

Word frequency statistics based on MapReduce on serverless

platforms

Yuheng He1, Jin Qian2, Juanjie Zhang3, Renzhe Zhang4,5

1School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou,

China

2School of Mathematics and Statistics, Xuzhou University of Technology, Xuzhou,

China
3School of Communications Engineering, Xidian University, Xi'an, China
4School of Computer Science, Chongqing University, Chongqing, China

520220691@stu.cqu.edu.cn

Abstract. This paper investigates the application of serverless computing in conjunction with

the MapReduce framework, particularly in machine learning (ML) tasks. The MapReduce

programming model has been widely used to process large-scale datasets by simplifying parallel

and distributed data processing. This study explores how the combination of these two

technologies can provide more efficient and cost-effective ML solutions. Through a detailed

analysis of serverless environments and the MapReduce framework, this paper shows how the

combination can advance the fields of cloud computing and machine learning. The experimental

part includes the implementation of Map-Reduce model on a serverless platform, exploring the

impact of different parameter settings on performance and improving efficiency by optimizing

the data processing flow. In addition, the paper analyzes the use of memory and CPU resources

and derives the relationship between dataset size, memory consumption and processor

configuration and execution time. Through these experiments and analyses, this paper provides

an empirical basis and theoretical support for the optimization of cloud computing frameworks.

Keywords: MapReduce, Serverless Computing, Cloud Computing, Efficient and Cost-Effective

1. Introduction

As cloud computing technology continues to advance, people have witnessed an evolution from

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) to Software as a Service (SaaS). These

stages of development provide flexible, scalable solutions for modern computing. However, while these

models have made significant progress in simplifying the management and utilization of IT resources,

they still do not fully address the issues of resource waste and management burden. Against this

backdrop, serverless computing has emerged as an emerging model of cloud-native computing and has

quickly become the focus of industry attention [1].

The core advantage of serverless computing is its "pay-as-you-go" model, which means that users

only need to pay for the computing resources they actually use, thus significantly reducing the waste of

idle resources. This model is particularly well suited for applications that do not need to run continuously,

such as machine learning (ML) tasks, which tend to have sudden resource demands and different

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/68/20241536

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

347

workflow phases. However, users of ML applications face the dual challenges of over-resourcing and

explicit resource management, which are particularly prominent on traditional server computing

platforms [2].

To address these challenges, in 2008, Google engineers proposed the MapReduce computing

framework in order to solve the problem of processing massive datasets - the user generates a set of

intermediate key/value pairs by specifying a map function, which processes the key/value pairs to

generate a set of intermediate key/value pairs, and a reduce function, which function merges all

intermediate values associated with the same intermediate key to achieve the purpose of processing data

in chunks. In the ensuing years, other engineers have improved it many times and developed many new

computing frameworks, and MapReduce has greatly simplified the complexity of data processing.

Google and other organizations have successfully used MapReduce to process various types of data,

including crawler documents, web request logs, etc., as well as to generate a variety of derived data [3].

Since the MapReduce framework is not applicable to acyclic data flow models, the Spark framework

was created, which introduced Resilient Distributed Datasets (RDDs) that allow RDDs to be explicitly

cached on different machines for reuse in multiple parallel operations [4]. In 2011, Verma A and his

team members developed a method to break the barrier between Map and Reduce stages, improving

operational efficiency while maintaining generality and ease of programming. It was found that the

performance improvement mainly comes from dropping disk-intensive work and interleaving I/0 with

computation [5]. In the same year, Nipype, an open-source Python-based software package, was released,

which is similar to the MapReduce computational framework and is intended to be used for the efficient

development of neuroimaging data and fast comparison of algorithms [6]. In 2013, Wang G's team

proposed two new multitasking optimization techniques for the MapReduce framework, including a

generalized grouping technique and a materialization technique, and designed a new optimization

algorithm that significantly improved the operational efficiency of the framework [7]. After this, Z. Tari

built an accountable MapReduce for detecting malignant nodes to solve the possible dishonest situation

of MapReduce [8]. In 2015, Apache Hadoop based on MapReduce framework undeniably became the

most accepted open source system for big data analytics, which is similar to the data processing

framework Apache Flink, which also serves as an open source model for processing streams and batch

processing, and which uses data stream processing as a real-time in the programming model and

execution engines analytics, continuous streaming, and batch processing as a unified model. 2022,

scholars such as Wenjun Qian summarized the problems of a series of computing frameworks including

