can explore knowledge 
graph completion techniques, such as probabilistic learning-based path ranking algorithms (PRA) and 
representation learning-based methods, to address these gaps. 

4.  Conclusion 

This paper explores recommendation systems based on knowledge graphs, analyzing their advantages 
and challenges. This article offers a systematic and thorough introduction to tensor decomposition-based 
and translation-based approaches for embedding knowledge graphs, and explores their suitability and 
constraints in the context of static knowledge graphs. In addition, this paper addresses the challenges 
faced by these systems, highlighting critical issues in dynamic recommendation systems, fact omission 
in knowledge graphs, and the construction and completion of knowledge graphs. Therefore, this paper 

significantly contributes to the promotion of sustainable development and advancement in this particular 
domain. 

There are many unresolved issues in the research of knowledge graphs in recommendation systems 
that persist in the future. Important areas for enhancing recommendation system effectiveness involve 
the development and upkeep of superior dynamic knowledge graphs, the effective completion of 
knowledge graphs, and the integration of multimodal input into knowledge graphs. Moreover, the 
collaborative construction and completion of cross-domain knowledge graphs will help provide more 
diverse and personalized recommendation services. 

In general, the potential for using knowledge graphs in recommendation systems is extensive. In the 
future, recommendation systems will improve their understanding of user needs, offer more accurate 
and personalized recommendations, and boost user experience and happiness through ongoing 
technological innovation and research advancements. 
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