MapReduce in terms of privacy leakage as well as a variety of privacy-preserving techniques, which

pushed the MapReduce framework for further improvement [9]. Recently, some researchers try to

compare MapReduce and Apache Spark to determine their merits, shortcomings, and applicability for

big data applications and make a conclusion [10].

Given the significant advantages of serverless computing in terms of resource efficiency and ease of

management, as well as the effectiveness of MapReduce in dealing with large-scale distributed

computation, this study aims to explore how the combination of the two can provide a more efficient

and economical solution for ML applications. Through an in-depth analysis of serverless environments

and the MapReduce framework, this paper will illustrate the significance of this combination in

advancing the fields of cloud computing and machine learning.

In order to optimize the Map-Reduce framework and test its performance, the paper first constructed

the basic Map and Reduce functions, and achieved the division of labor among multiple sets of Map-

Reduce functions by adjusting the parameters. After that, the group divided the dataset into more than

one thousand groups and tested its effect on the running time of the program by setting the Map-Reduce

framework with different number of groups. Also, the group investigated the ratio of function

communication time to execution time and monitored the memory consumption of individual Map-

Reduce functions on the AliCloud platform. Finally, the group varied the dataset size and tested the

effect of different memory allocations on execution time to produce experimental results.

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/68/20241536

348

2. Research Methodology

2.1. Framework Environment

The paper implement a MapReduce framework based on two services of AliCloud's Function

Computing FC (an event-driven fully managed serverless service) and Object Storage OSS to perform

the work of counting the frequency of words.

2.2. Data Presentation

In this study, more than one thousand English original readings were randomly adopted and converted

into 1476 txt files with a total size of 438.802 MB, which were uploaded to Aliyun OSS database in the

named formats of data0.txt, data1.txt, data2.txtdata1476.txt waiting to be downloaded and called.

2.3. Map Design

2.3.1. Framing Components. In the Map phase, the framework designed in this paper is divided into

four main parts:

1. receive parameters, provide error reporting code.

2. Validate based on the OSS2 library to obtain the raw data.

3. Process the raw data to get the filtered words.

4. Upload the processed data for use in the reduce phase.

2.3.2. Pseudocode Description. The description of the important parts of the map function is listed as

follows:

Algorithm 1 Initialize the OSS Authentication Object

Authentication with AccessKey ID and AccessKey Secret

 Initialize the OSS authentication object

 Create a Bucket object based on the Endpoint and Bucket names

Algorithm 1 describes the authentication process to Aliyun OSS Database so as to transport data.

Algorithm 2 File Download

Record the timestamp of the start of the download

For each file ID in the range:

 Download files with from OSS Bucket to the local area

Record the download end time and calculate the total download time

Print the total time spent on the download task

Algorithm 2 describes the logic of downloading raw data in our frame.

Algorithm 3 Mapping Task Handling (Map1 & Map2)

define map1:

 Initialize 26 dictionaries

 For the first half of the files to be processed:

 Read the contents of the file

 Split content into raw words

 Iterate over the raw words

 Count raw words based on its initial letter

 Record upload start time

 Convert statistics into JSON format and upload to OSS

 Record the upload end time

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/68/20241536

349

 Calculate and print the total upload time

 Return

define map2:

 Initialize 26 dictionaries

 For the second half of the files to be processed:

 The rest of the pseudocode is similar to map1

 ...

 Return

Algorithm 3 describes the procedure of filtering and counting the words, which is the core part of

this program.

Algorithm 4 Multithreaded Execution

Create and start thread for map1

Create and start thread for map2

Wait for all threads to finish

Algorithm 4 gives the simple description of the ways of multithread execution.

2.4. Reduce Design

2.4.1. Framing Components. In the Reduce phase, the framework of this paper is divided into four main

parts:

1. receive parameters, provide error reporting code

2. based on the OSS2 library for validation, to obtain the data processed in the map phase

3. Integrate the output results of the map phase

4. upload the final result

2.4.2. Pseudocode Description. Considering that the logic of Reduce phase is similar to Map phase, the

same pseudocode is omitted.

Algorithm 5 Mapping Task Processing (Reduce1 & Reduce2)

define reduce1:

 for range a to m:

 Record download start time

 Download the corresponding files in map1 and map2

 Merge files

 Record upload start time

 Write and upload the merged result

 Record and print the total communication time

 Return

define reduce2:

 for range n to z:

 The rest of the pseudocode is similar to reduce1

 ...

 Return

Algorithm 5 shows how do the program combine the processed data together to get the final output.

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/68/20241536

350

3. Result

3.1. Effect of map and Reduce group size on function execution time

After the MapReduce function is run, the four original files to be processed are divided into 26 files

named in alphabetical order and stored in the result folder defined in oss. During the reduce stage, all

functions in the map are integrated into one file, which is the final result file. The final file contains all

words in alphabetical order.

Figure 1. The time consumed by MapReduce function in the case of four data sets in division and the

whole

The result of MapReduce function optimization can be reflected from the function execution time.

In this experiment, the control variable method was used to explore the experimental results. The result

is shown in Figure 1.

First change the number of map function groups individually. The result is that as the number of map

functions increases, the time taken by the function decreases. The number of Map groups increased from

1 to 4, and the elapsed time decreased from 984ms to 598ms. Then, the number of reduce function

groups is changed separately. As the number of reduce function groups increases, the time consumed

by the functions gradually decreases, the number of reduce groups increases from 1 to 13, and the

number of functions decreases from 389ms to 150ms. It is worth noting that as the number of groups

increases, the time consumption interval between the two groups due to the increase of the number of

groups also decreases. Finally, the map and reduce functions are combined to run, increasing the number

of groups from 1,2,4. It can be considered that with the increase of the number of function groups, the

function time consumption still presents a downward trend from 1386ms to 877ms. This shows that

increasing the number of map and reduce functions can reduce the overall code run time.

Figure 2. The time consumed by the MapReduce function in the case of 1477 data sets in the partial

case and the overall case

In order to eliminate the influence of the data set, the second experiment was performed, and a larger

data set was added, so that the map and reduce functions would collectively process about 1477 files.

Repeat the above experiment, divide it into map function and reduce function, and finally merge the two

functions and experiment again. As shown in Figure 2, the map and reduce function teams successfully

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/68/20241536

351

conducted experiments to record the words of the extracted articles, and optimized the functions so that

the code could eliminate factors such as Spaces and mismatches, and successfully integrated into a file.

After the experiment, by changing the number of function groups, it is found that with the increase of

the number of function groups, multiple workers can share the data and process it, which can reduce the

time required by the function. At the same time, with the increase of the data set, the time of map function

gradually occupies the total time of the function. Reducing the time of map function is conducive to

reducing the overall time of the function faster.

However, there are still problems worth noting. As the number of map function groups and reduce

function groups increases, the number of function threads increases, which increases the CPU load, and

may fail to run the program completely.

3.2. Ratio of function execution time to communication time

Figure 3. map function execution time and communication time

Figure 4. reduce function execution time and communication time

The change of communication time with the number of experimental groups in the total execution time

is explored. Figure 3 shows the changes in the execution time and communication time of map function,

and Figure 4 shows the changes in the execution time and communication time of reduce function.

Therefore, according to the content in the figure, it can be concluded that after the execution of a set of

Map functions, the time required to upload the output file is about 1.51s. The total execution time of the

Map function is 288.19s. After a set of Reduce functions are executed, it takes about 1.242 seconds to

download the output file of the Map phase. The total execution time of Reduce functions is 3.629

seconds. The calculated total communication time is approximately 2.752s and the total execution time

is 291.819s. The results show that the proportion of communication time is about 0.943%.

The time required for the two sets of Maps to upload output files is about 1.36s. The total execution

time of the Map function is 267.46s. After the two groups of Reduce functions are executed, it takes

about 0.942 seconds to download the output file of the Map phase. The total execution time of Reduce

function is 3.527s. After calculation, the total communication time of function is 2.302s, and the total

execution time of model is 270.987s. The results show that the proportion of communication time is

about 0.849%. The decline is also significant compared to the first group.

The time required for the four Map groups to upload output files is about 1.16 seconds. The total

execution time of the Map function is 267.52 seconds. After the four groups of Reduce functions are

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/68/20241536

352

executed, it takes about 0.896 seconds to download the output file of the Map phase. The total execution

time of the Reduce function is 2.979 seconds. After calculation, the total communication time of the

function is 2.056s, and the total execution time of the model is 270.499s. The results show that the

proportion of communication time is about 0.76%. It takes about 1.08s for the six Map groups to upload

output files. The total execution time of the Map function is 253.7 seconds.

After the six groups of Reduce functions are executed, it takes about 0.849 seconds to download the

output file of the Map phase. The total execution time of Reduce functions is 2.198 seconds. After

calculation, the total communication time of the function is 1.929s, and the total execution time of the

model is 255.898s. The results show that the proportion of communication time is about 0.753%.

Figure 5. Total execution time and communication time and their proportion

The results are summarized and plotted. It can be intuitively observed from the line chart in Figure 5

that when python's multi-threading idea is used, with the increase of Map and Reduce functions, the

communication time and total function execution time both show a downward trend. At the same time,

the proportion of communication time in the total time is also gradually decreasing. Prove the feasibility

and performance of the function. When the data set is enlarged, the performance of the model changes

more obviously and the results are more reasonable.

3.3. Memory Consumption by Functions

3.3.1. Testing Environment Configuration. The following takes map function as the main test function

for experimentation:

Performing MapReduce operations in a Serverless environment and measuring the memory

consumption of the map function usually involves several steps. Since Serverless platforms (e.g. AWS

Lambda, Google Cloud Functions, Azure Functions, etc.) usually provide monitoring and logging

features, the paper can use these features to observe and analyse memory usage.

Platform selection: choose the AliCloud Serverless platform to run the experiment.

Function writing: Write the map function to ensure that the function can handle data sets of different

sizes in order to observe changes in memory consumption.

Deploy the function: deploy the trigger function and observe the memory consumption, deploy the

map function to the AliCloud platform. Ensure that the appropriate execution environment, memory

limit and timeout settings are configured. Trigger the map function using different input dataset sizes

and observe the memory consumption. View the memory usage of the function through the monitoring

tools provided by the platform (e.g. AWS CloudWatch).

Record and analyse data: Record memory usage for each function execution and analyse the numbers

to draw visual images to understand the relationship between memory consumption and dataset size.

Plotting: use the matplotlib library (a plotting library for Python) to plot graphs.

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/68/20241536

353

3.3.2. Result

Figure 6. Memory Consumption

As shown in Figure 6, in terms of content usage, the map and reduce functions tend to use memory in a

flat and regular way.

The paper conducted a series of experiments to test the memory usage of datasets of different sizes

during the execution of the map function. The paper chose 3 datasets of different sizes (small, medium

and large) and recorded the memory consumption of each dataset during the execution of the map

function.

Figure 7. The Relationship with Data and Memory

The relationship between dataset size and memory consumption during the execution of the map

function can be seen from Figure 7, as the dataset size increases, the memory consumption increases

accordingly.

3.3.3. Conclusion. The paper conducted multiple experiments using a fixed dataset size to eliminate

potential randomness while ensuring that all other conditions of the experimental environment remained

constant. At the same time, attention was paid to the memory limitations of the serverless platform and

ensured that the function ran within the set memory limits. It is finally concluded that the dataset size

has a positive correlation with the memory consumption in the map function, i.e., as the dataset size

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/68/20241536

354

increases, the memory consumption increases accordingly, while ensuring that other factors are not

affected.

3.4. Effect of Memory and Processor Parameters on Execution Time

3.4.1. Theoretical Analysis. Memory size is an important factor in server performance. Too little

memory and system processes will be blocked and applications will be slowed down or even

unresponsive; too much memory can also be wasteful. Therefore, finding the right memory size is an

important factor in balancing server performance and cost.

In general, the higher the number of cores of the processor and the higher the main frequency, the

better the performance of the server. This is reflected in the serverless computing service provided by

Aliyun, which is the parameter setting of vCPU. the higher the parameter setting of vCPU, the faster the

speed of computing.

3.4.2. Experimental Content. The paper conducted MapReduce experiments in AliCloud and tested the

effect of different memory allocations on execution time. The paper chose several different memory

allocation levels (256MB, 512MB, 1024MB) and used a fixed size dataset. As shown in Table 1:

Table 1. The Setting of Testing Environment

vCPU Execution time(ms) memory (MB)

V0.25 12060 512

V0.25 12952 1024

V0.25 14224 2048

Figure 8. The Relationship with Data and Execution Time

The above figure 8 shows the relationship between the size of the dataset and the memory

consumption during the execution of the map function. It can be seen from the figure that as the size of

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/68/20241536

355

the dataset increases, the memory consumption also increases accordingly. In addition to memory, the

paper also tested the effect of different CPU sizes on execution time. The paper chose several different

CPU specifications (V0.25, V0.35, V0.5, V0.75) and used a fixed size dataset. The following

experimental results were obtained: As shown in figure 9, the function execution time does not float

much with the change of memory allocation, which leads to the conclusion that the MapReduce

framework is not a memory-sensitive computing framework.

For processor parameters, higher vCPU specifications result in significantly shorter execution times.

Figure 9. The Relationship with vCPU and execution Time

4. Discussion

4.1. Shortcomings

There are some shortcomings in the serverless based MapReduce framework for functions to deal with

relevant experimental problems. The following is a detailed analysis of these shortcomings and possible

directions for improvement.

Problems with word filtering: The word filtering part of the function only determines words by

determining whether they are all letters, which results in all hyphenated words or other split words with

punctuation being filtered out and resulting in false counts. In addition, the function's running time is

slightly increased by repeating the word traversal twice to convert lowercase letters and perform other

filtering operations.

Repeated communication, communication time is too long: in the reduce phase, every time when

importing the processing results of two groups of maps, we need to download the file once, resulting in

a total of 26 downloads and 26 uploads after traversing all the maps, which leads to an increase in

communication delays and an increase in the likelihood of failures.

Inadequate design, need to be combined with the actual: in the experiment, the paper shorten the

running time of the task by increasing the number of groups in each of the Map and Reduce phases, but

the increase in the number of threads caused by the increase in the number of groups also leads to an

increase in the load on the CPU, which results in the crash of the programme running.

4.2. Directions for Subsequent Improvement

Solve the word filter method:

① Combine operations such as converting words to lowercase, removing punctuation, splitting

words (if needed), and filtering special words into a single loop to increase what is processed for words

in each loop and reduce the total number of loops.

② User can customise the input line separator to split words more accurately. This avoids incorrectly

treating hyphens and neighbouring words as one word. Add filtering design for special words such as

hyphens.

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/68/20241536

356

Solve the problem of excessive communication time:

① Streaming: consider using streaming processing instead of file-based processing. In this way, the

results of the Map task can be sent to the Reduce task in real time without having to write to a file first.

② Reduce the amount of data transferred: optimize the data processing logic to reduce the amount

of data transferred between Map and Reduce tasks. For example, more data cleansing and transformation

can be performed in the Map phase to reduce the amount of data that needs to be transferred.

③ Optimize file transfers: If you have to use file transfers, consider the following optimization

measures: Category 1, use a faster network connection. In the second category, compress files to reduce

transfer time. In the third category, use multi-threading or asynchronous I/O to process multiple file

transfers in parallel.

Solve the problem of high CPU load: according to the size of the data volume and the host

performance of the comprehensive consideration of the map and reduce the number of respective group

settings, the optimal solution after many tests.

5. Conclusion

Through this research, the paper implements the use of the MapReduce framework for counting word

frequencies, and explores the multiple factors that affect the efficiency of the framework's operation as

well as optimization methods.

Firstly, the running time of the task is shortened by increasing the number of groups in the map or

reduce phases. The number of groups in each of the map and reduce phases is considered according to

the size of the data volume and the performance of the host, and the optimal solution is derived from

multiple tests.

Secondly, by modifying the framework, this study obtains the ratio of function execution time and

communication time, and clarifies the cost of communication, so as to investigate the measures to reduce

the proportion of communication time and improve the efficiency. It can be concluded that: as the

number of Map and Reduce functions grows, both communication time and total function execution

time decrease. The communication time's share of the total duration also shrinks, indicating enhanced

operation efficiency.

Thirdly, by using the features of AliCloud, this study monitored the memory consumption of the

function. The magnitude of memory consumption was positively correlated with the size of the dataset,

i.e., as the size of the dataset increased, the memory consumption increased accordingly.

Finally, this paper manages to investigate the effect of memory consumption and processor

parameters on execution time. The changes in function execution time is not significant as the allocated

memory capacity increases, so memory allocation is not the main determinant of execution time.

However, higher processor parameters lead to shorter execution times under the same conditions of

processing.

In the future, optimization and improvement of MapReduce and similar big data processing

frameworks will become more urgent and important as the volume of data continues to grow and the

computational tasks become more complex. Any small improvement embodied in the massive amount

of data is huge. By continuing to delve into such frameworks, enhancing adaptive tuning, while

combining with deep learning, improving cross-framework interoperability, etc., new application areas

may open up. The MapReduce framework, which is continuously optimized and iterated, is expected to

be expected to become a more powerful, flexible, and secure big data processing solution in the future,

providing continuous support and development of data-driven applications in various industries.

Authors Contribution

All the authors contributed equally and their names were listed in alphabetical order.

References

[1] Vouloumzidis, K., et al. 2019. A Systematic Literature Review of Serverless Computing: The

First 10 Years. Journal of Cloud Computing,7(3), 255–281.

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/68/20241536

357

[2] Dean, J., & Ghemawat, S. 2008. MapReduce: simplified data processing on large clusters.

Communications of the ACM, 51(1), 107–113.

[3] Wang, L., et al. 2018. "A Survey on Serverless Computing: Architecture, Applications, and

Security." IEEE Access, vol. 6, pp. 31535–31553.

[4] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. 2010. Spark: Cluster

computing with working sets. In 2nd USENIX Workshop on Hot Topics in Cloud Computing

(HotCloud 10).

[5] Verma, A., Cho, B., Zea, N., Gupta, I., & Campbell, R. H. 2013. Breaking the MapReduce stage

barrier. Cluster computing, 16, 191-206.

[6] Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., &

Ghosh, S. S. 2011. Nipype: a flexible, lightweight and extensible neuroimaging data

processing framework in python. Frontiers in neuroinformatics, 5, 13.

[7] Wang, G., & Chan, C. Y. 2013. Multi-query optimization in mapreduce framework. Proceedings

of the VLDB Endowment, 7(3), 145-156.

[8] Tari, Z. 2014. Security and privacy in cloud computing. IEEE Cloud Computing, 1(01), 54-57.

[9] QIAN Wenjun, SHEN Qingni, WU Pengfei, et al. 2022. Progress of privacy protection

technology in big data computing environment. Journal of Computing, 45(4), 669-701.

[10] Ibtisum, S., Bazgir, E., Rahman, S. A., & Hossain, S. S. 2023. A comparative analysis of big data

processing paradigms: Mapreduce vs. apache spark. World Journal of Advanced Research and

Reviews, 20(1), 1089-1098.

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/68/20241536

358

